
Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

5-9-2006

A Comparative Study of State Emulation in
Functional Programming Languages
William Brick
Trinity University

Follow this and additional works at: http://digitalcommons.trinity.edu/compsci_honors

Part of the Computer Sciences Commons

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,
please contact jcostanz@trinity.edu.

Recommended Citation
Brick, William, "A Comparative Study of State Emulation in Functional Programming Languages" (2006). Computer Science Honors
Theses. 11.
http://digitalcommons.trinity.edu/compsci_honors/11

http://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.trinity.edu/compsci_honors/11?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

A Comparative Study of State Emulation in Functional Programming

Languages

William Brick

A departmental thesis submitted to the

Department of Computer Science at Trinity University

in partial fulfillment of the requirements for Graduation.

April 1, 2006

Thesis Advisor Department Chair

Associate Vice President

for

Academic Affairs

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License. To view a copy of this license, visit

<http://creativecommons.org/licenses/by-nc-nd/2.0/>or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,

California 94305, USA.

A Comparative Study of State Emulation in Functional

Programming Languages

William Brick

Abstract

We examine the methods of emulating state in functional languages. In particular, we

investigate the languages J, Scheme, and Haskell; the latter two being representative of the

Lisp and ML families, respectively. We provide example code for state emulation in terms of

object-orientation and compare this to object-oriented programming without use of state.

Acknowledgments

I’d like to thank my advisor, Dr. Howland, for his help with this project, as well as my

thesis committee members Dr. Eggen and Dr. Holder.

A Comparative Study of State

Emulation in Functional

Programming Languages

William Brick

Contents

1 Introduction 1

1.1 Motivation for Study . 1

1.2 Explanation of Methods of Evaluation . 3

1.2.1 Object-Orientation . 3

1.2.2 Ease of Use . 3

1.2.3 Efficiency . 4

2 State Emulation in J 5

2.1 Explanation . 5

2.2 Code . 6

3 State Emulation in Scheme 8

3.1 Explanation . 8

3.2 Code . 9

4 State Emulation in Haskell 11

4.1 Explanation . 11

4.1.1 The Haskell State Transformer . 11

4.1.2 RunST and Encapsulation . 12

4.1.3 Implementation . 12

4.2 Code . 13

5 Evaluation 15

5.1 Individual Evaluation . 15

5.1.1 J Evaluation . 15

5.1.2 Scheme Evaluation . 17

5.1.3 Haskell Evaluation . 18

5.2 Comparative Evaluation . 21

5.2.1 Model Evaluation . 21

5.2.2 Object-Orientation . 23

5.2.3 Ease of Use . 23

5.2.4 Speed . 24

6 Conclusion 26

A Speed Test Information 28

A.1 System Specifications . 28

A.2 J Tests . 28

A.3 Scheme Tests . 29

A.4 Haskell Tests . 29

List of Tables

5.1 J UNIX tests (in operations/sec) . 17

5.2 J Windows tests (in operations/sec) . 17

5.3 Scheme UNIX tests (in operations/sec) . 19

5.4 Scheme Windows tests (in operations/sec) 19

5.5 Haskell UNIX tests (in operations/sec) . 21

5.6 Haskell Windows tests (in operations/sec) 21

5.7 Haskell tests (in operations/sec) . 24

5.8 Windows tests (in operations/sec) . 25

Chapter 1

Introduction

In this paper we examine methods of state emulation in J, Scheme, and Haskell, the moti-

vation being that we might obtain examples of widely different techniques. Each of these

languages takes a different approach to state emulation, and these three approaches are

employed in a wide variety of languages. For example, J uses special locales to create an

entire object system, whereas Scheme encapsulates a state change inside of lexical closures

and Haskell uses a special monad referred to as a “state transform monad”. Each of these

techniques is examined in depth and used to implement a simplistic semaphore object. We

also discuss a purely functional implementation of this object, evaluating the utility and

efficiency of each implementation.

