Disabling Architecture: Aesthetics and Accessibility at Trinity University

Catherine R. Terrace
Disabling Architecture: Aesthetics and Accessibility at Trinity University

Catherine Terrace

A departmental senior thesis submitted to the Department of Sociology and Anthropology at Trinity University in partial fulfillment of the requirements for graduation with departmental honors.

25 April 2019

Dr. Richard Reed
Thesis Advisor

Dr. Jennifer Mathews
Department Chair

Michael Soto, AVPAA
Student Agreement

I grant Trinity University (“Institution”), my academic department (“Department”), and the Texas Digital Library (“TDL”) the non-exclusive rights to copy, display, perform, distribute and publish the content I submit to this repository (hereafter called "Work") and to make the Work available in any format in perpetuity as part of a TDL, Digital Preservation Network (“DPN”), Institution or Department repository communication or distribution effort.

I understand that once the Work is submitted, a bibliographic citation to the Work can remain visible in perpetuity, even if the Work is updated or removed.

I understand that the Work's copyright owner(s) will continue to own copyright outside these non-exclusive granted rights.

I warrant that:

1) I am the copyright owner of the Work, or
2) I am one of the copyright owners and have permission from the other owners to submit the Work, or
3) My Institution or Department is the copyright owner and I have permission to submit the Work, or
4) Another party is the copyright owner and I have permission to submit the Work.

Based on this, I further warrant to my knowledge:

1) The Work does not infringe any copyright, patent, or trade secrets of any third party,
2) The Work does not contain any libelous matter, nor invade the privacy of any person or third party, and
3) That no right in the Work has been sold, mortgaged, or otherwise disposed of, and is free from all claims.

I agree to hold TDL, DPN, Institution, Department, and their agents harmless for any liability arising from any breach of the above warranties or any claim of intellectual property infringement arising from the exercise of these non-exclusive granted rights.”

I choose the following option for sharing my thesis (required):

[X] Open Access (full-text discoverable via search engines)
[] Restricted to campus viewing only (allow access only on the Trinity University campus via digitalcommons.trinity.edu)

I choose to append the following Creative Commons license (optional):
Disabling Architecture:
Aesthetics and Accessibility at Trinity University

Catherine Terrace

Senior Honors Thesis

25 April 2019
Table of Contents

Acknowledgements ... 5

Abstract... 6

Introduction... 7

Thinking Disability .. 13
 Disability and the ‘Normal’ Body ... 13
 The Social Model of Disability .. 14
 Legislating Spatial Access .. 15
 Inaccessibility in Architecture .. 17
 The Significance of Architecture ... 18
 Ford’s Vision ... 19
 Historical Background .. 20
 Disabling Architecture ... 21

Architecture in Ethnography ... 23
 Universal Design .. 23
 Design Ethnography .. 24
 Inaccessible Accessibility ... 25

Methodology ... 26

Experiencing Storch .. 30
 Storch Memorial Hall Today ... 30
 Building Accommodations ... 34
 (in)Accessibility of Storch .. 37

Understanding Access .. 40
 Lack of Meaningful Connectedness .. 40
 Displaced Accommodations ... 42
 Detached Inter-level Access ... 44
 A History of Non-Compliance ... 46
 Trinity in a Post-Disability Era .. 49
 The Logic of Inaccessibility .. 52

Reimagining Trinity’s Campus .. 53

Figures.. 59

Bibliography .. 68
Acknowledgements

This research could not have taken place without the guidance from the members of my Thesis Committee. I’d like to thank Dr. Richard Reed, for advising me throughout this process. He has always challenged me to approach anthropology in new ways, and as a member of this committee, he helped me “find my voice” in this work. I’d also like to thank Dr. Alfred Montoya for being my advisor in anthropology, as well as on this thesis. His classes introduced me to the world of anthropology, without his influence, I would have never been a major. In addition, I thank Dr. Jennifer Mathews for her encouragement throughout this process. I’d like to thank Dr. David Spener and Dr. Rosa Aloisi for their continued support during my time at Trinity as well. Additionally, I interviewed a series of individuals who have worked in the fields of both architecture and disability. These individuals are Sharon Curry, Kathryn O’Rourke, Heather Haynes Smith, Mindy Morales, Gordon Bohmfalk, and John Greene. Without their input, I would have been unable to produce the quality of research I have done throughout this work. Finally, I’d also like to thank my parents, David and Donna Terrace, for their constant love and support in all my academic endeavors.
Abstract

Trinity University’s San Antonio campus is nationally renowned for its unique architectural design. Created by lead architect O’Neil Ford during the 1950s, its red-brick buildings often deploy the lift-slab method, at the time done for cost-saving purposes. More importantly embody Ford’s philosophy of incorporating architecture into the natural landscape. These buildings now bear national recognition from the Texas Historic Commission, and their pattern of design is reiterated in the campus’ newer buildings as well. Yet, as a campus constructed before the implementation of legislation such as the 1973 Rehabilitation Act and the 1990 Americans with Disabilities Act, university facilities face issues with accessibility. Trinity’s campus was born out of an aesthetic-first design process, which concerned itself with buildings’ appearances, rather than their function. Before the campus can truly approach accessibility in a meaningful way, it must re-imagine itself, and engage with accommodation-first architecture.
Introduction

It is fundamentally impossible to think about Trinity University apart from the physical space it occupies. Everything about the built environment emanates this sense of being a small liberal arts college. Red bricks mark every building, creating a universal aesthetic across the space. Despite its small size, the campus has no singular entrance; there is no point of entry that grants access to the rest of the university. While the Northrop building houses the university’s admissions offices, and is consequently advertised as an entry by tour guides to first-time visitors, the size of its accompanying parking lot, and the lack of access roads to the campus’s dormitories and other academic buildings means that first time visitors are sometimes confused on how they are meant to reach other parts of the campus.

This feeling of uncertainty marks the rest of university’s campus – especially for students – in a different, but unique way. Moving through the campus, individuals often find themselves surrounded by a canopy of green trees. Both the university’s academic and residential buildings
tend to be broken up by grassy spaces interrupted by these trees, at times occupied by students in hammocks, enjoying the beautiful spaces. In traversing the university’s upper campus, there are very few straight paths available; rather, they twist and wind around both the buildings and green spaces, sometimes making finding shortcuts to class rather difficult for students. Navigating the lower campus, where dormitories are housed, too, can feel like a somewhat of an adventure, as students always find new pathways and hidden locations to enjoy.

When I first arrived at Trinity in Fall 2015, a student told me that the complexity of the university’s layout and this lack of clear paths had been intentional. O’Neil Ford – the campus’s main architect – had designed the campus with a certain design philosophy in mind. Much to my frustration at the time, this friend informed me that there wasn’t supposed to just be one way to navigate the campus. The paths twist and turn because students were meant to find their own way in traversing the campus. It was supposed to be difficult to find a shortcut because, as a liberal arts university, students were meant to have a liberal arts way of thinking about the way they moved through the physical space of the university, making “the spirit of the campus and the spirit of the institution… inseparable” (Speck 1983). Every aspect of the campus was meant to be natural, to be incorporated into the topography in a way that would foster a type of imaginative thinking. Barlett Cocke – another architect who heavily influenced the Trinity design – argued that “the arrangement of buildings should be informal, irregular in shape, designed to fit the site” (Speck 1983). Trinity is not just built on this terrain; rather, it comes out of it.

Ford – alongside the architects and designers that followed him – created this free-flowing aesthetic providing multiple ways of moving throughout the campus. On upper campus alone, one can travel by any number of routes to reach a singular destination; the interrupting
green spaces function both as a detour and as an obstacle that students navigate as they travel through the space. Do they walk through the parking lots, or through the buildings to get back to their residential halls? Do they take Cardiac Hill down to Mabee Dining Hall, or use the Murchison elevator? Often without thinking about it, students make these decisions every day, forging their own paths. People on this campus take a journey all the time, and they move through a maze that can give them the capacity to find their own way. Even with the additions of other academic and residential halls over the years, the campus has adhered to this aesthetic.

Ford’s philosophy and style resonates all across the university. The “Trinity red” bricks have been used in every building since Ford’s time. The lift-slab technique, made possible by Trustee Tom Slick’s patented hydraulic jacks, marks its older buildings, such as Miller and Storch (Speck 1983). This style is no longer used, but newer buildings still resemble their predecessors, though with certain architectural changes. Trinity’s aesthetic unity is arguably part of its beauty.

As such, Trinity University’s campus, constructed during the 1950s, features a unique style of architecture pioneered by O’Neil Ford. Inspired by the natural landscape, and using natural materials, Ford employed Slick’s lift-slab technique. Buildings were constructed using large slabs of stacked rock, and faced in a type of brick which to this day is an iconic Trinity feature. The campus was built on an abandoned limestone quarry. Ford opted to forgo leveling the site, and instead, used it to create a unique topographical setting for the campus’ buildings. In this way, he employed this distinctive landscape to give shape to the university’s new location. Visitors were meant to move through the topography, and feel as if those buildings came directly out of the terrain. Ford’s dedication to utilizing nature and landscape in architecture not only shaped Trinity’s original buildings, but still continues to influence the university’s buildings today.
Yet, architecture never exists in a vacuum. Born out of a specific time, it incorporates and responds to dominant cultural values. Trinity’s San Antonio campus was envisioned, designed, and created during the late 1940s and early 1950s. It was built during this time, and it was built for the very specific set of individuals who were perceived as ‘normal’ college students – namely, a predominately middle class, white, and abled population. Architectural accessibility – evident by many of the design features of Trinity’s original campus – was not a part of Ford’s design philosophy. Ford’s ideas about navigating the campus, and his attention to the interaction between the built environment and the landscape are features which prioritize aestheticism in the design process. The “ideal user” of these spaces must be abled-bodied, and must have the capacity to navigate an uneven and difficult terrain.

