
Trinit y University
Digital Commons @ Trinit y

� ,*-10 ".�� &"+ "�� ,+,. /�5" /"/ � ,*-10 ".�� &"+ "�� "- � .0*" +0

�

��		�

Simulator for Undergraduate Multi-Agent Systems
Charles Smith
� � 	� 	���� � 	� �� �	� �

� ,)),2�0%&/�� +!�� !! &0&,+�)�2,.(/�� 0� %6-���! &$&0�) ,**,+ /�0.&+&03�"!1� ,*-/ &�%,+,./

� � .0�,#�0%"� ,*-10 ".�� &"+ "/�� ,**,+ /

5&/�5" /&/�,-" +�� "//�&/��. ,1 $%0�0,�3,1�#,.�#.""�� +!�,-" +�� "//�� 3�0%"��,*-10 ".�� &"+ "�� "- � .0*" +0��0��&$&0�)�� ,**,+ /���� .&+&03���0�%�/��" "+
� "-0"!�#,.�&+)1/&,+�&+��,*-10 ".�� &"+ "�� ,+,. /�5" /"/�� 3��+��10%,.&4"!�� !*&+&/0.� 0,.�,#��&$&0�)�� ,**,+ /���� .&+&03��� ,.�*,. "�&+#,.* � 0&,+�
-)"�/ "� ,+0� 0' ,/ 0� +4�0.&+&03�"!1 �

� " ,**" +!" !�� &0� 0&,+
� *&0%���%� .)"/���� &*1)� 0,.�#,.�� +!" .$.� !1� 0"�� 1)0&�� $"+0��3/0"* /����		��� ��

� ������	�� ���� � � � ���� � �� ���
��
%6-���! &$&0�) ,**,+ /�0.&+&03�"!1� ,*-/ &�%,+,./�
�

Distributed Simulator for Multiagent Systems
Charles Keller Smith

A departmental honors thesis submitted to the Department

of Computer Science at Trinity University in partial fulfillment
of the requirements for Graduation with departmental honors.

April, 18 2006

 _________________________ _________________________
 Thesis Advisor Department Chair

Associate Vice President for Academic Affairs,

Curriculum and Student Issues

Simulator for Undergraduate Multi-Agent Systems
Charles Keller Smith

Abstract

 In recent years, Multi-Agent Systems (MAS) have for the first time begun to
be accepted in mainstream computing. Software companies have been founded
focusing purely on MAS software1, telecommunications companies now use agent-
based technologies in cell phones2, and there have even been two successful DARPA
funded, military-grade defense projects in the past ten years3. The growth in demand
for MAS has spurred a dramatic increase in the number of different MAS
development tools available. The various development platforms focus on mobile
devices, large-scale distributed systems, and specific research applications; however,
these tools leave an important facet of MAS development unsatisfied –
undergraduate research and teaching. Each of the solutions available is either too
complex, too specific, or in some way infeasible to be used by students in what is
possibly their first introduction to MAS.
 This research concentrates on creating a distributed, graphical MAS
simulator in Java and an associated Application Program Interface (API) for
developing agent-based systems at the undergraduate level. Whether in research or
in the classroom, the well designed, easily extensible API allows students to create
and immediately display their agents’ interactions in the simulation environment with
minimal programming. The API provides agents with the capacity for perception,
communication, memory, and action.
 Future undergraduate research and learning in the field of MAS will be
greatly facilitated by this intuitive simulation platform. Students can learn MAS by
observing agents visually, and student researchers can focus purely on programming
and analyzing agent behavior.

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Mark Lewis for his valuable advice,

direction, and encouragement. I would also like to thank Andrew Krausnick and Dr.

Zhang for their important contributions to the design and use of this simulator.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
1.1. MOTIVATION.. 1
1.2. BACKGROUND.. 2

1.2.1. Artificial Intelligence.. 2
1.2.2. Multi-Agent Systems and Swarm Intelligence .. 3
1.2.3. AOP .. 5
1.2.4. MAS Simulation .. 5

2. SIMULATOR FEATURES ... 8
2.1. THE WORLD ENVIRONMENT .. 9
2.2. GRAPHICAL INTERFACE ... 10
2.3. AGENT ENVIRONMENT API.. 12

2.3.1. Action ... 13
2.3.2. Communication... 14
2.3.3. Memory... 14
2.3.4. Perception .. 14
2.3.5. Creating an Agent... 15

2.4. DISTRIBUTED SYSTEM ... 15
2.4.1. Server-Client Relationship ... 15
2.4.2. Multi-threaded processing.. 16

2.5. AGENT PROPERTIES ... 16
2.6. SAVING/LOADING .. 17
2.7. IMPORT AN ENVIRONMENT .. 18

3. DESIGN... 19
3.1. CONSIDERATIONS... 19
3.2. ENVIRONMENT API.. 21

3.2.1. Environment Façade .. 21
3.2.2. Entity Hierarchy ... 22

3.3. INTERNAL ARCHITECTURE ... 24
3.3.1. Distributed Client/Server Model .. 25
3.3.2. Inserting an Agent, Abstract Factory ... 26

4. COMPARISON WITH OTHER MAS ... 28
4.1. JADE... 28
4.2. COURGAAR .. 32
4.3. REPAST .. 34
4.4. JESS.. 37
4.5. POTENTIAL INTEGRATION .. 38

5. ACCEPTANCE AND FUTURE DIRECTION.. 41
5.1. ACADEMIC USES .. 41

5.1.1. Research currently using the Simulator ... 41
5.2. POTENTIAL FUTURE ENHANCEMENTS .. 44

5.3. FUTURE USE .. 46
5.3.1. Applications for Research .. 46
5.3.2. Applications for Teaching .. 46

5.4. CONCLUSION.. 47
6. APPENDIX A – API AND JAVADOCS... 48

BIBLIOGRAPHY .. 74

INDEX.. ERROR! BOOKMARK NOT DEFINED.