1.1 Motivation for Study

Before we begin, it is crucial to understand the necessity for such a study. We posit that

stateful computation is rather important to the computer science community; most pro-

grammers would be upset to find this tool unavailable. Many algorithms are difficult or

1

2

impossible to code efficiently without some using some sort of state-change. For exam-

ple, many graph theory algorithms and structure-modifying methods are difficult to reason

about without using state, and even those that don’t are often inelegant and difficult to

read when coded in a non-stateful environment. Aside from this, state is necessary to per-

form any sort of input/output, and is therefore indispensable for any practical programming

effort. Given all of this, it seems that no programming language is complete without some

ability to perform stateful computations.

Why, then, should we not simply use imperative languages exclusively, abandoning the

functional realm as one of theory and conjecture, of little practical value? To note just a

few reasons, many concepts and ideas are elegantly expressed in functional programming

and functional languages are often compact, readable, and easy to reason in. Features such

as referential transparency, first class functions (allowing for currying), tacit programming,

and non-strict evaluation are only a few of the desirable concepts that are difficult to at-

tain or useless outside of functional programming. In fact, certain practices widely used in

procedural programming are in fact much easier in functional programming; memoization,

for example, becomes much simpler with guaranteed referential transparency and first-class

functions. So, if it is impractical to lose the advantages of state but desirable to seek the ad-

vantages of pure functional programming, where does the solution lie? Several answers may

be offered, but in this paper we explore the machinery used to emulate state and the poten-

tial advantages and disadvantages of such methods, including performance measurements

designed to assess the practicality of such emulations.

3

1.2 Explanation of Methods of Evaluation

1.2.1 Object-Orientation

In this study we find it helpful to evaluate the methods offered by these languages in terms of

several different criteria. Our reasons for choosing these criteria are based on the usefulness

of the particular implementation to an average programmer. For that reason, one property

we examine is how well our state emulation transfers to object-oriented programming. For

most modern programmers, object orientation has become a staple of programming, and in

fact has subtly influenced the way we often reason about programs. Whether one chooses

to embrace the object model and use it continually or eschew it in favor of other techniques,

object-oriented programming is inescapable. With this in mind, we examine each of our

languages to see how well the state emulation matches an object-oriented model.

1.2.2 Ease of Use

Another criterion by which we judge our languages is the ease of use for the programmer.

A language construct may be powerful, efficient, and elegant, but if it is difficult or compli-

cated to implement, the programmer may nonetheless choose to use a different construct or

even a different language to circumvent this obstacle. With this in mind, we examine the

accessibility and usefulness of each of these constructs for the average programmer. This

includes digressions on the amount of documentation readily available, the intuitiveness of

the commands, and the complexity of the implementation. Those languages which are easy

to understand, simple to code, and have plentiful and helpful documentation are obviously

favored over ones that do not share these traits.

4

1.2.3 Efficiency

A third criterion by which we judge the languages and their constructs is the efficiency of the

implementation. For this purpose we have run several speed tests of the stateful portions of

J, Scheme, and Haskell. We have tested the creation and manipulation of stateful objects

within these languages, and in this paper we examine the results of this creation and factor

those into our evaluation of these languages.

Chapter 2

State Emulation in J

2.1 Explanation

The J programming language is unique in several respects. It combines many features found

in few other languages, such as tacit programming and locales. With tacit programming,

the programmer can code by combining functions with no specific reference to arguments.

The classic example of this is the averaging function +/%#, which combines the functions

+/ (addition insert), % (divide), and # (tally) in a way to average a list of numbers [2].