In 2015, I had been excited to study at the small liberal arts college. Its academic excellence was important to me, but ultimately the small size of the campus solidified my decision to attend. My physical disability has brought with it a mobility impairment which made attending a larger university seem to be an impossibility. I had wanted a campus which would be easy for me to navigate, one which would not leave me exhausted and feeling limited due to its size and terrain. Ford’s design philosophy – that of finding your own path, having an immersive experience in the topography – I soon found out was not one designed for me. This philosophy did not include, or care, about accessibility. Trinity was built for a certain kind of user, a category in which I do not fit into. This is not the fault of my disability, but rather, it is the fault of a pattern of architecture which has disabled me.
Consequently, the university’s dedication to this quintessential Trinity aesthetic has severely limited the campus’ accessibility and student’s ability to navigate it. No accessible path connected the two halves of campus until 1992, almost forty years after the original buildings were constructed (Skanse 1992: 4). That year, a ramp was built into the side of a hill near the Storch and Murchison buildings (Skanse 1992: 4). Until as recently as 2015, the campus still had no truly accessible routes between upper and lower campus. In 2015, when elevator was installed in the most centrally located dormitory, Murchison, these concerns had just begun to be addressed (Craft 2014: 1). Moreover, a number of the lower campus dormitories still lack elevators. These buildings are unreachable for those with limited mobility from the typical upper campus routes students dominantly use. Even in upper campus academic buildings, all of which now feature at least one elevator, stairs are still the most direct way to access entrances. Though the vast majority of academic buildings now have accessible routes attached to them, these ramps have been placed off to the side, or in obscure locations.

Nearly three decades after the passage of the Americans with Disabilities Act (ADA), a majority of Trinity’s buildings comply with the basic accessibility standards. The university has made great strides in improving accessibility during the seven decades of its San Antonio campus’s existence. However, its insistence on adhering to Ford’s original vision ignores a fundamental problem in the approach to accommodations. In prioritizing a building’s aesthetics, accommodating designs and technologies are inherently subverted, conceptualized as an afterthought, rather than a priority.
Ultimately, Trinity’s terrain and renovations have created an “inaccessibly accessible” experience for students, staff, faculty, and visitors who may have a physical disability. Though accommodations exist, they have been insufficient to improve the experience of disabled individuals on campus. Examples of this exist across campus. By examining the history of renovations behind a building which is most emblematic of Ford’s vision – the George Storch Memorial Hall, one of the university’s academic buildings – the disconnect between Ford’s design philosophy and a disability-centered approach become strikingly clear. Even after renovations, the campus still fundamentally lacks meaningful accessibility. For example, introducing an elevator into the Murchison building does very little to meaningfully alter the campus when so many barriers dominate the topography. Students have long recognized these barriers. The campus newspaper, The Trinitonian, has documented blatant violations and significant concerns with accessibility since the 1970s (Baker 1978: 1).

The university has historically been slow to address the underlying causes of inaccessibility, postponing renovations due to financial concerns, and instead celebrating a style of architecture and design which has historically excluded disabled bodies. I argue that Trinity’s architecture prioritizes historic preservation of its iconic architectural features over creating accessible infrastructure. Construction of new buildings inevitably employ aesthetic-first architecture, rather than an accommodation-first architectural approach. The university’s main concern in developing the campus has always prioritized an aesthetic-driven design philosophy. Trinity must fundamentally alter the way in which it approaches its design philosophy if the campus is to ever approach accessibility in a meaningful way.

1 My use of the term is developed from Hartblay (2015: 3).
Thinking Disability

Disability and the ‘Normal’ Body

Disability, or what one considers to be disabled, is produced out of, and is contingent on a social norm of ability – and visa-versa (McRuer 2006: 301). When we think about what constitutes an abled body, it is typically conceived as one which is free from physical and/or mental disability; in this way, it has historically been constructed as the desired identity (McRuer 2006: 303, Hamraie 2016: 4). In a capitalist context, to be non-disabled means to be a modal subject, one whose bodily characteristics allow them to be productive. This status of ability has been socially and environmentally constructed to allow those bodies the capacity to enter relationships and spaces which enable labor (McRuer 2006: 303, Cisney and Morar 2015: 6). Abled-ness, or non-disabled-ness, is consequently the baseline for what society largely views as standard capabilities, as it contains a set of desired traits which have been labeled normal.

In this way, able-ness is based on a powerful assumption. It is the norm from which people conceptualize what bodies ought to be like – the “universal body” (Davis 2006: 3, Hamraie 2017: 21). Because disability is always already defined in opposition to ability, it is a constant, physical state of deviance from “normal bodies” – a perpetual “deviant body” (Davis 2006: 7-8). Constructing disability as abnormal, then, conditions the disabled identity as undesirable, and is consequently the target of discrimination (Hamraie 2016: 4, Linton 2006: 167). The normal-abnormal, disabled-non-abled distinction consequently forces individuals into a binary which ultimately gives power and social prestige to one group, the abled, while constructing the disabled as those whose bodies are inherently dependent and tragic (Linton 2006: 168).
The Social Model of Disability

Historically, this distinction between ability and disability on an individual level was thought solely in medical terms. In this way, disability was conceived as a physical or psychological condition of the material body. This biomedical model of defining disability and physical ‘normality’ reduced the identity to a purely biological state (Linton 2006: 162, Erkilic 2011: 186). Disability, under this medical model, is not a kind of social identity, but simply a biomedical diagnosis, perceived to be independent of any external social forces or discrimination, so that disability is not given the same attention as other identities.

However, in the 1980s critical disability scholars adopted what became known as the “social model of disability” (Hamraie 2016: 3, Linton 2006: 162, Siebers 2006: 174). They argued that disability is bound in social meanings and relationships. While disability is typically conceptualized of in medical terms and diagnosis, social issues similarly work to define the disabled identity. Consequently, disability studies must be contextualized historically and spatially, within the regimes, services, and environments which shape the lives of those living with disabilities (Davidson 2006: 119, Hamraie 2016: 3). While the biology of a disability can certainly determine part of a disabled subject’s experience, the society in which they live, its stigmas and technologies, also matter. By shifting the focus from individual impairment and limitation, and examining the context in which one is viewed as impaired, disability studies challenged the purely negative and pathological construction of disability (Linton 2006, 162). Our notion of disability one which is shaped and informed by the social structures around it which create disabled bodies as subjects of discrimination and oppression.

The extent one may be viewed as disabled depends largely on the demands and behaviors that any culture or environment expects of normative bodies (Reid-Cunningham 2009: 104,
Linton 2006: 163). Understanding disability as shaped by and contingent on one’s environment explains the social reasons for why disabled bodies are continuously excluded from public, social, and economic spheres. Garland-Thompson utilizes the concept of “habitable worlds” to understand the ways in which architects deal with accessibility in design (Hamraie 2016: 4). Considering “habitable worlds” targets the underlying ideological and theoretical assumptions taken up by architects in the design process, it goes beyond what we now think of as accessible design (Hamraie 2016: 4). Rather than taking accommodations as simply a legal requirement, accessibility ought to be perceived as the material structures which enable disabled bodies to access social worlds.

Tom Siebers argues that the built environment plays a crucial role in one’s experience with disability, and the extent to which one might feel disabled in any given cultural context (2006: 174). For example, stairs would never be built if everyone in a given society was a wheelchair user. In the United States, stairs are ubiquitous, as designers assume abled-bodied users. On the other hand, individuals who wear glasses are not typically thought of as disabled in the United States, as this accommodation is both common and popularized. Technologies such as glasses and hearing aids have historically played a large role in re-defining what constitutes a disability (Gilderbloom and Rosentraub 1990: 272). When a technology becomes pervasive, it is no longer thought of as an accommodation, and the user’s impairment is no longer identified as a disability. “Disability technology” is consequently essential to our social understanding of disability (Ellis and Goggin 2015: 8).

Legislating Spatial Access

The built environment structures social life most critically for individuals with physical disabilities and mobility impairments. Architectural accessibility has long been discussed in the
United States. Increased attention to disabled bodies followed the return of disabled veterans from the World Wars during the 1940s (Hamraie 2016, 5). Due to this heightened attention, researchers from the University of Illinois created the “American National Standard A117.1” (ANSI A117.1) in 1961 – one of the first documents related to the implementation of best practices in accessible design (Hamraie 2017: 73). Designers, architects, and other professionals were responsible for ensuring a range of accessible technologies (Hamraie 2017: 73-74). These recommendations were developed to ease the experience of white students in universities. As is true of much of disability studies, these policies were created to serve those with white privilege, though they were born out of and alongside the civil rights era (Hamraie 2017: 75).

The Architectural Barriers Act of 1968 was approved alongside the ANSI A117.1 (Mazumdar and Geis 2003: 200, Hamraie 2017: 91). In 1973, Rehabilitation Act outlawed the discrimination against individuals with disabilities in terms of access to federal financial assistance or programs related to federal funding (Jones 2007: 1). The Americans with Disabilities Act (ADA) was passed in 1990, becoming one of the most famous pieces of legislation targeting discriminatory practices, both social and environmental, against individuals with disabilities (Hamraie 2016: 2; Mazumdar and Geis 2003: 200). This law mandates that all buildings constructed after the year it passed be required to have accessible routes in and out of the space, as well as elevator access to all floors.

Yet, the ADA had not been expressly written as a building code, but rather as a set of recommendations for how architects ought to address accessibility within their projects (Chia 1995: 1). The built environment still remains a barrier for many individuals with disabilities, due to insufficient handicap parking, curb cuts, and ramps. Additionally, only government buildings, those constructed after the passage of the ADA, and older buildings undergoing extensive
renovations must adhere to the design standards laid out in the legislation. Older buildings need only be equipped with accessible infrastructure if there is no “undue burden” placed on the buildings’ owner (Chia 1995: 2). Subsequently, large numbers of buildings are still inaccessible, as many owners hold off on renovations to postpone the costs of making their building accessible.