REFERENCES... 76

LIST OF FIGURES

FIGURE 1. CMU'S SONY AIBO ROBOTS COORDINATING TO SCORE A GOAL. 4

FIGURE 2. CMU ROBOT SOCCER SIMULATOR .. 7

FIGURE 3. GRAPHICAL INTERFACE; RED ‘PREDATOR’ ANTS EAT BLACK ‘PREY’ ANTS 12

FIGURE 4. SIMULATOR CLASS DIAGRAM... 13

FIGURE 5 - SIMULATOR USE CASE .. 20

FIGURE 6 – FAÇADE .. 22

FIGURE 7 - ENTITY HIERARCHY .. 23

FIGURE 8 - JADE GRAPHICAL INTERFACE.. 30

FIGURE 9 - JADE MESSAGING INTERFACE ... 31

FIGURE 10 - REPAST HEAT BUG SIMULATION ... 36

FIGURE 11 – JESS 7 (CHARLEMAGNE) PREVIEW .. 38

FIGURE 12 - KRAUSNICK'S FARM SIMULATION ... 43

1. INTRODUCTION

1 . 1 . M O T I V A T I O N

 In recent years, Multi-Agent Systems (MAS) have for the first time begun to

be accepted in mainstream computing. Software companies have been founded

focusing purely on MAS software, telecommunications companies now use agent-

based technologies in cell phones, and there have even been two successful DARPA

funded, military grade defense projects in the past ten years. The growth in demand

for MAS has spurred a dramatic increase in the number of different MAS

development tools available. Some tools focus on mobile devices, some on large-

scale distributed systems, and still others focus on complex features for specific

research applications. However, these tools leave an important aspect of MAS

development unsatisfied – undergraduate research and teaching. Each of the

solutions available is either too complex, too specific, or in some way infeasible to be

used by students in what is possibly their first introduction to MAS.

 This research concentrates on creating an MAS simulator and associated API

for developing agent-based systems at the undergraduate level. Whether in research

or in the classroom, undergraduate students should be able to quickly understand

this platform and easily use it to develop MAS simulations.

1

2

1 . 2 . B A C K G R O U N D

 This section will give a broad overview of the field of MAS, beginning with

an explanation of its place in larger world of Artificial Intelligence and narrowing

down to the subfield of MAS simulation.

1 . 2 . 1 . A r t i f i c i a l I n t e l l i g e n c e

 Artificial Intelligence (AI) can be seen as having roughly two schools of

thought: Conventional AI and Computational Intelligence. Conventional AI

typically uses explicit logical rules to draw conclusions from available data; examples

include expert systems, case based reasoning, Bayesian networks, and behavior based

AI. Computational Intelligence aims to use learning, adaptive, or evolutionary

computation to solve problems intelligently. Unlike Conventional AI, computational

systems do not use symbolic logic but instead involve iterative developmental

learning. Often Computational Intelligence based systems will have to cope with

problems where the environment is not entirely known, for example, a robot finding

its way through an unfamiliar maze. Such systems include Neural Networks, Fuzzy

systems, Evolutionary computation, Multi-Agent Systems, and Swarm Intelligence.4

This paper focuses on a simulator for the subfields of Multi-Agent Systems and

Swarm Intelligence.

3

1 . 2 . 2 . M u l t i - A g e n t S y s t e m s a n d S w a r m I n t e l l i g e n c e

 A Multi-Agent System (MAS) can be defined as a system composed of

several agents, each with goals that might be difficult for an individual system to

achieve.5 The term “agent” has been used with increasing frequency in the past few

years, both within AI and other disciplines. One might be as likely to hear the term

“agent” in a discussion of economics or law, as in computer science. With the

diverse use of the term a distinctive meaning of agenthood becomes lost. It is

therefore useful to examine what makes up an agent.

 The original sense of the word refers to the participant of a situation that carries

out an action; this meaning, however, is not often used when discussing AI. Within

the context of a MAS and throughout the course of this paper, an agent is defined as

“an autonomous system situated within and a part of an environment that senses

that environment and acts on it, over time, in pursuit of its own agenda.” 6

Autonomy represents the agent’s ability to proceed without outside interaction, and

an environment refers to the agent’s surroundings, be they virtual or physical. An

example of a physical MAS is Carnegie Mellon University’s (CMU) Robotic Soccer

Team. At CMU researchers use Sony® AIBO robot dogs as soccer players that

coordinate to achieve an objective of scoring goals (see Figure 1). Each robot would

represent an agent with complicated rules to determine which actions to perform

under what circumstances in the game. The environment in this example would be

the robots’ physical limitations of the soccer field.

4

Figure 1. CMU's Sony AIBO robots coordinating to score a goal.7

 The study of MAS has given rise to many sub-disciplines of agent research, such as

Swarm Intelligence. Swarm Intelligence (SI) uses many of the concepts from MAS

but typically focuses more on large numbers of simple agents acting together as a

group. A common MAS that focuses on SI is a virtual ant colony that contains many

ant “agents” who follow simple programmed rules causing them to behave similar to

real ants. These virtual ants are autonomous in that, once started, they would

proceed in executing their rules without intervention. In this system, the

environment represents the virtual space available for the ant agents to explore.

Such a virtual ant colony has been used in a technique called Ant Colony

Optimization (ACO) to find approximate solutions to many difficult combinatorial

optimization problems. SI systems can sometimes compose thousands or even

hundreds of thousands of agents whose simple behaviors emerge into more

complex, goal-oriented behavior.

5

 These definitions of MAS and SI will allow a better understanding of the current

research regarding agent simulation.

1 . 2 . 3 . A O P

 A further understanding of the origins of MAS comes from Agent Oriented

Programming (AOP). AOP is a computational framework developed by Stanford

professor Dr. Yoav Shoham in a 1993 journal publication.8 Although somewhat

dated now, AOP made a notable step toward the MAS tools that are developed

today and is frequently cited in MAS publications. AOP can be viewed as a

specialization of object-oriented programming. Many of the components that define

agents and their environment today can be traced back to the agent beliefs, decisions,

capabilities, and obligations described in this article. Dr. Shoham explained the state of

an agent as its mental state and created primitives for inter-agent communication.

These important steps gave language and direction to the mounting agent

enthusiasm of the time.