This is possible because the composition rule for a function of the form (f g h) x is

(f x) g (h x), where f and h are monads and g is a dyad. Thus, under this system the

J interpreter parses the function+\%# as ”apply addition insert to an argument, apply tally

to the same argument, and apply divide to the first result then the second result. In J,

top level reassignments are permitted, but these reassignments are unlike reassignments in

imperative programming. Under this scheme reassignments are simply assigning a name to

a different value rather than assigning a new value to the name. Thus names are not tied

to memory cells but are higher-level abstractions. Also, in J only toplevel reassignments

5

6

are allowed. J manages to emulate state safely through use of “locales”, specifically the z

locale [3]. A locale is a set of names visible only within the locale. For example, the function

fact_a_ (the _a_ indicates that it’s in locale a) will automatically run on data within locale

a. Thus, the line fact_a_ num will return the value of the function fact_a_ run on num_a_,

if num_a_ exists. In this locale system, the z locale is a special locale; it is a parent locale,

or one to which every other locale refers. If a name is referred to in a locale, the interpreter

first looks for it within the current locale, and if it does not find it there it looks in the z

locale. However, if a name in the z locale is referenced from within some other locale, the

interpreter behaves as though it was referenced from within the original locale rather than

the z locale. So if num_a_ does not exist and num_z_ does, then fact_a_ num will return

the value of the function fact_a_ run on num_z_. Using this system, the programmer can

create locale-specific state-based objects out of classes defined in the z locale, effectively

transforming the locale into an object. Using a global make command defined in the z

locale, the programmer can instantiate an object into any locale and safely alter the state

of top level names. If this system was not in place, any name referred to by a function would

be visible to any other function; however, within a locale the user can safely alter the value

of a name without the repercussions associated with state change in a global environment.

2.2 Code

In the following code, we see the top level name data being set to zero as a default value. The

code reassigns this name in several places, but all of the code shown below is instantiated

into a specific locale, and the name data is not in the scope of any other locale.

make_z_ =: 0 !: 0 @ <

match =. -:

7

data =. 0

semaphore =. monad define

y.

if. y. match ’type’

do. ’semaphore’

elseif. y. match ’get’

do. data

elseif. y. match ’increment’

do. data =: data + 1

elseif. y. match ’decrement’

do. data =: data - 1

elseif. 1

do. ’invalid method error’

end.

)

Chapter 3

State Emulation in Scheme

3.1 Explanation

The programming language Scheme [6] inherited some non-functional characteristics from

its predecessor, LISP . One of these was the set! function, which is used to change the

value associated with a name. This is a native construct in Scheme which was set in place to

emulate state by the creators of the language. In the original implementation of LISP this

could cause problems, because it was dynamically scoped, causing problems with globally

scoped names. Thus, if one function uses a set! to change to the value of a variable, any

other function can access that variable, and thus the behavior of the interacting functions

may be awkward. For example, if a function invert changes the sign on an integer, the

programmer would have to make sure that no other part of the code attempts to take

the square root of that integer, since any other function could access or even change its

value after invert changed the sign of the integer. In Scheme, an elegant solution to this

problem was devised that relied on lexical scoping. With lexical scoping, names can only be

referenced in the environment they are bound to. So, for example, depending on the input

8

9

given, our invert function could change the sign of an integer that only it can access, or

return the value of that integer. These local bindings are known as syntactic closures [1];

they are usually achieved using lambda or let expressions. Binding a variable to one of

these expressions ensures that it cannot be referred to outside of the expression, and thus

creates a lexical closure in which the programmer can effectively use state change.

3.2 Code

The following example illustrates a simple semaphore created with a lexical closure. Note

that the value of the name “cmd” will be released after each function call, but the value of

the name “val” is retained between calls.

(define semaphore

(let ((val 0))

(lambda (cmd)

(cond

((equal? cmd "get") val)

((equal? cmd "up")

(set! val (+ val 1)))

((equal? cmd "down")

(set! val (- val 1)))

(else "Invalid Command")))))

With this object, when we make the following calls:

(define semx semaphore)

(semx "up")

10

(semx "up")

(semx "up")

(semx "get")

(semx "down")

(semx "get")

the output is

3

2

which indicates that the state of semx changes during execution.

Chapter 4

State Emulation in Haskell

4.1 Explanation

State emulation in Haskell is the most complicated method of the three, as it is based on

mathematical category theory. The basic concept behind state emulation in Haskell is that

the programmer may choose to simulate assignment to a mutable variable by passing a

value representing the current state. Before we delve into this, however, we discuss the

supporting concepts of state transformers and stateful monads.