Moreover, since its implementation, some buildings constructed after the passage of the ADA failed to meet the accessibility criteria, as architects either ignored or misinterpreted ADA regulations (Mazumdar and Geis 2003: 200-201). Some buildings have only been built to be “technically” accessible, with accommodations that are either unusable or inconveniently placed for disabled users (Chia 1995: 1-2). New buildings might meet standards, but these regulations never change the core design process for buildings. Architectural plans are drafted, then later checked for adherence to regulations, according to Gordon Bohmfalk. Partial compliance with ADA standards, and accessibility as an afterthought in design, means that renovated buildings often fail to provide the best possible accommodations. The result has been a landscape which continuously fails to be accessible to those with physical disabilities and mobility impairments.

Inaccessibility in Architecture

Because of these factors, inaccessible accommodations tend to be common, due to the disconnect between accommodations and users. Narratives of those with physical disabilities are seldom included in the building design process (Hamraie 2016: 2). Lack of communication between architects and users can consequently result in accommodations being present, but not efficient, nor designed for the intended use by disabled bodies. This includes ramps are not fully usable (Hartblay 2015: 3). These “check-mark ramps”, as anthropologist Cassandra Hartblay refers to them, do not provide the access that individuals with physical or mobility impairments
require. Because of their physical form, or location in relation to a particular building or space, rather, they become “inaccessible accessibility” technologies (Hartblay 2015: 3, 6). Architects often build this type of infrastructure solely to claim the legal accessibility designation, rather than increase effective usage.

Such a lack of accessible routes, entries, and technologies ought to be viewed as a failure of those envisioning those spaces to equip them with those necessary features (Mazumdar and Geis 2003: 200). Any accommodation – whether a wheelchair, glasses, or cane – fundamentally alters the ways in which disabled users are able to experience the environment (Liebergesell, Vermeersch, and Heylighen 2018: 1). For individuals with physical disabilities, those technologies enable users to gain access and move more freely between spaces (Liebergesell, Vermeersch, and Heylighen 2018: 1). Without the inclusion of ramps, elevators, or other technologies – or even limited access to them – disabled users become systematically denied access to the social world through the limitations of the material one.

The Significance of Architecture

The form of any given building is heavily influenced by the theory of design its architect has in mind (Hearn 2003: xi). Theorist Quatremère de Quincy thought architecture was similar to language in that it is a type of expression, an illustration of the architect’s theory, and something that can evolve just as society and culture does (Hearn 2003: 26). An architectural design represents a specific moment in time; conditioned by a vision which is informed by culture, and never created in a vacuum. The design philosophy informs not only the structure of the creation, but additionally how one experiences the building, and is consequently intricately linked to the function of the space itself. Architects subsequently use demographic information in order to
design around the average, “normal” body, which is how buildings and structures become reinforcements of certain standards of ability (Hamraie 2016: 5).

Ford’s Vision

O’Neil Ford, the principle architect of Trinity University’s San Antonio campus, began his work as an architect in Dallas, Texas, under the tutelage of architect David Williams during the 1920s (George 1992: 17). Soon after joining Williams, Ford embarked on a road trip with his brother through Texas to document old houses in San Antonio, and cultivated an appreciation for the indigenous architecture (George 1992: 19). These trips, became an integral part of Ford’s projects, influencing the first building he designed (George 1992: 20, 23). Even in the formative years of Ford’s career, the natural landscape heavily influenced his design, as he viewed use of natural materials as “the integration of the applied arts and architecture” (George 1992: 23).

As Ford gained experience, his views began to solidify into a distinctive philosophical approach to architecture. As he wrote in a 1932 issue of the Southwest Review, Ford was often frustration with the amount of imitation common in the field, criticizing the functionalist perspective of architecture as “arranged instead of organic” (George 1992: 33). Throughout the 1930s, Ford became nationally regarded for his open-minded approach to architecture (George 1992: 63). He incorporated natural materials and the landscape into his work (Dillon 1999: 58). These ideals later became iconized in Trinity’s landscape. In a 1983 article, the then-reigning president Ronald Calgaard observed that those responsible the designing the university wanted to create “a feeling of the life of the institution” (Speck 1983, Graves et al 2017). As a liberal arts university, students were meant to understand the campus in a liberal arts way (Ferguson 2017: 6).
Historical Background

Trinity University relocated from Waxahachie to San Antonio in 1942 (George 1992: 93). Most of the early San Antonio campus was constructed over a 25-year period from 1951 until 1976, with campus plans dating back to 1944 (Speck 1983, Dillon 1999: 58). Two architecture firms – the office of O’Neil Ford and the office of Barlett Cocke – ended up being responsible for creating the university’s San Antonio campus (Speck 1983, George 1992: 93). Trinity’s design drastically differed from others during that period. The design and layout of the buildings was informed by the nature of the site itself. As a 107-acre abandoned limestone quarry, the topography of the campus is divided and interrupted, broken up into two distinct sections – now called upper and lower campus (George 1992: 93, Speck 1983, Graves et al. 2017). Rather than level the terrain, Ford embraced it in his work, working with it (Speck 1983).

In designing Trinity’s initial master plan, it was Barlett Cocke who insisted upon creating a campus which blended into the natural landscape and the “distinctive” nature of San Antonio (Dillon 1999: 58, Graves et al. 2017). Despite having imagined the plan as embracing these unique features, the initial articulation of this approach fell short. The first plan called for Trinity’s dormitories and academic buildings to be organized around a “broad central mall,” which would have involved leveling the terrain, rather than adapting to it (Dillon 1999: 59). Several members of Trinity’s board of trustees – Tom Slick and Frank Murchison – fought the design, bringing in William Wurster as a consulting architect (Dillon 1999: 59, George 1992: 95). Soon after, Wurster introduced O’Neil Ford to the Trinity project as chief designer, hoping to bring his innovative perspective to the campus site (Dillon 1999: 59). Even with Ford’s new input, the second plan was similarly rejected. While it attempted to adapt to the environment, Wurster felt it still fell short of expectations. He argued the buildings were spread too far apart,
and consequently proposed connecting the lower and upper parts of campus in a more prominent manner (Dillion 1999: 59). Wurster also recommended minimizing inter-campus roads, keeping them as small as possible in an attempt to prevent widespread use (Dillion 1999: 59). Trinity, even in the early stages of planning, strove to be a pedestrian campus. As such, Wurster’s recommendations gained trustee approval, and were subsequently incorporated into the Trinity design (Dillion 1999: 59).

In designing the first buildings – an administrative building and several dormitories – Ford and Cocke employed the lift-slab method of architecture – one which was very cheap to produce, and made possible by Trustee Tom Slick’s patented hydraulic jacks (George 1992: 95, Dillion 1999: 62). As both a modern and inexpensive method of construction, the style took a horizontal approach to buildings using slabs of stacked rock. Ford viewed this as “an uncomplicated, logical and per se beautiful expression of the nature of the materials from which it is built” (Dillion 1999: 62). Widely praised by architectural and engineering reviews, Ford became associated with this style, employing it across the university campus. As budgetary concerns ebbed with donations, Ford began to deploy other architectural techniques, creating a beautiful and diverse campus in the process (George 1992: 99; Dillion 1999: 62).

Disabling Architecture

Drawing upon theories from both disability studies and architectural studies, I propose the concept of “disabling architecture” to encapsulate the physical design of some spaces. I understand this in two ways. First, many architectural designs cause one to be disabled, creating spaces that are fundamentally at odds with the disabled experience. In the medical model of disability, it is the individual’s impairment which limits them. In this way, the fault lies not with the architect of the space this individual is traversing, but rather, with the individual with the
The concept of disabling architecture draws attention to the ways that the construction of spaces prevents disabled bodies from entering the physical and social space of a building or structure.

Architects design around an ideal user. They structure spaces around those they envision using them. In doing so, they create an environment built for those with a certain amount of ability. With physical impairments, ones’ experience with disability can be largely shaped by the built environment (Reid-Cunningham 2009: 104, Linton 2006: 168, Siebers 2006: 174). Consequently, certain architecture disables those who were left out of the picture. Certain architectures allow these users to travel through spaces, but can also prevent disabled bodies from doing so. Thus, these spaces define, and re-define ones’ experience with disability (Gilderbloom and Rosentraub 1990: 272).

Consequently, design is more than just a matter of aesthetics. It can be a tool for inclusion, or exclusion. This exclusion does not have to be intentional. Trinity was constructed at a time in which disability was not part of the larger conversation about architecture, before the implementation of architectural accessibility regulations. Ford, a product of his time, created a campus littered with disabling architecture. Trinity was not built to intentionally exclude students with mobility impairments, but its design philosophy simply did not include disability.

The concept of disabling architecture can be used to draw attention to the ways inaccessibility may be rectified by tackling disabling spaces, and making disability technologies a necessity within the built environment. Accommodations are an after-effect, a legal requirement for architects and building owners who may not see their value. Major renovations are often delayed to avoid expensive disability technologies, perceived as unnecessary (Chia 1995: 2). When added, these accommodations tend to be substandard. For example, Trinity’s
own Myrtle McFarlin Hall – a dormitory for upper-class students – does not have an elevator. Yet, according to John Greene and Gordon Bohmfalk, it can be considered accessible by university standards due to the fact that a sky-bridge attaches it to another building which does.

Disability technologies ought to be viewed as essential to the process of design as the form of the building itself. Achieving this kind of “spatial accessibility” goes beyond merely creating accommodations, as it facilitates the users’ ability to move throughout the space easily, understanding how the building was intended to function and be used by individuals regardless of disability (Andrade and Ely 2012: 3774). Spaces must be barrier-free, enabling disabled users to have uninterrupted access (Andrade and Ely 2012: 3775). To do this requires an appreciation for the experience of disability and a broad understanding of its history (Hamraie 2016: 4). The concept of disabling architecture, therefore, requires the architect to realize that their buildings have the power to determine whether disabled bodies experience inclusion.