1 . 2 . 4 . M A S S i m u l a t i o n

 When MAS researchers wish to investigate a multi-agent problem, such as

ACO or soccer robots, one of the first requirements is to develop or acquire a

simulation tool with which to run tests on the agents’ rules and observe their

interactions. The specific simulation needs of each researcher can vary widely

6

depending on factors such as the number of agents to be simulated, the complexity

of rules, the level of cooperation between agents, and the amount of information

that needs to be recorded for each experiment. For example, research that uses

fewer than a hundred simple agents could likely be performed on a single computer;

whereas research that uses thousands of medium to heavy-weight agents will almost

certainly need a simulation system capable of distributing processing to multiple

computers. A choice must be made early on in MAS research to develop a new

simulation engine tailored to the researcher’s individual needs or to use preexisting

MAS development tools.

 There are numerous MAS development tools available, some of which

include: Aglets, BRAHMS, Cougaar, Jack, JADE, JAS, Jason, MACE, Repost,

SeSAm, Spyse, Swarm, and VisualBots.9 All of these tools provide agent

development systems, but they vary widely in focus and scale. VisualBots, for

instance, is an agent based simulator using Excel and Visual Basic, while Cougaar is a

DARPA funded defense project offering Java agent development for large scale

distributed applications. In addition to these tools, there are countless custom

applications that have been developed by researchers who were not aware of these

tools or felt they did not satisfy their needs. The CMU Robotic Soccer Team chose

to implement a custom simulator, illustrated in Figure 2. Developing a custom

system takes time, though, and the more time that must be spent developing a

sufficient simulator, the less time there is available for actual MAS research.

7

Figure 2. CMU robot soccer simulator10

 On the whole, the existing MAS tools either prove to be insufficient in

functionality or far too complex and extensive for use at the undergraduate level. As

a result, this research focuses on developing a graphical MAS simulator for

undergraduate research and teaching with a balance between functionality and

usability. Rapid development of robust MAS simulations is achieved through a

graphical application and an extensive Java Application Program Interface (API).

8

2. SIMULATOR FEATURES

 Since this research was focused on creating a simulator primarily for

undergraduates, the first task was to determine what features and functionality would

be important for students and professors at the undergraduate level. Trinity

University professors Dr. Lewis and Dr. Zhang both had experience working with

simulators, AI, and MAS. Their instrumental feedback combined with that of other

Trinity students who had studied MAS focused the research on key functionality and

provided vital feedback on how to improve usability.

 Three major aspects of functionality that arose in the course of the research were

that the simulator needed to be graphical, distributed, and contain a thorough API.

The simulator needed to be graphical to allow students to easily observe how agent

rules are being executed and whether any behavioral patterns are emerging. For

instance, imagine how difficult it would have been for the CMU team to correct

game strategy had they not developed a graphical interface to their simulator (shown

in Figure 2). Another important factor for the simulator was the need to be

distributed, both in the sense of a client-server setup and in the sense of multi-

threaded. Student researchers investigating long term persistent problems needed a

way to start a simulation on a server and leave a simulation running indefinitely, so

the design adopted a distributed model. Finally, and perhaps most importantly, the

9

simulator needed to provide an API to facilitate rapid development of custom

agents.

2 . 1 . T H E W O R L D E N V I R O N M E N T

 The environment represents the abstract 2D world in which entities reside. All

objects in the environment are considered entities; agents are a subset of entities. In

addition to agents, there might be static entities, such as walls or trees, or dynamic

(non-agent) entities such as a growing or diminishing food source. The precise

hierarchy of entities and agents will be discussed further in section 3.2.2, but for now

it is sufficient to understand that agents and all objects in the environment are types

of entities.

 Internally, the 2D world environment is represented by a floating point

coordinate system. When agents are created, x and y coordinates are specified as

well as an entity type. The coordinates specify the entity’s location in the world and

the type indicates which of the researcher’s custom entities to use. Once created, an

entity will be added to the world server. The world server maintains a list of all entities

and executes any rules that may be defined for those entities. Each entity’s rules are

executed in an update method contained within the entity’s custom code. The

update method executes entity specific rules and updates for one time step. Time in

the world environment is delineated by time steps which occur at regular intervals

defined by the researcher. The world server can, therefore, update the entire world

one time step by calling the update method on every entity in the world.

10

 It may be helpful at this point to look at an example of how a simple

simulation can be customized by adding entities, boundaries, and agent rules.

Suppose a researcher wanted to create a simulation bounded within a 100 by 100 unit

grid that contained two agent types – predators and prey. Both predators and prey

would move randomly throughout the environment, but if a predator came within

five units of a prey, it would eat the prey. To create this simulation the researcher

could add walls (a predefined static entity type) surrounding the desired region then

create two custom entity types for the two agents. In addition to moving and eating,

the agent code would ensure agents would not move into a wall unit, effectively

bounding the simulation. The researcher might decide that world updates should

occur every 0.25 seconds and that ten predators should be located in the midst of a

group of prey at the start of the simulation. This straightforward simulation would

take minutes to create and might look similar to Figure 3 when running. Every agent

moves or eats four times a second, eventually killing off all of the prey agents.

Although overly simplistic for a practical application, this simulation shows how a

researcher can use custom entities and the update based rule system to tailor a

simulation to individual needs.

2 . 2 . G R A P H I C A L I N T E R F A C E

 The graphical interface provides one of the most important features for

undergraduate students. Whether in research or teaching, students at an

introductory level to MAS find it quite helpful to visually see agents interacting. This

11

visualization allows students to observe and alter agent rules if the agents are not

achieving the desired goal.

 The simulator uses a panel interface to display information about the state of the

environment and the properties of the agents. Figure 3 enumerates the panels of the

graphical interface. Agents within the simulation are shown in the display panel, and

the header provides control buttons to add new agents to the environment, add

custom agent types, and pause the world simulation. Status messages for the

environment are related through the status bar and modal buttons such as zoom in

and zoom out are located in the mode panel. Users may click on individual agents to

see specific agent properties. By default, agent properties display the coordinate

based location of the agent and the draw order (the order overlapping agents will be

drawn on the screen). These properties are customizable, however, when

researchers create custom agents.