4.1.1 The Haskell State Transformer

The state transformer in Haskell is essentially a purely functional account of the concept of

a stateful variable, with type (ST s a) [4]. The computation transforms a mutable variable

by taking as its input the old state and returning a new state. The simplest example is

the state transforming implementation of the identity map, which returns the same state

that it received as input; the type of such a transformer would be ID :: a -> ST s a [7].

Given this, it is simple to construct functions to read, write, and create mutable objects

11

12

and to create a new variable, For example, one would simply make a state transformer that

takes a value and returns a mutable state object with this value. Other such transformers

are relatively straightforward to implement, and we can even sequentially compose state

transformers using certain tools such as thenST, which has type

thenST :: ST s a -> (a -> ST s b) -> ST s b

Unfortunately, we need a way to implement these transformers within the larger context of

a purely functional program. This problem is cleverly solved using encapsulation.

4.1.2 RunST and Encapsulation

As a method of implementation, the designers of Haskell wrote the runST function. This

function essentially creates a mini-environment in which state is manipulated as described

above. When the user calls runST, the Haskell compiler creates a new thread in which a

valueless state is initialized. It then runs through its computation and returns the value of

the final state, discarding the state in the process. In State In Haskell [4], Launchbury and

Jones provide a proof that multiple calls to runST cannot create a situation where threads

reference state variables that belong to another thread; this proof is rather involved and

depends on the parametricity of runST.

4.1.3 Implementation

The same reasoning behind the implementation of runST is used in the Haskell state monad,

only on a higher level. In fact, much of the difference is syntax that helps the programmer

manipulate the state transformer. The basic operations of the state monad are embodied

in the set and get combinators. These manipulations are what one would expect from

the names, as they are implementations of the reading and writing transformations we

13

considered earlier. There is one fundamental combinator used when executing a stateful

program, and it is runState. As the name suggests, it is functionally similar to runST,

and it returns a tuple of the result of the computation and the final value of the state

object. Two other combinators, evalState and execState, return only the result of the

computation and only the final value of the object, respectively. The point of execState is

to examine the effects of the computation, since the result of the computation may not be

directly tied to the final state of the state object.

4.2 Code

The following example shows a brief implementation of the semaphore in Haskell.

semaUp :: State Int ()

semaUp = do {x <- get; put (x+1)}

semaDn :: State Int ()

semaDn = do {x <- get; put (x-1)}

semaMk :: Int -> State Int ()

semaMk n = put n

With this object, it is important to note that we cannot make toplevel state changes.

However, examine the following function:

semaManip :: State Int ()

semaManip = do

semaMk 0

semaUp

semaDn

14

semaUp

If we run this state computation function with runState semaManip 0, we get ((),1) as

output. This is expected, since we have not technically specified any output. The output

of the function is () and the resulting state is 1.

Chapter 5

Evaluation

In this chapter we review the evaluations and offer a brief comparison between languages.

5.1 Individual Evaluation

5.1.1 J Evaluation

In this section we evaluate the state emulation implementation system in the J programming

language by the criteria previously mentioned. We start by examining the usefulness of the

system in terms of object systems.

Object-Oriented Programming

The method of state emulation in the J programming language is ideal for creating an object

system. The locale system provides a clean interface with the state object while still suf-

ficiently encapsulating the stateful computation. In fact, the small integer implementation

shown above is an object model, albeit a small one. Using this system, the programmer can

create rather complex hierarchies of objects within certain locales that are encapsulated

15

16

entirely within the environment in which they are instantiated but are available to any

part of the global environment. In terms of programming object systems, J is a valuable

language.

Ease of Use

Of the three criteria, J is most deficient in terms of ease of use. The author found that

writing the code for the J state emulation is the most difficult of the three languages. The

J syntax is difficult to master, particularly for a programmer unfamiliar with the functional

paradigm. This difficult syntax extends to the locale system, which can also be trying for

an inexperienced programmer due to the fact that the symbols of the J language have no

link to a common meaning. This is in contrast to Scheme or Haskell where, for example,

the construct “eq?” can be remembered as a dyad that returns true when its arguments are

equivalent and false otherwise. Additionally, the concept of locales, while not a particularly

complex one, is rare in other programming languages. While many programming languages

have similar features, few include the same concept of locales. Aside from this, while J

documentation is readily available online, often the community support is not as strong as

in other languages. The J Software website has a free online manual for the programming

language, but should the programmer require more examples or a different explanation, it

is often difficult to find further resources.