Architecture in Ethnography

Universal Design

In the 1960s, architects developed various approaches to make buildings accessible. One such approach was “barrier-free” design (Hamraie 2016: 5). One of the more prominent theories of access in architecture, the philosophy of Universal Design (UD), emerged during the 1970s, and gained popularity through 1990s. Proponents of UD advocated for universally implemented accommodations in the built environment (Erkilic 2011: 181-182, Hamraie 2016: 2). Ronald Mace, an architect and wheelchair-user, was one of the first to adopt the philosophy into his own work, and helped create its standards (Erkilic 2011: 182). Among its seven principles, the first – equitable use – best exemplifies the concept, as it requires that the “design is useful and marketable with diverse abilities” (Erkilic 2011: 182). Considered a “design-for-all” marketing
strategy, UD argues that accessible infrastructure is necessary for the entire population, often focusing on temporarily-abled bodies which may become injured or age (Erkilic 2011: 181). This shifts the focus away from disabilities to that of an “all-users approach,” including those who are able-bodied (Erkilic 2011: 181-183).

However, disability scholars now critique universal design insofar as it was unable to hold accountable those practices which exclude disabled bodies from social and physical environments (Hamraie 2016: 15). Aimi Hamraie argues that UD’s neutrality erases the experiences and needs of the disabled (Hamraie 2016: 15). UD intentionally distances itself from specialized disability infrastructure as its tenants claim those tactics are limited to a set of regulations, the ADA (Erkilic 2011: 185). Whereas previous discourses which prioritized disability narratives as key aspects of design grounded projects in a history of oppression and differences, UD ignores that past and the discriminatory construction of things that necessitated UD in the first place. The notion of ‘eliminating’ or ‘removing’ ones’ disability through design, technology, and rehabilitation is not a form of acceptance, but rather an aspect of “post-disability” rhetoric (Hamraie 2016: 17). In erasing disability as a necessary factor, it papers over specific accessibility technologies needed by disabled bodies.

Design Ethnography

Design ethnographies are one of many tools used by scholars to study the intersection of accessibility and architecture. Cassandra Hartblay’s work in Petrozavodsk, Russia, focuses on ramps which have been constructed for buildings to become accessible, but which are not fully usable (Hartblay 2015: 3). These “check-mark ramps” do not provide that access that individuals with physical or mobility impairments require, either because of their physical form, or location (Hartblay 2015: 3). Architects often build this type of infrastructure solely to claim a legal label
of accessibility, rather than true and effective usage (Hartblay 2015: 3). Here, a disconnect between users and designers becomes glaringly obvious. Hartblay uses photos collected over twelve months to document some of the structural barriers which prevent disabled bodies from participating in daily life (Hartblay 2015: 3-4).

Design ethnographies of university campuses are rare. Preston Haxo, a student at Trinity College in Connecticut, conducted a photo ethnography of his university’s campus after his work in Admissions forced him to confront the inaccessibility of the Trinity College campus (Haxo 2014: 25). He collected data on every building, residential and academic, on campus, and sorted them into three categories: fully handicap accessible, partially handicap accessible, or not handicap accessible. He also conducted interviews with students, staff, and faculty (Haxo 2014: 26). My ethnography will explore the history of renovations of the Storch Memorial Hall, drawing from the works of Hamraie and Hartblay, to contribute to a growing body of literature which seeks to utilize anthropological tools to make sense of and improve the disabled experience in architecture.

Inaccessible Accessibility

The concept of inaccessible accessibility helps us understand the limits of after-thought accommodations. Hartblay’s concept looks solely at architecture and infrastructure which is unusable, i.e., ramps that cannot be accessible to those who use wheelchairs (Hartblay 2015: 3). These instances are obvious and permeate the environment in a way which denies would-be users access. However, I argue inaccessibility can take a variety of forms. It may mean that a building lacks obvious accessibility, so that the user must search to find the accommodations. When a user is confused about their accommodation or must go out of their way to find it, that building is inaccessible.
If the building is truly accessible, the user should never encounter difficulties in finding their accommodation. The path to a ramp should be obvious, and not only that, it should be centered in their approach to the building. Any given user should be able to immediately know how they enter it. This is always true of abled users. Users with mobility impairments must always contend with how – and if – they can even enter a structure. Do they have the luxury of entering a building from the ground level, or must they search for a ramp that will enable them to access it? A building can never be viewed as truly accessible unless disability technologies and accessible paths are built into the building itself, rather than simply added. Architects must embrace accessibility at every part of the design process. Accessibility that is an afterthought is not true accessibility.

At Trinity, the differences in how users enter spaces is strikingly clear. For example, the Dickie Smith building can be a maze for users attempting to find an accessible point of entry. Immediately in front of the building, a set of stairs leads straight to the front doors. The side of the building near the rest of upper campus contains one as well. However, to access the building with a ramp, the user must traverse an elongated parking lot, finding themselves at the opposite end of the handicap parking spots, where there is a ramp essentially hidden by shrubbery. While the Dickie Smith building obviously has a ramp, it is an open question as to if it is accessible under the terms I outlined above. The ramp is neither obvious, nor conveniently placed. For those who do not frequent the building often, it is somewhat unknown, and therefore inaccessibly accessible for the users who require it.

Methodology

This research focuses on the Storch Memorial Hall. I chose this particular location for several reasons. In the four years I’ve been at Trinity, it is one of the spaces I’ve spent the most
time in as an anthropology major. Additionally, Storch is an academic building, located on the university’s upper campus, making it one which is used by both members of the Trinity campus and the wider community. Consequently, more individuals enter through this locale than they do private, residential buildings. While this does not diminish the importance of accommodations in residential halls, it does make it more likely that Trinity’s administration and architects would invest greater effort into making the building accessible and user-friendly. Moreover, Storch, in many ways, best symbolizes O’Neil Ford’s architectural philosophy. Built into the terrain that surrounds it through several levels, it conforms to the topography. As one of the oldest buildings on campus, Ford had a direct role in creating it. It has also been subject to change over the years. I followed Storch’s architectural transformations, noting when those charged with its accessibility and maintenance decided to include (and design) what I will refer to as ‘accessibility technologies’, or architectural accommodations.

My analysis of Storch has been on-going since my first year at Trinity. I have a physical disability, and a mobility impairment which goes along with it. While I am able to walk and sometimes use stairs, I tend to rely on accessibility technologies – namely, elevators and ramps – everywhere I go. I have extensive lived experience with this particular building, which has made me hyper-aware of how some disabled users may travel throughout the space. This perspective is true for all of campus. I have visited every academic and residential building, resulting in a comprehensive understanding of how one is meant to move around the space.

The accessibility technologies I most frequently use are elevators and ramps, and I concentrate on these in my analysis. That is not to say that other accessibility features are not worth mentioning; handicap restroom stalls and door width, too, are essential features of making any campus accessible. However, for the purpose of this thesis, elevators and ramps will be the
indicators of inaccessibility I focus on, as they must be built into the architecture itself, and are more likely to show up on architectural records. Moreover, as this research is meant to concentrate solely on the built environment of Trinity’s campus, I similarly concentrate primarily on physical disabilities/mobility impairments within my analysis. The intersection between the built environment and disabled bodies is most clearly evident in the ability of one to physically enter and access certain spaces.

I began my research by consulting several Trinity staff and faculty. I chose these respondents based on the recommendation of other faculty members, fellow students, and from my own knowledge of the roles of certain staff members at the university. I conducted these interviews for several reasons. While I have a background in anthropology and critical disability studies, this was the first project I did related to architecture. Consequently, I consulted staff and faculty who specialized in this field. Similarly, my knowledge of Trinity’s history had previously extended very little beyond my own time here. As such, I consulted individuals who had not only been at the university for an extended period of time, but who had also been involved in or knew of decisions related to campus care, accessibility, and building maintenance.

Throughout the course of my research, I took the opportunity to interview several individuals who had worked in areas related to architecture at Trinity. I interviewed Sharon Curry, who had been involved with the physical records of Trinity and served on accessibility committees. I interviewed Kathryn O’Rourke, an art history professor whose research deals with architecture, and Heather Haynes-Smith, an education professor who works with students with disabilities. In addition, I met with John Green, who for decades had been in charge of matters related to campus design and architecture as Director of the Physical Plant. These interviews also
included Gordon Bohmfalk, University Architect and Director of Sustainability at Trinity, as well as a member of the Master Plan Committee.

While all the interviews I conducted were beneficial to my thesis, some of the most productive were those with Mindy Morales. Morales has an extensive history working with the university, and is currently working as a Computer Aided Drafting Technician in the Office of the University Architect. One aspect of her work involves keeping all the architectural records for every building on Trinity’s campus. Unsurprisingly, those records were an invaluable source in understanding the transformation of buildings’ architecture and features over time. Due to the enormous number of records, I was unable to study every building on Trinity’s campus. I decided to focus solely on Storch. I took pictures of the most significant records pertaining to its architectural design, so that I could reference them as I continued my work throughout the year to gain a better understanding of when certain accessibility technologies were installed in first Storch.

Another resource I utilized was Trinity’s own historical records, housed in the Coates University Library’s Special Collections. The university keeps folders related to each building on campus, and by looking through those records, I was able to find a wealth of information related to Storch’s time as a library and some of its more recent renovations. This came in the form of both old newspaper clippings dating back to the 1950s, as well as correspondence between university staff and faculty. I furthered this research through exploring the archives of The Trinitonian, a student-run newspaper which has reported on campus-related issues since 1902, as well as the Mirage, the student-run campus yearbook. In addition to taking photos from these resources, I also took my own photos to visually illustrate the current gaps in accessibility on the Trinity campus.
Ultimately, I opted to exclude student interviews from this ethnography for several reasons. First, according to the university’s Student Accessibility Services (SAS), only 4% of the student population is registered with a disability, most of which are invisible disabilities (Trinity University 2019). Such a small pool of possible informants would have not only made it difficult to find students willing to interview, but additionally would make seeking Institutional Review Board (IRB) approval impractical. Moreover, as an individual who has become very vocal about accessibility concerns on campus, I felt as though my personal experience would already be influential, considering that the bulk of my research would be done with staff, faculty, and architectural designs. This is not to say that I am an expert on how all persons with physical disabilities experience space. Rather, I mean that my own perspective is inseparable from this writing. Other peoples’ experiences as disabled students, staff, and faculty are necessary to understand the full narrative of the disabled experience at Trinity, however, my research focused more on the history of accommodation instillation. However, this work was informed in part through conversations I had with fellow and former students.