12

Properties

Mode Panel
Status Bar

Display Panel

Header Panel

Figure 3. Graphical Interface; Red ‘Predator’ Ants eat Black ‘Prey’ Ants

2 . 3 . A G E N T E N V I R O N M E N T A P I

 This section will look at the functionality provided by the API. As shown in

the Simulator Class Diagram in Figure 4, the world and client packages provide the

internal infrastructure for the simulator, and the environment package contains the

agent API that researchers use to create custom agents. The environment package

provides the Entity interface hierarchy, Entities sub-package, as well as sub-packages

for Action, Communication, Memory, and Perception. The Entity interface outlines

the required methods for all entities, and the abstract class EntityAdaptor provides

13

default implementations for most of these methods. AgentEntity and StaticEntity

are abstract classes provided to distinguish between these functionally different entity

types. For more information on design aspects of the agent hierarchy, refer to

section 3.2.2.

Figure 4. Simulator Class Diagram

2 . 3 . 1 . A c t i o n

 The action package contains all classes that allow agents to conduct physical

actions in the environment. Physical action is defined by movement or other

externally explicit interaction. Currently, the package provides the EntityMovement

14

class which offers a host of useful movement methods such as move, moveRandom, and

moveRandomAvoidWalls.

2 . 3 . 2 . C o m m u n i c a t i o n

 Through the communication package, agents may easily send data or messages

back and forth to one another. Any Object data or String message is packaged into a

CommunicationData object then sent to the receiving entities using methods in the

EntityCommunication class. What an entity does with received data is left to the

discretion of the researcher, but by default all data will simply be stored in the agent’s

memory.

2 . 3 . 3 . M e m o r y

 The memory package is provided to give a foundation for agent specific

memory. The current EntityMemory class offers only basic functionality using Java

generic collections for flexible storage. A subject of future research may be to

enhance the capabilities of agent memory, providing functionality specific to MAS.

2 . 3 . 4 . P e r c e p t i o n

 Entities’ awareness of the environment around them is achieved through the

perception package. The EntityPerception class provides methods such as

entitiesInRegion that allow agents to determine what entities are in their immediate

surroundings.

15

2 . 3 . 5 . C r e a t i n g a n A g e n t

 To develop custom entities researchers may create a class that inherits from

AgentEntity or StaticEntity (dependent upon the functional purpose of the entity)

and override any of the methods provided from the Entity interface to customize the

entity. The actual rules of the agent will be programmed into the update method.

To facilitate rule programming the remaining sub-packages of the environment

provide essential agent functionality.

2 . 4 . D I S T R I B U T E D S Y S T E M

2 . 4 . 1 . S e r v e r - C l i e n t R e l a t i o n s h i p

 As explained in Section 2.1, the simulation runs on a server called the “world

server”. This server has no direct graphical interface but instead runs from the

command line, allowing it to be executed as a background process for long-term

persistent simulations. Users may connect to the server using the graphical client

interface described in Section 2.2. Any number of clients may view the world at a

given time, enabling multiple researchers to observe a simulation. Network

communication is achieved through Java’s Remote Method Invocation (RMI)

technology. Essentially all method calls on the client side are relayed on to the server

for processing. RMI does require the RMI registry to be running on the host server.

This should not, however, cause significant burden on researchers as it comes

installed with Java.

16

2 . 4 . 2 . M u l t i - t h r e a d e d p r o c e s s i n g

On large scale simulations the host server can be configured to run in multiple

threads. This option allows a simulation to take full advantage of a multi-processor

or hyper-threaded system. To distribute processing, the world server assigns entity

updates to the first available thread. Each thread is then assigned to a processor by

the operating system. In tests on a four processor system, simulations of up to

10,000 simple agents updating every 0.25 seconds could run smoothly before any lag

in processing was noticed.

 A future progression of the distributed model for the simulator might be to divide

entity update processing among multiple computers, rather than just multiple

threads. A logical implementation of this using computational geometry would allow

client computers connected to the server to process updates for the entities within

the client’s immediate surroundings. This solution would negate network traffic

between the client and server related to graphically displaying agents in the client’s

viewable area and would diminish the processing burden on the server by a factor of

the number of clients.

2 . 5 . A G E N T P R O P E R T I E S

 One of additional features provided by the simulation platform is the ability

to view and edit entity properties at runtime from the client interface. The

properties panel shown in Figure 3 will change to represent a specific entity’s

properties when the user clicks on an entity in the display panel. Once an entity’s

17

properties are selected, they may be edited by clicking the edit button; this will enter

an edit mode. When in edit mode, world updates are paused for all clients connected

to the server. During this time, any property of the entity may be modified. When

editing is completed, the user may choose to either save or cancel changes and world

updates will resume.

 Agent properties are defined through the getProperties and setProperties methods

in the Entity interface. These methods alter the EntityProperties class, defined in the

entity code, that contains all of the editable fields for that entity. For example, the

EntityAdaptor class defines the default EntityProperties to be x, y, and drawOrder as

is visible in Figure 3. A custom entity can have any of its fields displayed and edited

through the properties panel so long as the researcher overrides these two methods.

2 . 6 . S A V I N G / L O A D I N G

 A vital function of any simulation is the capability to save and load the state

of the environment. This functionality is included in the simulator through the client

interface’s file menu. When saving, the world server will serialize every entity in the

world to a file specified by the user. Upon loading, the world server reads in the

entities and repopulates the environment, returning the world to the state prior to

saving. It should be noted that due to limitations of Java serialization a file may not

be loaded if there have been significant changes to the entity classes contained in the

file since it was saved.

18

2 . 7 . I M P O R T A N E N V I R O N M E N T

 To provide a way to quickly develop a simulation environment, a text file in a

specific format may be designed and imported by the simulator. This functionality

differs from saving/loading, because it focuses on the initialization of a new

simulation and is not affected by changes to the entity classes. The text file format

requires the researcher to initially give the dimensions of the environment and define

each entity used with a class name and representative character on each line. Then

the researcher can provide a multi-line map of entities that will be created in the

environment upon importation. Once the file is created, a new simulation can be

initialized with the imported file’s entity map.