Speed

In terms of speed, J is an excellent language. The tests were run on the J Console (version

5.04). Tables 5.1 and 5.2 show the results of the tests, which yielded relatively good test

times. Unfortunately, this was taken from within the J console, so in many applications

the time taken to start and end a session within this console must be added to the total.

17

J Console
Minimum Allocation 2.97× 108

Maximum Allocation 6.02× 108

Average Allocation 2.69× 108

Minimum Manipulation 2.69× 108

Maximum Manipulation 6.08× 108

Average Manipulation 5.61× 108

Table 5.1: J UNIX tests (in operations/sec)

J Console
Minimum Allocation 1.89× 108

Maximum Allocation 6.59× 108

Average Allocation 5.77× 108

Minimum Manipulation 1.90× 108

Maximum Manipulation 6.61× 108

Average Manipulation 5.58× 108

Table 5.2: J Windows tests (in operations/sec)

However, despite the inherent slowness of any interpreted language, the J state emulation

construct offers excellent performance under speed testing.

5.1.2 Scheme Evaluation

In this section we examine Scheme based on the same criteria outlined earlier. The first of

these criteria is the ability to create an object system.

Object-Oriented Programming

Objects in Scheme are fairly straightforward. Like most features of the language, the lexical

closures from which state models are derived is intuitive, and thus, the object system is

simple to build. Unfortunately, the closures are also relatively impure from a functional

standpoint, and therefore objects built from this system can be problematic. Because of

18

the nature of the language, use of the set! command has issues with both efficiency and

referential transparency, and is therefore somewhat unsafe. However, the ease of creating

the object system remains a point in favor of the Scheme lexical closures.

Ease of Use

The author found that the Scheme system is relatively easy to use. The concept of lexical

closures lies at the heart of Scheme programming and therefore should not be difficult for

a Scheme programmer to grasp. Programmers who are inexperienced with Scheme should

not find the model difficult to understand since the lexical closures rely on lexical scoping,

a common concept in modern programming. The syntax of Scheme is simple to learn, and

lexical closures are no exception. With a simple system that is somewhat comparable to the

general programming concept of namespaces and a syntax that is easily understandable,

Scheme is one of the most accessible systems for beginners and experienced programmers

alike.

Speed

The speed aspect of the Scheme environment was the least impressive. We ran the tests

on the SCM and MzScheme scheme interpreters. Tables 5.3 and 5.4 show the results of

our tests. Although the Windows timing mechanism was not as precise as the Unix time

function, we are nonetheless able to see that the performance Scheme was good if not as

good as that of J.

5.1.3 Haskell Evaluation

In this section we evaluate the state emulation implementation offered in the Haskell lan-

guage by the criteria we’ve seen above. We begin with the usefulness in terms of object-

19

MzScheme SCM
Minimum Allocation 2.17× 106 2.0× 104

Maximum Allocation 5.08× 106 1.0× 105

Average Allocation 4.49× 106 6.08× 104

Minimum Manipulation 1.48× 106 2.5× 104

Maximum Manipulation 2.33× 106 1.0× 105

Average Manipulation 2.28× 106 7.25× 104

Table 5.3: Scheme UNIX tests (in operations/sec)

MzScheme
Minimum Allocation 8.42× 105

Maximum Allocation 9.28× 105

Average Allocation 8.18× 105

Minimum Manipulation 8.42× 105

Maximum Manipulation 2.00× 106

Average Manipulation 1.83× 106

Table 5.4: Scheme Windows tests (in operations/sec)

oriented programming.