Experiencing Storch

Storch Memorial Hall Today

The Storch Memorial Hall was one of the first buildings designed by O’Neil Ford on Trinity University’s San Antonio campus, with its construction dating back to the 1950s (Trinity University 1953: 1). The project was funded by a large donation made in the memory of George Storch (San Antonio
Casually referred to as Storch by its students, staff, and faculty, it is one of the buildings which best illustrates Ford’s philosophical drive to incorporate topography into the built environment. During the 1950s, Storch was regarded as “the most complex of the twelve buildings completed by 1955”, as it is essentially molded into the terrain (George 1992: 99, Trinity University 1953: 1). It lies on an incline, with the basement starting at the lowest elevation, and the first floor gradually rising to meet the ground level of upper campus. As was common of Ford’s buildings at the time, Storch was built utilizing the lift-slab method, enabled by Tom Slick’s innovative hydraulic technology (Trinity University 1953: 1, Speck 1983).

Initially, the building was used as a library, during which time it was known as the George Storch Memorial Library. It currently houses several academic departments, classrooms, and learning laboratories.

Storch is one of the smaller buildings on campus, as it only has three floors. In approaching the main entrance and lobby of the building, one immediately notices the elevation difference between the building and the ground leading up to it. To enter the building, visitors start out by either climbing three steps that spread out in front of a patio area, or by taking a small ramp located in between the steps and a small yard. The first-floor doors immediately open to the building’s main lobby, often illuminated by natural light through the iconic glass walls covering both the front and the back of the space. To the left is a hallway leading down to a set of classrooms,
as well as two computer labs. As one moves down the hallway, they overlook the basement floor of Storch, currently inhabited by the Department of Sociology and Anthropology.

The Department of Political Science is housed in the other half of the lobby, which take up most of the front right wing of the building. Next to this, a hallway leads down to three classrooms, the largest of which looks out to the lawn next to the Parker Chapel. Further down through the lobby are the restrooms, both of which have been retrofitted to include handicap stalls. The pair are interrupted by a small set of drinking fountains placed directly in between them. Opposite to the restrooms is the building’s sole elevator, as well as a set of stairs connecting to the building’s basement and second floor. The elevator and its partner staircase are the only ways to reach the second floor of the Storch building. Both routes lead the user into a small lobby, which includes a small window overlooking a part of Storch’s roof covering the first floor. Moving left, one passes through a set of doors which leads out to the offices of the Department of Education.

There are a variety of different paths to access the basement floor. The elevator and its neighboring staircase open up to a small, empty hallway in the basement. To access the rest of the basement, one must exit the building through a small door to the right and move across an open and uncovered space to end up in a breezeway. This tunnel interrupts the basement and breaks it into two unique sections. Past the breezeway is a small community garden on the right, along with two sets
of extended staircases. One leads up to upper campus and the entrance to the first floor of Storch, while the other flows down in the opposite direction, wrapping around the side of the building and leading to lower campus dormitories and the Murchison parking lot. In the breezeway, one has two options for which half of the basement they would like to visit. The right door leads to several administrative offices, and houses the campus’ Tigercard Office. Students primarily visit to purchase new Tigercards, key cards required to access dormitories, academic buildings, or major-specific study rooms on campus. A thin wall now separates this half of the basement from the elevator.

In entering the opposite door into the other half, one passes by another set of small bathrooms – similarly retrofitted to be handicap accessible. Down a hallway is the space dominated by the Department of Sociology and Anthropology. To the left in the hallway is the department’s archeology and forensic anthropology lab, restricted to majors or those with card access. Opposite is the department’s breakroom and storage space. The hallway opens out to a large lobby area, illuminated by a series of large windows. Professorial offices line the remaining half of the basement.

Figure 6: This 1956 photo illustrates the separate levels of the Storch building (Trinity University 1956).
A small parking lot outside of Murchison spreads across a space neighboring the Myrtle dormitory and University Health Services offices. It sprawls out at a significant downward incline. The concrete is slightly cracked in some spots, and leads out to a path interrupted by a blue pole. To access the parking lot from Storch, users again have two points of access. Most center with the breezeway is a large set of stairs, which almost immediately begin at the base of the breezeway. The stairs sprawl out towards the parking lot over several layers. The other option is not as directly visible to users; one must move around the stairs to find a ramp squeezed off to the side between the stairway, vegetation, and the lawn behind the buildings.

Building Accommodations

The first architectural plans Trinity has on record for the Storch Memorial Hall building date back to October 20th, 1950, and were designed by Harvey Smith, Barlett Cocke, and O’Neil Ford (Office of University Architect 1950). Whereas modern plans have separate plans for information not necessarily pertaining to the building’s structure, such as electrical information, these plans are condensed into one singular sheet per floor. While Storch’s original designation was a library, evident in its plans. For instance, the ground floor was primarily a reading space, though small rooms lined the space, where professorial offices reside today. The first floor
similarly housed a large reading area, but stacks took up a large amount of space as well, along with the second floor.

While much of the buildings’ floor plans were built as printed, several obvious changes have been made in red ink. All changes focus on the basement floor of the building. Most of them involve the space of the basement which is now dedicated to the Tigercard office. They involve changes in rooms such as the creation of an office space. The most notable change recorded is the creation of the breezeway. Initially, this space was labeled “STORAGE”, and was boxed in from all angles (Office of University Architect 1950). At some point, this was changed, as the wall facing the parking lot was crossed out, with the note “OMIT WALL” written next to it (Office of University Architect 1950). According to Mindy Morales, a Drafting Technician for the Office of the University Architect, this space was then transformed into a loading dock for the library.

The 1950 designs included an elevator, though not yet mandated by the ADA. It is evident that this was not meant to be a central feature of the space. It is positioned in a corner of the north side, far from the core of the building. Here, the elevator opens to part of the basement floor. Allowing users to move freely between the elevator and at least half of the basement enables better use, even though part of the basement still requires individuals to leave the building to access. However, because Storch was built into the topography, none of the floors
were at ground level, thus requiring stairs to access them. At the time, neither the basement floor nor the first floor had ramps leading up to them – despite the inclusion of the elevator.

Additional changes were approved to the interior of the building in October of 1978 by Barlett Cocke & Associates Incorporated and Ford, Powell & Carson Incorporated (Office of University Architect 1978). This plan designed a main lobby and sitting area on the first floor. The open space that allows passersby to overlook the basement was created, and a new set of stairs was built to access that half of the ground floor. The dean’s office was additionally established on the second floor.

The April 1979 plans give a much more detailed depiction of the points of entry into the building. They include more than just the building itself, and include the stairways and features leading up to it (Office of University Architect 1979). A new door was created on the south side of the building on the basement floor. Stairs are also shown leading up to the breezeway from the parking lot and the first floor of the building.

Similarly to the 1978 plans, a growing number of offices and rooms begin to appear.

The building still lacked ramps in the 1979 plans. According to Morales, the first-floor ramp was created around the late 1980s. Because that was the only renovation done at the time, it did not require a full architectural plan. However, the second ramp, leading down to the parking lot from the basement floor of the building, did not appear until the 2002 plans, drafted by Rehler, Vaughn & Koone, Inc (Office of University Architect 2002). These plans show a suggested version of the ramp. The ramp begins by the door to the elevator, and winds down,
moving outward as to avoid a tree near the third set of stairs. A wall is also introduced in these plans near the elevator, blocking off access to the basement floor. Ultimately, the final version of the ramp was not evident until Rehler, Vaughn, & Koone, Inc.’s 2009 plan, where several stairs were broken up to make room for the ramp (Office of University Architect 2009).

Figure 10: The 2009 design for the Storch basement ramp (Office of University Architect 2009).

(in)Accessibility of Storch

In many ways, Storch Memorial exemplifies the core of the conflict between Ford’s dedication to natural design and true accessibility of spaces. The building’s complex conformity to the terrain is by far one of its most distinguishing architectural features. With the creation of the breezeway, the long and extended staircase from the first level to the ground level is meant to make one feel as though they are walking through the topography itself. This path is one students use on a daily basis. It is one of the main ways in which individuals can leave the university’s upper campus, making it almost essential to the experience of the building. Arguably, this building is aesthetically the epitome of Ford’s philosophy.
Yet, while in so many ways Storch is an iconic feature of the Trinity campus, this building possess real problems and limitations for those with mobility impairments. The crux of the buildings’ experience – traveling through the breezeway and its staircase – is only possible to those who have the ability to climb stairs. While a ramp is available leading up to the breezeway itself, those with mobility impairments can only go so far through the space, as after reaching a plot of land used as a campus community garden, they reach the first set of stairs leading to the upper campus ground level. Considering that when approaching lower campus from the first floor, it is largely perceived as the fastest and most efficient route, this forces students with mobility impairments to avoid the aesthetic path, and requires them to find an alternative route, typically done so by entering into the building itself.

While not initially part of Ford’s design, those alternative routes rely on the ramps leading up to the building, both in the front of the building as well as the back. These accessibility technologies – necessary for those with mobility impairments to even enter the building – were not available until the late 1980s in the front, and 2009 in the parking side of the building, on the first and ground floors, respectively. Despite enabling access, even these accommodations demonstrate an ambivalence to centering disability, evident in their placement. No ramp exists to connect the first floor to the building’s breezeway – a reiteration that this experience is not meant for individuals with mobility impairments. This prevents disabled bodies from experiencing this
embodiment of Ford’s philosophy, and fundamentally inhibits users’ understanding of the function of the space.