19

3. DESIGN

3 . 1 . C O N S I D E R A T I O N S

 This research was undertaken to provide an MAS simulation platform for

research and teaching that could be easily and quickly implemented by undergraduate

students. To truly facilitate usability one must first understand how a system will be

used. This can sometimes be difficult to predict, as future users can often use a

system in unexpected ways, especially if there is insufficient documentation to guide

them through the process.

 Consequently, the first design challenge was to identify the needs of the

undergraduate student researcher and understand how the student would use a

system that provided the needed functionality. The various uses and actors in the

system were identified early in the design process. Figure 5 shows a use case diagram

that reflects the initial design of the platform.

20

Figure 5 - Simulator Use Case

 Once the functional uses had been identified, the design focused on

implementing the various systems. The “agent creation” system was implemented as

the environment package, and the “agent simulation” system became the internal

architecture of the platform, principally the world and client packages. The following

sections will investigate design decisions and challenges for these systems in further

detail. Throughout this chapter, references will be made to the various packages,

21

classes, and methods that make up the platform. It may be helpful for the reader to

refer to Appendix A – API and Javadocs.

3 . 2 . E N V I R O N M E N T A P I

 A cornerstone of this research focused on designing an Application Program

Interface (API) for the environment to aid in the process of creating custom agents.

Throughout the design process, Bloch’s principles of effective API design,11 his

book Effective Java,12 and Design Patterns13 guided the creation of the API. Focus was

placed on making the API easy to use, learn, and extend while providing sufficient

power to satisfy the requirements of an MAS.

3 . 2 . 1 . E n v i r o n m e n t F a ç a d e

 When designing the structure of the environment API, the Façade design

pattern was used to provide a unified interface to the internal subsystem

functionality. The initial design lacked this structure and users instead had to

reference the relevant functions from internal classes, primarily the World class. The

same functionality was offered but through added complexity, communication, and

dependencies. These difficulties were alleviated by creating a series of simplified

interfaces containing the more general functionality of the internal subsystem.

Figure 6 shows an illustration of how a façade can shield the subsystem components,

making the subsystem easier to deal with for the client classes (agent classes). In

22

addition, the interfaces were named in a format more familiar to MAS researchers.

For example, if a researcher wanted an agent to search for all entities in the

surrounding area, in the old model the agent code would have to call one of the

many search functions in the World class, causing a dependency on the internal

subsystem. In the new model, however, the researcher can use the entitiesInRange

method in Perception class that is part of the environment package. In this way,

dependencies between the environment and world packages are compartmentalized into

the four façade interfaces: action, communication, memory, and perception.

Figure 6 – Façade14

3 . 2 . 2 . E n t i t y H i e r a r c h y

 Another goal of the environment API was to facilitate agent creation through

an easily extensible entity hierarchy. Figure 7 shows the Entity interface as the

super-type to the hierarchy. All agents, walls, or other objects in the environment

must implement the Entity interface and the methods therein. Most of the methods

23

in the Entity interface are relatively simple. For example, getRepresentation returns the

image to be displayed on the screen, and getPosition returns the entity’s position.

However, to further facilitate rapid agent creation the EntityAdaptor was created.

The EntityAdaptor is an abstract class that provides a default implementation to all

of the methods in the Entity interface except update. The update method defines the

rules of the agent and must be agent-specific. The StaticEntity and AgentEntity

abstract classes define two functionally different entity types. There is currently no

custom code in either of these classes, but it seems logical that after extensive agent

coding, methods common to all agents or static entities would arise and could be

placed in these classes. The classes also allow code to identify an Entity by type as

either an AgentEntity or a StaticEntity.

Figure 7 - Entity Hierarchy

24

 This hierarchy is intended to make life easier for the API user, but other than

implementing the Entity interface, adherence to this structure is not required. The

typical way to quickly code an agent would be to make a class that implements

AgentEntity, code an update method, and code any Entity methods for which the

default method provided by the EntityAdaptor is unacceptable. The resulting agent

could be added to a simulation and would follow the rules provided in the update

method. This would be the typical implementation; however, the only requirement

is that all entities implement the Entity interface.

3 . 3 . I N T E R N A L A R C H I T E C T U R E

 The internal architecture consists primarily of the client and world packages.

The client package contains extensive Java Swing code for the graphical interface as

well as a local copy of the World1. The world package contains the World server class

and all related classes. Although the previous section is entitled the “Environment

API”, the entire project is open source, and all classes can be extended and

customized. It would not be common, but users could create custom Client or

World classes for their simulations. Consequently, documentation and effective API

design was treated with the same high regard that the entire project received.

1 It should be noted that there are varying definitions of the term “world”. The proper noun, World, refers to
the singleton World server class. The world package is the container for all classes relating to the world server
and is distinguished by italics. The lowercase world environment relates to the abstract space in which all
entities reside. Finally the “local world” refers to the remote copy of the World class on the client machine.

25

 The following sections will take a closer look at the hurdles encountered in

creating the internal architecture and what design decisions were used to overcome

these obstacles.

3 . 3 . 1 . D i s t r i b u t e d C l i e n t / S e r v e r M o d e l

 The most significant single design decision for the simulator was deciding to

make the simulator distributed in a client/server model. This decision affected how

almost every aspect of the simulation was designed, due to the inherent limitations of

communicating over a network. The distributed model was undertaken to allow

researchers to run persistent simulations remotely on a server for survivability and to

assist in group simulations. Remote Method Invocation (RMI) was chosen as the

best method of network communication because of its ease of use and support for

simple object serialization.

 One of the design consequences of using RMI was that any object

communication between the server and client must be serializable and small in size

to ensure a fluid transfer. As a result, serializable versions of many Java library

objects, such as shapes, had to be created as well as a serializable Entity. Entities

presented a particular challenge. All entities in a client’s viewable area had to be

transferred from the world server every update period (typically once every 0.25

seconds). Since there was no way to know how large a user’s custom entities would

26

be, the entire entity could not be sent directly over the network. The solution was

that a small subset of each entity would be transferred, containing only the

information most vital to the client display such as location, bounding sphere, and

image. This design improved efficiency for all simulations and made some

simulations with larger entities possible.