Object-Oriented Programming

One of the drawbacks of the Haskell state emulation method is its usefulness in terms of

object orientation. Some attempts have been made to introduce an object-oriented approach

to Haskell, such as O’Haskell or Haskell++; these are complex and experimental. Because

of the encapsulated nature of the State Monad, object orientation is effectively rendered

difficult to achieve using this method. Since the mechanism of the State Monad does not

allow for any interaction during the state processing between the state object and the rest

of the environment, any sort of object system must be inaccessible for the duration of its

existence. This is a poor way to run such a computation and because of this the Haskell

State Monad proves a poor tool for implementing object-orientation.

20

Ease of Use

The ease of use of the State Monad is slightly more difficult to gauge than the object-

orientation application. The language of Haskell is understandable and readable, and thus

the State Monad syntax is not problematic. However, the concepts required for an in-depth

understanding of this system often involve highly theoretical math; this is unsurprising,

since the concept for the monad evolved out of category theory. This is balanced, however,

by a thriving online community of Haskell programmers and substantial documentation

that addresses the State Monad and the other complex features of this language. Though

the theory is often difficult to navigate, a plethora of tutorials are available online, some

assuming knowledge of mathematical constructs, some explaining the mathematics, and

some skirting the issue altogether. Though simplicity is not a feature of this system, the

availability of documentation and support often make up for the challenges of learning it.

Speed

The speed tests were run within the interactive environment rather than through a compiled

executable in order to fairly compare with the other languages. They were run in Hugs and

GHCi, and tables 5.5 and 5.6 show the results of the tests. In the second example, the

inaccuracy of the Windows timing mechanism may contribute to the extremely regular

data, but in both examples it is clear that Haskell is slower than the other two languages.

The reasons for the slowness are likely caused by the intepreted nature of our tests as

well as perhaps the implementation that was used (Control.State.Monad was used in the

interactive GHC compiler). Thus Haskell was the slowest of the three languages.

21

Hugs GHCi
Minimum Allocation 3.85× 104 50
Maximum Allocation 4.24× 105 83
Average Allocation 4.17× 104 58

Minimum Manipulation 3.57× 104 50
Maximum Manipulation 4.1× 105 62
Average Manipulation 3.92× 104 58

Table 5.5: Haskell UNIX tests (in operations/sec)

Hugs GHCi
Minimum Allocation 3.37× 103 64
Maximum Allocation 3.37× 103 64
Average Allocation 3.37× 103 64

Minimum Manipulation 4.0× 103 64
Maximum Manipulation 4.0× 103 64
Average Manipulation 4.0× 103 64

Table 5.6: Haskell Windows tests (in operations/sec)

5.2 Comparative Evaluation

5.2.1 Model Evaluation

The approaches examined here differ widely and strong arguments can be made for any of

them. As we evaluate the different methods of emulating state within these languages, we

must keep in mind that the examples given were minor and were primarily focused on object-

orientation. This seemed to be one of the best ways to judge the capabilities of each language

within space limitations, but was slightly biased against Haskell and towards Scheme and

J. Nonetheless, each language had certain advantages and disadvantages over the others.

For example, the author found that Scheme notation was the simplest to understand from

a syntactical standpoint. In fact, much like other facets of the language, the Scheme lexical

closures were immediately intuitive. Of course, this simplicity comes with a price. The

set! operation is not purely functional. In fact, it is an imperative command nestled

22

inside a functional language. The very presence of the command indicates that it is not

technically emulating state, but actually creating it. However, due to the functional nature

of Scheme, it is considered an emulation, since most Scheme constructs are put in place

to facilitate functional programming. Of course, assigning new values to already existing

names causes some problems. For example, referential transparency is broken; that is, if one

were to replace the function with the value it returns in every instance where it is called,

the program output would be different. These side effects can increase the difficultly of

reasoning about the program. The J code, on the other hand, neatly sidesteps much of this

while still maintaining an intuitive interface. Like Scheme, J allows the user to assign new

values to existing names; however, this is done only to names scoped within a locale. Using

this method, names bound within functions do not change, so many negative side effects