Even when ramps are present, they limit the users’ perspective of the building. The first-floor ramp is pushed up against the building’s front lawn, barely included. When approaching the building head on, the intended path is clear: users are meant to take the stairs, which are the central route leading to the building. When taking the stairs, individuals face Storch Memorial in its entirety and have a clear line of sight to the door. By placing the ramp off to the side, the message is that users are not supposed to enter in this way. This ramp was an after-thought, tacked on to barely provide access.

The ground level ramp articulates the same message. When heading towards the parking lot from the breezeway, users are almost immediately met with stairs, and must move around the staircase to access the ramp. The ramp is almost hidden. Users need to go out of their way to access it, and foliage and vegetation surround the ramp. The stairs spread out and provide the user with a significant amount of space, as the ramp occupies on a fraction of that space. When using the ramp to enter, users experience the building very differently. Those taking the stairs have a center view of the building when approaching from the parking lot. Not only can users see through the breezeway, able to anticipate the path laid out for them, but they can also see into the building, having a head-on view into the first floor, covered in wall-to-wall windows. Those utilizing the ramp are consequently unable to obtain this same perspective. Shoved off to the side, users must move off the intended path to one where vegetation blocks their views of the building for a portion of the way up, rendering the accessibility-technology almost invisible.

Users must also be able to move within the building easily to understand the function of the space. Storch’s sole elevator fails to do so effectively. The most prominent point of access
between the first and basement floors is the staircase located on the south side of the building, next to the open space above the basement. This is the only interior staircase which directly connects users to the basement floor, and has no accessible alternative. The only other option to enter the basement is using either the elevator or its partner staircase. However, neither option is preferable. While in Ford’s initial design both these routes would have been connected to part of the basement, a wall has since been erected, forcing all those using that path to physically exit the building to reach either half of the basement. This symbolically removes users from the building, an unavoidable expulsion from the space.

Understanding Access

The patterns apparent in the construction of the Storch building are emblematic of the spatial distribution and disconnect of disability technologies across campus. Storch provides a unique look into these accessibility concerns, as both a building which connects upper and lower campus in its breezeway and corresponding routes and additionally as a case study of O’Neil Ford’s original architecture. Yet, these barriers repeat themselves all across campus. They include a lack of meaningful connectedness between the two halves of campus, inconvenient accessibility technologies, dispersed inter-level access of buildings, and a pattern of displaced accommodations.

Lack of Meaningful Connectedness

One of Trinity’s most distinguishing features is its divide between lower and upper campus, resulting from its construction on a limestone quarry. Rather than level the terrain, Ford and other campus architects utilized this natural divide in the topography to separate the two core spheres of Trinity life – academic life and student life (Ferguson 2017: 6). All academic buildings reside on upper campus, spread from Hildebrand Road to the few buildings built on or
near the hill. Upper campus includes the Murchison dormitory and Storch Memorial Hall, both of which straddle the differences in elevation. Multiple paths unite the campus. The most prominent of these paths is “Cardiac Hill,” colloquially named difficulty and physical effort required to climb the sprawling stair case connecting the first-year dormitories to the rest of upper campus (Park 1990: 3). Other routes include several staircases near Storch.

Until 1992, there were no accessible routes from Trinity’s lower campus to upper campus (Skanse 1992, 4). Students with physical disabilities needed to request van access to transport themselves from classes in the academic buildings to their lower campus dormitories (Hardin 1986: 3). Following the passage of the ADA in 1990, the campus chose to build a ramp to connect the two halves with one obscure accessible route, which required an extensive number of ramps (Skanse 1992: 4). Situated between the Storch and Murchison buildings, it is far removed from common destinations, such as the university’s dining hall and surrounding dormitories.

Before the start of the fall semester in 2015, however, the campus sought to mediate this barrier by installing an elevator into the Murchison dormitory building, which is the closest lower dorm to upper campus, and the closest to the center (Craft 2014: 1). After creating a sky bridge which linked the building to the higher elevation, the two halves of the campus were finally connected in a more meaningful and accessible way, as students no longer needed to take
the long route and travel around the campus tennis courts via the inter-campus ramp. Even with these efforts, the main point of contact between the elevator and the path towards the Mabee dining hall and first-year housing still requires two separate sets of stairs. The sole ramp connecting the campus’ main dormitory for students with disabilities shoots down in the opposite direction, letting students off near one of the school’s tennis courts, and in the far corner of the parking lot.

Displaced Accommodations

Moreover, just as Storch’s ramp and elevator placement demonstrate a disconnect between user and designer, other buildings display the same kind of architectural inaccessibility. As one of the newer building’s on Trinity’s campus, the Center for Science and Innovation deploys the same kind of deference towards ramps. In approaching the building, a natural route is present; center to the building, and on only a slight incline, reside three sets of two steps each. While there is a ramp present at this entrance, it, too, is pushed to the side, shoved up against part of the building. Considering how small the incline leading up to the building is, this ramp could have easily been centered, and made the more convenient route. Instead, the accessible route ended up being displaced.

The Marrs McLean building similarly has ineffective ramps. As an older building, it is significantly elevated off the ground level, consequently requiring three separate sets of stairs. The building’s front entrance features a central set of stairs; off to the side of this entrance sits a ramp, stretching along the side of the building. This front ramp begins on the edge of the building, stretching in the opposing direction; yet, when users meet the entry of the building, they must retreat and return to the opposite side of the building in order to reach the elevator. Since there is only one elevator in Marrs McLean, this makes it extremely inconvenient for users
to navigate the building. The building’s other ramp is similarly situated right next to the building, folding in on itself once. In approaching this ramp from the parking lot, users are again required to head in one direction, then back around again.

A similar disconnect between accessibility technologies is evident in the Dicke Smith Art Building. A parking lot resides in front of the building, and the only two handicap spots are located in an upper left space in relation to the building, closer to the neighboring Northrop Hall and Ruth Taylor Hall buildings. Considering that Dicke Smith’s base elevation also differs from the ground elevation, there are three routes that enable the user to enter the building. The two closest to the handicap spots and the rest of upper campus both involve stairs. One of these routes is the central point of access which leads directly to the doors of Dicke Smith. The building’s sole front ramp, however, again falls off to the side, pushed farther away from the entrance, the handicap spots, and the rest of upper campus than either of the stair paths. Surrounded by foliage, the ramp’s location is obscured, making it extremely difficult for users both to locate as well as use.
Detached Inter-level Access

The rest of the Dicke Smith and the buildings which surround it exhibit the same kind of tendencies towards inaccessibility. The Ruth Taylor Recital Hall ramp is pressed up against the side of its building, so that one travels backwards to go forwards into the space. The most obvious route to the Laurie Auditorium, located in the Richardson Communication Center, is down a set of stairs – to which there is no accompanying ramp. This area of campus might be the most emblematic of the notion of Trinity as a maze. To enter the Laurie Auditorium or the Richardson Communication Center in an accessible manner, one is required to go through the Dickie Smith building. While it is a straightforward and easy path for individuals who are able to walk across staircases, this is not the same case for individuals who have a mobility impairment or require wheelchair access – at least from the Northrop parking lot. If individuals access Laurie Auditorium from the parking lot located near the Coates Library, they still struggle to properly access the building, as its halls are interrupted by several steps differentiating in between levels.
When the George Storch Memorial Library was eventually replaced with the Coates Library, a similar pattern of architecture was deployed. The new building, too, is built into the landscape. The main floor is on level with most of upper campus, but it is the building’s third floor, with the basement of the library being slightly below ground level. Despite the potential for a ground level entrance/exit, the building only has one point of entry – the third floor entrance. While the entrance does not necessitate the use of stairs from the rest of upper campus, to reach the parking lot, users are again confronted with an inconvenient route. They must travel all around the building, down a hill in order to reach the closest handicap parking spots. A set of stairs is centered immediately outside of the entrance, and allows those able to use it to descend in a much faster, more efficient manner. Yet, without an elevator or exit onto the ground level, no such useful exit exists for individuals with mobility impairments.

Several dormitories also face challenges in obtaining successful and efficient inter-level access. The Dick and Peggy Prassel Hall for instance, has a singular elevator in the center of its L-shaped structure; this is most accessible from the building’s main entrance on Shook Avenue. While there is limited parking on this road, many residents opt to park in either the large parking structure near the southwest side of the building, or in the parking lot outside of the Thomas building. Residents approaching from either of these locations must therefore travel the length of
the building in order to access the elevator, despite the fact that there are staircases at all points of entry, creating a considerably easier experience for abled students.

A History of Non-Compliance

Trinity’s inaccessibility has long been an issue students acknowledge. In 1978, an article published in the campus newspaper, *The Trinitonian*, brazenly titled, “TU ignores law for handicapped” discussed the university’s lack of compliance with the 1973 Rehabilitation Act, reporting on the lack of accessible ramps, and the non-existence of any accessible parking spots on campus for students (Baker 1978: 1). While in the fall of 1979 the campus made strides towards compliance, a student member of the campus’s then Handicap Compliance Committee argued that “the university cannot provide total accessibility to the handicapped, but only reasonable access” due to economic concerns (Smith 1979: 1).

A 1986 edition of *The Trinitonian* reported that despite having several students attending with physical disabilities, only two dormitory complexes – the Thomas-Lightner complex and McLean dormitory – had elevators built in them (Hardin 1986: 3). All physically disabled students’ classes had to be located on the first floor of academic buildings, excluding the Chapman building (Hardin 1986: 3). Traveling from upper to lower campus required a van which had to be booked an hour in advance (Hardin 1986: 3). When accessible connections were available, they were often ineffective. Among these ineffective connections is a ramp leading from the Murchison parking lot to the baseball field, which still currently rises at a 60-degree angle, too dangerous for wheelchair users (Hardin 1986: 3). The students mentioned in the article
were told “the university would do anything necessary to increase the accessibility… yet completely reconstructing a university is not a quick or easy thing to accomplish” (Hardin 1986: 3).