3 . 3 . 2 . I n s e r t i n g a n A g e n t , A b s t r a c t F a c t o r y

 A form of the AbstractFactory pattern was used in overcoming a challenge

with remote insertion of agents between the client and server side. The challenge

was that the server code, having been compiled previously into a JAR file, was

unaware of what custom agent classes the researcher may have created. So when the

researcher goes to insert a new agent from the graphical client interface the world

needs some way to recognize what agent types are available and which type is

currently being inserted.

 To solve this problem, each Agent type to be used in a simulation is added

through a graphical panel in the client interface using its full class path. The client

transmits the class path information to the server, which uses Java Reflection

technology to determine whether the class is in fact an agent. If the class path is

valid, the server sends an identifying number back to the client corresponding to that

agent’s class path. Once all agent types have been added to the simulation, a

27

researcher may select which agent type he/she wants to insert, select a world location

in the client display panel, and select the number of agents to insert. This

information is transmitted to the world server for insertion along with the identifying

number of the desired agent type.

 The server uses an abstract factory to create an instance of the specified

agent type at the given location through a constructor using Java Reflection. The

typical AbstractFactory pattern abstracts the creation of the object but the object

type is known. This method differs as the type is not known except for the

identifying number and must be looked up and created through reflection. In this

way, an agent can be created from a custom entity type after the world server has

been compiled.

 These challenges exemplify a few of the obstacles encountered throughout

the design of the simulator and the respective solutions.

28

4. COMPARISON WITH OTHER MAS

 Multi-agent research has been an ongoing field for over a decade now, and in

that time many tools and languages have been created to assist in the development of

MAS. Due to the broad scope and varied applications of agent systems, each of

these tools seeks to satisfy a niche in the needs of MAS developers. This research

sought to create a graphical simulator and API to assist the development of

undergraduate research and teaching in MAS. Some of the other MAS development

tools include Aglets, BRAHMS, Cougaar, Jack, JADE, JAS, Jason, MACE, Repast,

SeSAM, Spyse, Swarm, SPADES and VisualBots. A full list of tools with web links

is available in Wikipedia’s “Multi-agent system” article.

 In this section, a closer look will be taken at the more common development

tools, namely JADE, Cougaar, Repast, and Jess. For each platform, an overview of

the features and an examination of the different design decisions that distinguish the

platforms will be highlighted. Similarities, differences, and potential integration with

this research will also be discussed.

4 . 1 . J A D E

 One of the more popular development tool currently available is the Java

Agent Development Framework, or JADE.15 This framework is an open source

platform for peer-to-peer agent based applications with a focus on the personal

30

Figure 8 - Jade Graphical Interface16

 In addition to state simulation, Jade goes to great measures to conform to the

Foundation for Intelligent Physical Agents’ (FIPA) specifications and to implement a

robust messaging system. As of June 8th 2005, FIPA is the official standards

organization for agents and multi-agent systems for the IEEE Computer Society.

The specifications represent a collection of standards which are intended to promote

the interoperation of heterogeneous agents and the services that they can represent.17

Jade complies with these specifications by providing a naming and yellow-page

service, message transport and parsing service, and a library of FIPA interaction

protocols ready to be used. The interface for the Jade agent messaging system is

shown in Figure 9.

31

 Conformity to FIPA specifications was not included in this research, in part

because of a lack of awareness of the existence of specifications until the recent

incorporation of FIPA into the IEEE. As is discussed in Section 5, Acceptance and

Future Direction, adopting these specifications might provide a productive avenue of

future research, if it is determined that the specifications further the goals of

undergraduate MAS research and teaching. Also discussed in Section 5 is a potential

messaging and notification system, similar to that of the Jade platform, which would

enhance the usefulness of the API.

Figure 9 - Jade Messaging Interface18

32

 Jade provides full integration with JESS through a package called JessBehavior.

When using this package Jade provides the shell of the agent and JESS is the engine

of the agent that performs all necessary reasoning. In addition, since the Jade

platform as well as this research are both developed in Java, there may be potential

for integration between these two systems. This integration is further investigated in

Section 4.5.

4 . 2 . C O U R G A A R

 Cougaar represents the largest-scale distributed, agent-based architecture

available today. This Java project has been the product of two consecutive, multi-

year DARPA research programs into large agent systems spanning eight years. “The

first program conclusively demonstrated the feasibility of using advanced agent-

based technology to conduct rapid, large scale, distributed logistics planning and re-

planning. The second program developed information technologies to enhance the

survivability of these distributed agent-based systems operating in extremely chaotic

environments.”19 The architecture that resulted from these programs provides a

framework to develop distributed, agent based applications.

 The Cougaar platform offers a long list of features. The framework itself is

designed after JavaBeans and uses a Cougaar Component Model (CCM) to allow

individual software units to interact with one another through abstract interfaces

called services. The system uses an independent blackboard as a shared message

34

4 . 3 . R E P A S T

 Repast presents the most similar platform to this research currently available.

Repast stands for Recursive Porous Agent Simulation Toolkit and is an open source

agent modeling toolkit originally created at the University of Chicago. The platform

is currently maintained by the non-profit volunteer Repast Organization for

Architecture and Development (ROAD). The Repast software was based on the

Swarm toolkit20 and now offers many features multiple implementations in several

different languages. According to the ROAD homepage:

“Our goal with Repast is to move beyond the representation of

agents as discrete, self-contained entities in favor of a view of social

actors as permeable, interleaved, and mutually defining; with

cascading and recombinant motives. We intend to support the

modeling of belief systems, agents, organizations, and institutions as

recursive social constructions.”21

 The features of Repast include a range of two-dimensional agent

environments and visualizations; dynamic access and modification of agent

properties, agent behavioral equations, and model properties at run time; a fully

concurrent discrete event scheduler; a variety of agent templates and examples;

simulation results logging and graphing tools; and libraries for genetic algorithms,

36

 (1) (2)

 (3) (4)

Figure 10 - Repast Heat Bug simulation22

 When Repast is compared to the current research, there are many noticeable

similarities that arise. Both simulators utilize a two-dimensional environment,

provide agent libraries, and are written in Java. Most importantly, both platforms

seem to represent a similar direction in scope and goals. There are some notable

differences. Repast does not appear to offer any distributed (client/server) or

multithreaded support. While diminutive in comparison to Cougaar, the scale of the

37

Repast platform is still quite large. For example, the total number of classes in the

Java deployment of Repast is 580, whereas the current research totals only 41.