are prevented. Unfortunately, this comes at the cost of some ease of use. To manipulate

the Scheme interface, the programmer need only be familiar with static scoping and state

change, which are common concepts. However, while not unknown, the idea of locales

used in J is more obscure. In addition, the special “z locale” and the unique way in which

these locales are used are more complex than the idea of lexical closures. Both of these are

far easier to understand and implement than the Haskell method. The prototype for the

special Haskell monads was the monoid of abstract algreba, and this innately presents some

challenges to less mathematically knowledgeable programmers. Although an understanding

of category theory is not required to effectively use Haskell monads, the interface is still a

bit difficult without a basic understanding of the mathematical constructs. The difference

between a data type and a State data type is subtle, and the three combinators might be

confusing. Not only is the learning curve of Haskell steep, but the capabilities it provides for

state emulation are not as useful on a small scale as those in J and Scheme. However, the

primary advantage that displaces all of these disadvantages is that Haskell remains purely

23

functional, with no side effects. Despite the complicated logic surrounding state change in

the other two languages, an object still changes state at some point; however, in Haskell,

no state change is ever actually evoked. The program behaves as though state has changed,

and it certainly appears to be imperative code, but the structure of the program is still

referentially transparent. So Haskell has captured the best of two paradigms; it allows

the programmer the ease of writing imperative code alongside the ease of reasoning about

functional code. However, the programmer must become well versed in Haskell for this to

be achieved.

5.2.2 Object-Orientation

J performs best of the three languages reviewed here, simply because of the safety and power

it offers. Scheme offers flexibility and power, but it contradicts the functional paradigm in

doing so. Scheme, being the only impure language reviewed in this paper, obviously is less

safe and more prone to breaking referential transparency. Haskell has the opposite problem,

offering encapsulation and safety but preventing the user from creating any useful object-

oriented state objects. J is an excellent middle ground between the two, with a sufficiently

powerful system that allows encapsulation and retains pure functionality.

5.2.3 Ease of Use

With simple syntax and basic concepts, Scheme outperforms both J and Haskell. In terms

of syntax, both Scheme and Haskell are more accessible than J; Scheme has less vocabulary

than Haskell, but Haskell has more similarities with modern programming languages (both

functional and nonfunctional). Conceptually, Haskell is the most difficult, with ties to ad-

vanced mathematics that may elude many programmers. In contast, J is complex to allow

some power but has simple concepts, and Scheme is the easiest to understand conceptually

24

Hugs GHCi MzScheme SCM J Console
Minimum Allocation 3.85× 104 50 2.17× 106 2.0× 104 2.97× 108

Maximum Allocation 4.24× 105 83 5.08× 106 1.0× 105 6.02× 108

Average Allocation 4.17× 104 58 4.49× 106 6.08× 104 2.69× 108

Minimum Manipulation 3.57× 104 50 1.48× 106 2.5× 104 2.69× 108

Maximum Manipulation 4.1× 105 62 2.33× 106 1.0× 105 6.08× 108

Average Manipulation 3.92× 104 58 2.28× 106 7.25× 104 5.61× 108

Table 5.7: Haskell tests (in operations/sec)

because of the simplicity of the concept of closures. For online community and documenta-

tion, Haskell and Scheme both have large, thriving communities with substantial literature

available for all levels of knowledge and experience; J has a helpful manual, but little com-

munity and few alternative tutorials. Overall, the author found Scheme to be easiest to

use, with Haskell being the second most difficult and J being a demanding language.

5.2.4 Speed

In terms of speed J was quantitatively the best, followed by Scheme and then Haskell.

It might be noted, though, that a plethora of implementations exist of both Scheem and

Haskell, and while it is beyond the scope of this paper to provide comprehensive testing

of a large number of these, it is unlikely that all perform equally at state manipulation.

Nevertheless, J seems to continually outperform both Scheme and Haskell at speed tests.

Tables 5.7 and 5.8 demonstrate this comparison visually.