Affordability continued to be stressed as a 1990 article reported on the administration being receptive to certain minor accommodating changes, such as the installation of curb cuts, so long as they were inexpensive (Park 1990: 3). This was noted during the university’s Handicapped Awareness Week, which aimed to bring awareness and attention to the campus’ “disheartening” inaccessibility so that recommendations could be made (Park 1990: 3). Student awareness of accessibility concerns became even more heightened with the university’s first Disabled Awareness Day in March of 1990 (Cabe 1990: 14). Sasha Gurevich, student representative of the university’s Committee on Handicapped Accessibility, organized the event and similarly spoke at the earlier Handicapped Awareness Week, stressing how inaccessible the campus still was (Cabe 1990: 14, Barger 1990: 15, Park 1990: 3). Students participating in the event gained a better understanding of navigating the campus with mobility impairments by participating in an activity where they were asked to temporarily use a wheelchair – an event a student and wheelchair user noted can only allow for so much understanding (Cabe 1990: 14, Barger 1990: 15). Students struggled with not only Cardiac Hill, but additionally with prominent “invisible barriers” including lack of access to accessible restrooms (Barger 1990: 15).

These sentiments continued in the fall of 1991, as The Trinitonian published two articles concerning accessibility under the banner, “The challenges of traversing Trinity” (Ortiz 1991a: 1). One article repeated concerns regarding lack of accessible restrooms as well as elevators (Ortiz 1991a: 1). A student additionally noted that certain buildings, such as the Richardson Communications Center and the surrounding spaces areas, were impossible to reach for students
with mobility impairments (Ortiz 1991a: 1). The Ruth Taylor building was similarly inaccessible until a ramp was installed so that a student would be able to attend class in the building; additional ramps were also installed around the first-year dormitories (Ortiz 1991a: 1). These changes all were motivated by Americans with Disabilities Act (ADA), which Trinity was viewed as violating (Ortiz 1991b: 1).

Consequently, it wasn’t until the fall of 1992 that any accessible route connected upper and lower campus, when a ramp in between the Storch and Murchison buildings was built, alongside other new ramps in the William H. Bell Athletic Center (Skanse 1992: 4). In 1993, compliance with the newly created ADA – which would require the removal of physical barriers across campus – was estimated to total anywhere from three to four million dollars over the following years (Schworm 1993: 4). Some of the initial renovations resulting in accessibility included the installation of an elevator and chair life in Laurie Auditorium, as well as an accessible dormitory room and ramp in the Miller building (Sultan 1993: 2). Improvements continued into the late nineties, with students benefitting from institutional support through the university’s Disability Services (LeFlore 1997: 5). In 2003, Trinity opted to hire a coordinator for the department in an attempt to improve access to accommodations (Singh 2003: 8). This came with a recognition that while the campus had been making improvements, many spaces still remained inaccessible. Around this time, a single elevator was installed in some of the first-year dormitories, making two additional buildings accessible through sky-bridge connections (Singh 2003: 8).

Yet, students still expressed concerns regarding disability access across campus into the 2000s. A 2004 Trinitonian article pointed to the lack of elevator access in several residence halls, as well as the continued difficulty in navigating paths to and from academic buildings (Dieter
2004: 7). As quoted in this article, John Greene, former Director of the Physical Plant, responded to these concerns by arguing “in the past we have had disabled students come through Trinity… and graduate”, with the reporter noting that this indicated it was “not an impossible hurdle to overcome” (Dieter 2004: 7). Despite student concerns over the disproportional time and effort being exerted by disabled students, they were met with institutional apathy. While additional changes were made over the years, one of the most significant was the instillation of the Murchison Elevator, along with an accompanying sky bridge (Craft 2014: 1). This elevator, which now connects the university’s upper and lower campuses, would become the second of only two accessible cross-campus paths, an improvement over the previously unique Storch ramp (Craft 2014: 1).

Trinity in a Post-Disability Era

The quintessential Trinity vision, or, as past campus president Calgaard referred to it, the “life of the institution”, has been heavily influenced by so many features of the university’s built environment (Speck 1983, Graves et al. 2017). Students are meant to have a close bond, not just with each other, but with their professors as well (Graves et al. 2017). Trinity accomplishes this through keeping a small student body. As a former student mentioned to me, these relationships tend to be reinforced through the small size of the campus, and the close-knit nature of buildings. Students habitually encounter one another, as well as their mentors, within the spaces of “the casual paths, the generous corridors, the inviting patios, [and] the reflective courtyards of the campus” (Graves et al. 2017). This design is a radical departure from the “restrictive single mindedness” of other universities (Graves et al. 2017). These and other elements exemplify a vision of Trinity in which students become fundamentally and inextricably tied to the physical
space of the campus – every day, students have an immersive experience into Trinity’s culture, attendants, and idealism.

Trinity’s Master Plan and the buildings it envisions attempt to make sense of a “Trinity of the future.” It combines the physicality of the campus’s historic design with the university’s academic goals alongside the “Trinity Tomorrow strategic plan objectives” (Graves et al. 2017: ii, 8). A Living/Learning Corridor will establish new paths across the campus to create new connections between upper and lower campus (Graves et al. 2017: iv). In a drastic departure from Trinity’s current point of entry confusion, the campus will now have a singular entrance stemming off Hildebrand Avenue (Graves et al. 2017: v). This comes alongside a “link building” which joins together several upper campus academic buildings with the Coates Library (Graves et al. 2017: v). Moreover, a “Hill Connector” will replace an existing set of small stairs with a wider staircase, in an effort “to strengthen connections between the Upper and Lower Campuses” (Graves et al. 2017: v). In doing so, Trinity aims to strengthen its pedestrian capacity. Along with the instillation of the new inter-campus staircase, the Master Plan also calls for eliminating parking lots on upper campus – all of which currently house vital handicap parking spots (Graves et al. 2017: iv).

To make spaces accessible, Trinity and the architecture firms they hire bring in accessibility consultants, to make sure they meet Texas and ADA standards of accessibility, according to Gordon Bohmfalk. Designs are made, then checked for final approval. Accessibility becomes the last check mark for the buildings, just as Hartblay’s ramps function only as the last step of a legally necessitated requirement (Hartblay 2015: 3, 6). Considerations for disabled bodies become voiced haphazardly and after a design has already been conceived. Yet is this not a pattern of architecture which disability scholars have warned designers and users about?
Accessibility here is nothing more than an after-thought. So how can a space be truly accessible if designers fundamentally disregard it? Here, the notion of inaccessible accessibility must be applied to make sense of the significance of Trinity’s method of architecture. Spaces are designed first and foremost as products of Trinity – they always already fall in line with the rest of the campus aesthetic. The unified look and feel of the design resonates universally through these spaces.

Trinity is dangerously approaching an era of post-disability, in which the world becomes viewed as “without disability and [denies] the existence of disability discrimination” (Hamraie 2016: 12). In the over 100 pages of the Campus Master Plan, the word “elevator” does not come up once. While ADA standards require elevators in all new buildings, the inclusion of elevators is not mentioned in the renovations to older buildings, reflecting either an assumed compliance, or ambivalence to their addition. “Disability” is not mentioned in the text of the Master Plan. “Access” is not tied to matters of disability accessibility, but rather solely is used to mediate concerns about vehicular access and ease of student and alumni entry to buildings (Graves et al. 2017: 16, 24). Similarly, “accommodation” is only included in relation to “program priorities”, not accessibility technologies (Graves et al. 2017: 53).

Rather, this plan takes up strategies which will hinder disability access on campus, such as eliminating parking spaces (Graves et al. 2017: iv). The Coates Library currently has a parking lot located behind the building, with two handicap spots available. Designs in the Master Plan call for the removal of the entire lot, thereby eliminating the closest accessible spots (Graves et al. 2017: 19). In total, the Master Plan anticipates losing 591 parking spots, while gaining 705 from parking garages (Graves et al. 2017: 43). Although parking spots will be gained, it is important to note that many of the spots lost will be those that provide close access
to academic buildings. Before approaching this strategy, the plan calls for consultation of transportation demand management strategies, seemingly without the realization that even if students drive less, disabled students and visitors will still require those spaces (Graves et al. 2017: iv).

Figure 17: The Coates Library parking lot (photo by Catherine Terrace).

Figure 18: The planned use for the current Coates Library parking lot (Graves et al. 2017, 19).

The lack of attention to these matters of accessibility in campus planning indicate that Trinity is entering an era of post-disability, wherein accessibility becomes assumed as a bare minimum requirement, and rather than a priority. Upon the instillation of the Murchison elevator, campus architects and designers did improve accessibility. Yet, the Campus Master Plan takes for granted the notion that ADA regulations will suffice. It appears that Trinity is done with improvements to overall accessibility. Rather than focusing on the image of the university as a site of innovation, this document ought to reimagine the spaces which it already occupies to one which strives to embed new and better accessibility technologies at every opportunity.

The Logic of Inaccessibility

Historically, much of the resistance to improving accessibility on campus comes from this perspective that there are certain financial limitations (Park 1990: 3). This is a common-sense based approach which takes financial limitations as insurmountable barriers, labeling the
deference to disability rights as reasonable. Evident in the Master Plan, there is a preference to spending greater amounts on creating new buildings than renovating older ones, as they skirt having to including elevator access. These strategies parade themselves as economical and common sense, but implicitly also involve the denial of rights to disabled students and visitors.