Although these extra classes represent added functionality, they also signify increased

complexity and may present obstacles for rapid development in an undergraduate

situation.

 Despite the differences, the similarities of the two projects one might

question why this research was not integrated with the Repast platform from the

onset. In short, the answer comes from the fact that Repast was not discovered until

late in the course of this research; however, the definitive answer to this question

would require a more thorough analysis of whether the Repast platform would

satisfy the goals of this research. Section 4.5 discusses possible integration between

this research and Repast, and section 5.2 lists this integration as a potential future

enhancement to this research.

4 . 4 . J E S S

 Jess is a rule engine and scripting environment written in Java by Ernest

Friedman-Hill at Sandia National Laboratories. The Jess engine provides the

capacity to reason using a knowledge base supplied from a series of declarative rules.

Jess’ fast, small, and light engine allows full access to outside Java code and the Java

API. The language has become very popular among MAS researchers, and a new,

much anticipated version will soon be released. The new Jess 7, codenamed

38

Charlemagne, uses the Eclipse open source environment to provide a graphical rule

development environment, see Figure 11.

Figure 11 – Jess 7 (Charlemagne) Preview23

4 . 5 . P O T E N T I A L I N T E G R A T I O N

 JADE, Repast, and Jess all present promising integration opportunities as

they are all based in the Java language and have comparable scope and direction.

Cougaar is simply too large to attempt integration, and the Cougaar system would

not benefit from such an effort. Naturally, all of these possibilities would depend on

41

5. ACCEPTANCE AND FUTURE DIRECTION

5 . 1 . A C A D E M I C U S E S

 Throughout the development of the research there have been many

opportunities for the simulator and API to be utilized and tested. As part of this

research, many test simulations have been performed, and the simulator has been

extensively tested by two student researchers in disciplines outside of classic

computer science areas. One of the many benefits of MAS and this simulator is that

cross-discipline research becomes more possible than ever before. A student or

research team with a symbiotic comprehension of computer science and another

academic area can progress research in both fields by developing MAS simulations.

5 . 1 . 1 . R e s e a r c h c u r r e n t l y u s i n g t h e S i m u l a t o r

 Perhaps the most validating aspect to this research has been the ongoing

testing and feedback received from the two undergraduate research students who

have been using the simulator for MAS research. From the onset of the project,

Andrew Krausnick and Tom Dietzel have been employing the API and simulator to

create custom social and economic MAS simulations.

 Krausnick’s work has investigated the correlations between virtual agent

societies and human populated virtual worlds. Virtual societies emerge as a result of

the social interaction of large agent groups, and virtual worlds come from cumulative

45

 Finally, there are various improvements that could be made to the internal

client and world simulator packages. Perhaps the most important addition would be to

develop a central logging system on the world server. This logger would allow

agents to report data or state information to a log file. The file could then be

analyzed following a simulation to determine precisely what occurred with each agent

throughout the simulation. Further developments to the internal system might

include the distributed approach described in section 2.4 or a three dimensional

interface for spatially demanding simulations.

 Further enhancements to the internal architecture might include conformity

to FIPA specifications, search functionality, and further integration. Conforming to

specifications would provide many benefits in the process and might open doors for

the simulator to new users and integration possibilities. A search function in the

client graphical interface is also very needed, as currently a user must find an agent

and manually click on it to view properties. If the user could search by certain

criteria, finding and editing agents would be greatly facilitated. The integration

possibilities discussed in section 4.5 offer solid potential for future research as well.

The integration with Jess would be particularly advantageous given the upcoming

release of the graphical Jess 7.0 version.

46

5 . 3 . F U T U R E U S E

5 . 3 . 1 . A p p l i c a t i o n s f o r R e s e a r c h

 There was a time when agent research was an isolated subfield of computer

science that might only be analyzed in graduate school. Today, however, MAS

research has really taken off. There are many promising avenues of research at both

the graduate and undergraduate level. As undergraduate students learn about agent-

based systems in their introductory AI courses, they will want to apply this

knowledge in research. Until now, though, there has not been a simulation platform

directed at the entry level student who may not have extensive experience in MAS

and AI. This simulator makes it possible for the undergraduate student to quickly

begin experimenting with actual MAS research, rather than spending a few weeks or

even months learning a complex system. A large investment of time is acceptable

for a long term research project in graduate school, but the undergraduate is looking

for something that can be learned quickly and provide the necessary functionality.

This simulator satisfies that need for the undergraduate researcher.

5 . 3 . 2 . A p p l i c a t i o n s f o r T e a c h i n g

 In addition to the promising applications this simulator holds for research,

there are many possible ways in which it could aid learning and teaching of MAS.

When students are first introduced to MAS, they typically have a general

47

understanding of computer science principles but may have difficulty with how

behaviors can emerge from simple agent rules. The visualization of this process

through a graphical simulator can greatly assist visual learning students. Moreover,

due to the intuitiveness of the API, professors of an AI or MAS course could give

students assignments to create specific simulations. Over the course of a week or

two, undergraduate computer science students could easily learn how to extend the

API and develop basic simulations. Whether used for research or teaching, this

simulator offers solid potential to further academic knowledge in the field of MAS.

5 . 4 . C O N C L U S I O N

 The ultimate hope of this research is that it will be used by students. In

either a research or teaching venue, this simulator has proven to offer practical

results for furthering knowledge. If this project is accepted as an open source

project, the academic community may use or develop this research from one

centralized location. The simulator offers a host of valuable features, but there are

also many important enhancements that could be made. Until the project develops a

reputation, however, the extent to which the platform is used will largely depend on

the professors involved in the project. I recommend each of you to encourage your

students to build upon this research and use it to discover great advances through

MAS.