25

Hugs GHCi MzScheme J Console
Minimum Allocation 3.37× 103 64 8.42× 105 1.89× 108

Maximum Allocation 3.37× 103 64 9.28× 105 6.59× 108

Average Allocation 3.37× 103 64 8.18× 105 5.77× 108

Minimum Manipulation 4.0× 103 64 8.42× 105 1.90× 108

Maximum Manipulation 4.0× 103 64 2.00× 106 6.61× 108

Average Manipulation 4.0× 103 64 1.83× 106 5.58× 108

Table 5.8: Windows tests (in operations/sec)

Chapter 6

Conclusion

Each of the three language examined has unique features that mark it for certain tasks.

Haskell is clearly the language of choice for purists and those concerned with referential

transparency. J is efficient and powerful, but is more likely to break referential trans-

parency with top-level reassignments. Scheme is well equipped for scripting and highly

impure functional programming where ease of programming is paramount to all other con-

siderations. The paradigm in which stateful computation is pursued should be dependent

upon the goals of the computation and the preference of the programmer.

26

Bibliography

[1] Alan Bawden and Jonathan Rees. Syntactic closures. In LFP ’88: Proceedings of the

1988 ACM conference on LISP and functional programming, pages 86–95, New York,

NY, USA, 1988. ACM Press.

[2] Roger Hui and Kenneth Iverson. J Dictionary. Iverson Software, Toronto, Ontario,

1998.

[3] Eric Iverson. J Primer. Iverson Software, Toronto, Ontario, 1998.

[4] John Launchbury and Simon L. Peyton Jones. State in haskell. Lisp Symb. Comput.,

8(4):293–341, 1995.

[5] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J. ACM,

42(3):658–709, 1995.

[6] Julie Sussman, Harold Abelson, and Gerald Jay Sussman. Structure and Interpretation

of Computer Programs. MIT, Cambridge, 1985.

[7] Philip Wadler. Comprehending monads. In LFP ’90: Proceedings of the 1990 ACM

conference on LISP and functional programming, pages 61–78, New York, NY, USA,

1990. ACM Press.

27

Appendix A

Speed Test Information

A.1 System Specifications

All of the code was tested on a Linux machine with 3.0 Ghz Pentium Processor running

Fedora Core 4 with 1G RAM. We ran these tests multiple times to approximate the efficiency

for an average user.

A.2 J Tests

We ran our J tests with the following J code:

make_z_ =: 0 !: 0 @ <

s =: 0

semaphore_type =: ’semaphore’

semaphore_get =: monad def ’s’

semaphore_inc =: monad def ’s =: >:s’

28

29

semaphore_dec =: monad def ’s =: <:s’

We ran the tests using the native J time function, (6!:2), and averaged the result of our

tests. The testing was done in J version 5.04.

A.3 Scheme Tests

We ran the Scheme tests with the following Scheme code:

(define semaphore
(let ((val 0))
(lambda (cmd)
(cond
((equal? cmd "get") val)
((equal? cmd "up")
(set! val (+ val 1)))
((equal? cmd "down")
(set! val (- val 1)))
(else "Invalid Command")))))

(define semx semaphore)

These test were performed using the native Scheme time function, (get-internal-run-time)

and divided our results by the constant internal-time-units-per-second. The testing

environment was SCM version 5.1.

A.4 Haskell Tests

We ran the Haskell tests with the following Haskell code:

import Monad
import System
import IO
import Control.Monad.State

30

semaUp :: State Int ()
semaUp = do {x <- get; put (x+1)}
semaDn :: State Int ()
semaDn = do {x <- get; put (x-1)}
semaMk :: Int -> State Int ()
semaMk n = put n

These tests were run with the getClockTime function in the Haskell module System.Time.

As mentioned in the thesis, the tests were run in the interactive environment of GHC version

6.4.1 in order to be more comparable to the Scheme and J tests, both of which were on

interpreted code.

	Trinity University
	Digital Commons @ Trinity
	5-9-2006

	A Comparative Study of State Emulation in Functional Programming Languages
	William Brick
	Recommended Citation

	tmp.1273595437.pdf.k2Miz