Renovations are constrained by the financial limitations of the university. According to Gordon Bohmfalk, the South Hall renovation will not include an elevator. Instead, a sky-bridge will connect it to the North Hall, making it inaccessibly accessible for users. The Campus Master Plan takes the adjustments it suggests, however, as investments. These major changes to the structure of the university are being done so as to improve the student and alumni experience with the campus. Alterations focus on improving dorm life and eliminating spacious parking lots, decisions which will maintain the campus’s innovative outlook on navigating space. Equipping older buildings with necessary accessibility technologies is subsequently not perceived as an immediate need, but rather a secondary one which will come with time. Trinity consequently employs a basic cost-benefit analysis in choosing whether to pursue these new buildings or to renovate old ones. The Master Plan takes for granted that the university should look toward the future and create new academic and residential halls. Common sense logic argues it’s a natural progression for the university to build upon itself rather than continually renovate and make the campus accessible.

Reimagining Trinity’s Campus

Trinity’s architecture – both historic and contemporary – has been based on O’Neil Ford’s architectural philosophy. Both at Trinity and in his other projects, Ford strove to incorporate the natural landscape in his design process. This devotion to his surroundings created a unique pattern of architecture integrated effortlessly with the surrounding environments. The
“Trinity red” bricks utilized universally across the campus demarcate the specific San Antonio campus in a jaunting and uniquely identifying manner.

In striving to center and emphasis place within his projects, Ford brought a sense of open mindedness into his work – a philosophy which embodies the idea that one should experience architecture as they do the nature around them. This practice entailed molding many of his buildings into the terrain itself, adapting to the topography in order to produce a campus which flowed with the physical space itself. The George Storch Memorial Building exemplifies this attention to nature. Part of the core experience of the building involves physically walking under the building, and moving through the space, as individuals travel from the lower level through the breezeway. It was through his unique perspective on architecture Ford accomplished a myriad of architectural feats. This included Slick’s innovative lift-slab technique, visible in his earlier buildings, which Ford largely became known for (George 1992: 95). His work on Trinity’s San Antonio campus, as well as his other projects across Texas, propelled him to become one of the most iconic architects of the south – one who is still celebrated widely (Dillion 1999: 137).

Consequently, much of Trinity’s campus embodies the spread of Ford’s work. All the architecture on campus – even buildings built later on – attempts to adhere to this style, symbolically marked through the universal use of the unique red bricks. This unique cache of architectural feats propelled Trinity to obtain a designation as a National Historic District, with 26 of the original buildings across campus receiving recognition (Gonzalez 2018). This national designation – one the university takes great pride in – is meant to honor the legacy and creativity of O’Neil Ford, and was unanimously approved by the Texas Historical Commission (Gonzalez
Additionally, 2019 marks the 150th anniversary of the university, an event which has directed increased attention to the legacy Ford left in creating the campus (Donaldson 2019).

Yet, architecture not only reflects the philosophy of the architect, but additionally the cultural values of the time it was built (Hearn 2003: 26). Trinity’s San Antonio campus was designed during the 1940s and 1950s – decades before the 1973 Rehabilitation Act and 1990 Americans with Disabilities Act. Mobility impairments were consequently not an important feature of the design process at the time, evident in a significant number of the building decisions of the university’s campus. Rather than leveling the space, Ford opted to keep the hilly terrain as it was. He created no accessible ramps, instead designing around the differences in elevation through paths like “Cardiac Hill”. Buildings themselves were rarely accessible. The Storch building lacked any ramps until the 1980s, even though the building itself possessed an elevator. Ford never explicitly intended to exclude disabled bodies from these spaces; rather, it was never an issue that was seriously considered in the process.

These concerns were noticed by the student population. For over forty years, students have been criticizing the university for its fundamental lack of architectural accessibility (Baker 1978: 1). Historically, the university lacked accessible ramps leading into buildings, and similarly lacked handicap accessible restrooms (Baker 1979: 1, Hardin 1986: 3). Dormitory buildings usually lacked elevator access; some of these still do not them (Hardin 1986: 3). Students with mobility impairments had no way of bridging the two halves of campus before 1992, when a ramp was finally installed connecting the two (Skanse 1992: 4). It was not until 2015 that an elevator was finally installed in the Murchison dormitory which connected the campus in a more meaningful and convenient way (Craft 2014: 1).
Yet, as disability continues to gain attention under the social model, it is necessary that the built environment at Trinity adapts to new cultural understandings of accessibility. While the buildings constructed during Ford’s time were before the ADA, buildings constructed after still adhere to this style of design, meant to reinforce a universal aesthetic across campus. The Coates University Library, which replaced Storch as the campus library, deals very poorly with access on different levels of elevation. The renovations proposed for it in the Master Plan do not remedy this. Rather, they call for the complete elimination of the closest parking lot and handicap parking. The Center for Sciences and Innovation – one of the newest buildings on campus – deploys its ramp in the exact same way Storch does. While it could have easily been center with the front entrance, eliminating the need for stairs, the ramp ends up shoved to the side.

While undoubtedly an iconic aspect of life at Trinity, this architecture creates glaring gaps in accessible infrastructure all across campus. These gaps evidence the fact that Trinity’s campus was never built for individuals with disability, but rather simply for an aesthetic, liberal arts oriented experience which allows for students to travel across campus in profound and meaningful ways. Storch exhibits this most clearly in its breezeway which allows individuals to move throughout the terrain, and giving users a unique glimpse at Ford’s style of design. It is one of the most iconic of Ford’s buildings, yet, this path requires steps in order to reach upper campus, making it inaccessible for individuals with mobility impairments. Moreover, while ramps have since been added, they were designed simply as additions, rather than truly incorporated into the building design. Ramps like this signal that entry into buildings is intended to be done via steps, as ramps are often pushed to the side and sometimes hidden from visitors’ views.
As the university moves forward to future architectural renovations and projects, it should re-evaluate its priorities when it comes to design. While students have raised concerns regarding the campus’ inaccessibility for over forty years, these concerns have not changed today. While the addition of the cross-campus ramp and elevator have certainly connected the university’s upper and lower halves in a comparatively more accessible manner, these paths are inconvenient to users. One of the only ramps connecting the Murchison dormitory to other lower campus residence halls is at a significantly steep angle, making it both difficult and dangerous for individuals with mobility impairments to navigate. Several dormitory buildings still lack an elevator, making them inaccessible to both students wishing to visit friends, as well as family members attempting to visit their loved ones.

This design ethnography of the Trinity University campus takes the case study of the Storch Memorial Hall, as well as descriptions of the entire space, and builds upon an already existing literature relating to the exclusion of accessibility in architecture. Trinity prides itself on being somewhat revolutionary – the university stresses its innovative practices, from Ford’s groundbreaking architecture to the academic excellence produced through small class sizes, evident in the Master Plan. A Trinity of the future strives to distinguish itself as a unique and – most importantly – prestigious university. Trinity must do so by fundamentally reimagining itself. While Trinity celebrates its 150-year anniversary, rather than spending money on creating new buildings, the university ought to invest its resources into the infrastructure it already has. There are still major barriers which make the campus inaccessibly accessible to those with physical disabilities.

In taking up the concept of disabling architecture, Trinity ought to reimagine its campus as disabled. In taking seriously the well-documented concerns of students, this university has the
opportunity to approach accessibility in a unique way. In critically engaging this university’s history with accessibility and accommodations, it is evident that this architecture is disabling. With sporadic compliance of the ADA and creation of inaccessible accessibility technologies, Trinity has disabled its students. Only after student dissent and legal mandates has the university pursued any standard of accessibility. This work challenges Trinity’s relationship with disability. Students should not have to seek accommodations, but rather, accessibility should be built into the core of everything the university does. Presuming students are abled, and presuming that accommodating technologies can successfully function as an after-thought has led this campus to be functionally inaccessibly accessible. By fundamentally altering Trinity’s approach to design in shifting from an aesthetic-first architecture to an accommodation-first architecture, the university can reinvent itself in a more meaningful and accessible way.
Figures

Figure 1: Individuals are offered a variety of paths as they cross the university campus (photo by Catherine Terrace).

Figure 2: Pictured is the university’s cross-campus ramp (photo by Catherine Terrace).
Figure 3: In a 1955 Mirage yearbook, the Storch Memorial Library is pictured (Trinity University 1955).

![Image of Storch Memorial Library from a 1955 Mirage yearbook](image)

Figure 4: Storch contains a series of terraces broken up by three sets of staircases. (Photo by Catherine Terrace).

![Image of Storch with terraces and staircases](image)
Figure 5: A 1955 yearbook showcases Storch’s architectural features (Trinity University 1955).

Figure 6: This 1956 photo illustrates the separate levels of the Storch building (Trinity University 1956).
Figure 7: The Storch parking lot (photo by Catherine Terrace).

Figure 8: An architectural record from 1950 outlines the original plans for the Storch basement (Office of University Architect 1950).
Figure 9: The 1979 plans to remodel the Storch first floor (Office of University Architect 1979).

Figure 10: The 2009 design for the Storch basement ramp (Office of University Architect 2009).
Figure 11: Storch’s basement ramp hidden by foliage (photo by Catherine Terrace).

Figure 12: The Storch inter-campus ramp meets a set of stairs before continuing further up the incline (photo by Catherine Terrace).
Figure 13: The Dicke Smith ramp at the base of the Northrop parking lot (photo by Catherine Terrace).

Figure 14: The staircase used to access Laurie Auditorium (photo by Catherine Terrace).
Figure 15: The courtyard behind the Dicke-Smith building (photo by Catherine Terrace).

Figure 16: A 1958 Course of Study Bulletin offers a map of the university buildings and roads. (Trinity University 1958).
Figure 17: The Coates Library parking lot (photo by Catherine Terrace).

Figure 18: The planned use for the current Coates Library parking lot (Graves et al. 2017, 19).
Bibliography

(https://therivardreport.com/trinity-university-celebrates-150-years-as-a-school-constantly-remaking-itself/)

Trinity University 1953. “George Storch Memorial Library to be Dedicated at Sunday Service”. The Trinitonian, September 25.