48

6. APPENDIX A – API AND JAVADOCS

 This appendix provides the API documentation, or Javadocs, for selected

classes of the platform. Reprinting all of the classes would have been far too

cumbersome and would not be effective. These classes are the most important to

the platform and the most referenced throughout this document. Figure 4 shows

how these classes relate in a UML class diagram.

FIGURE

1 . C L I E N T C L A S S C L I E N T ... 49

2 . E N V I R O N M E N T I N T E R F A C E E N T I T Y ... 52

3 . E N V I R O N M E N T I N T E R F A C E E N T I T Y P R O P E R T I E S 55

4 . C L I E N T C L A S S L O C A L W O R L D ... 56

5 . C L I E N T I N T E R F A C E R E M O T E C L I E N T .. 61

6 . W O R L D I N T E R F A C E R E M O T E W O R L D ... 62

7 . W O R L D C L A S S W O R L D .. 66

49

1 . C L I E N T

C L A S S C L I E N T
java.lang.Object

 client.Client
All Implemented Interfaces:

RemoteClient

public class Client
extends java.lang.Object
implements RemoteClient

Description: The Client class contains the GUI for viewing the world and a copy of the LocalWorld, as it is known by the
client.

Since:
Sep 6, 2005

Author:
Keller

Constructor Summary

Client(LocalWorld localWorld)
 Description: Constructor that initializes the Client to the specified LocalWorld.

Client(LocalWorld localWorld, javax.swing.JFrame frame, int pixelWidth,
int pixelHeight, double displayWidth, double displayHeight)
 Description: Constructor that initializes the Client to the specified LocalWorld, JFame, pixelWidth, pixelHeight,
displayWidth, and dispalyHeight.

Method Summary

 BuilderPanel getBuilderPanel()
 Description: Accessor Method

 DisplayPanel getDisplayPanel()
 Description: Accessor Method

 EventList getEventList()
 Description: Accessor Method

 javax.swing.JFrame getFrame()
 Description: Accessor Method

 HeaderPanel getHeaderPanel()
 Description: Accessor Method

 LocalWorld getLocalWorld()

 ModePanel getModePanel()
 Description: Accessor Method

 PropertiesPanel getPropertiesPanel()
 Description: Accessor Method

 java.lang.String getStatusMsg()

 int getUpdatePeriod()
 Description: Accessor Method

static void main(java.lang.String[] args)

52

setStatusMsg
public void setStatusMsg(java.lang.String statusMsg)

getUpdatePeriod
public int getUpdatePeriod()

Description: Accessor Method
Returns:
Returns the uPDATE_PERIOD.
Since:
Nov 1, 2005

getBuilderPanel

public BuilderPanel getBuilderPanel()
Description: Accessor Method
Returns:
Returns the builderPanel.
Since:
Dec 31, 2005

2 . E N V I R O N M E N T

I N T E R F A C E E N T I T Y
All Superinterfaces:

java.io.Serializable
All Known Implementing Classes:

AgentEntity, BlueAgent, EntityAdaptor, Preditor, Prey, StaticEntity, Wall,
WhiteAgent

public interface Entity
extends java.io.Serializable

Description: The entity interface defines the methods standard to all entities in the world. Every entity in the world must
extend Entity. Entity is made serializable in order for the entities to be saved to a file. Entities themselves are not intended
to be sent accross the network, for that use serializable_objects.SBasicEntity or
world.RemoteWorld.lookupPropertiesByID().

Since:
Sep 10, 2005

Author:
Keller

Method Summary

 SerializableShape getBoundingSpace()
 Description: Returns the bounding space of the entity.

 double getDrawOrder()
 Description: Returns the order in which the entity should be drawn on the screen.

 SPoint2D getPosition()
 Description: Returns the position of the center of the entity.

 EntityProperties getProperties()
 Description: Returns an instance of the EntityProperties interface specific to this entity.

 java.awt.Image getRepresentation()

53

 Description: Returns the representation for the entity.

 void receiveCommunication(CommunicationData commData)
 Description: This method provides a way for other entities to communicate with the current
entity by sending CommunicationData.

 void setBoundingSpace(SerializableShape shape)
 Description: Sets the bounding space of the entity.

 void setDrawOrder(double drawOrder)
 Description: Sets the order in which the entity should be drawn on the screen.

 void setPosition(SPoint2D position)
 Description: Sets the center of the entity.

 boolean setProperties(EntityProperties properties)
 Description: Assigns the entity's properties to the properties paramater.

 void setRepresentation(java.awt.Image image)
 Description: Sets the representation for the entity.

 void update()
 Description: Method containing all updates to be processed on the entity each time unit.

Method Detail

getRepresentation
java.awt.Image getRepresentation()

Description: Returns the representation for the entity. This is the representation that will be displayed on the
Client's display.
Returns:
The Image to represent the entity.
Since:
Sep 13, 2005

setRepresentation
void setRepresentation(java.awt.Image image)

Description: Sets the representation for the entity. This is the representation that will be displayed on the Client's
display.
Parameters:
image - Image to represent the entity
Since:
Mar 12, 2006

getPosition

SPoint2D getPosition()
Description: Returns the position of the center of the entity. If there is no defined center to the entity, the center of
the bounding rectangle of the bounding space should be used.
Returns:
An SPoint2D representing the center of the entity.
Since:
Sep 13, 2005

setPosition

void setPosition(SPoint2D position)
Description: Sets the center of the entity. If there is no defined center to the entity, the center of the bounding
rectangle of the bounding space should be used.
Parameters:
position - An SPoint2D representing the center of the entity.

54

Since:
Mar 12, 2006

getBoundingSpace

SerializableShape getBoundingSpace()
Description: Returns the bounding space of the entity. The bounding space is used within to world to determine if
the entity intersects with other entities in the world. Any shape may be used, however, there is a slight optimization
to using a Rectangle2D. Be sure to update the bounding space whenever the entity is moved or resized.
Returns:
The bounding space of the entity, as a SerializableShape
Since:
Sep 13, 2005

setBoundingSpace

void setBoundingSpace(SerializableShape shape)
Description: Sets the bounding space of the entity. The bounding space is used within to world to determine if the
entity intersects with other entities in the world. Any shape may be used, however, there is a slight optimization to
using a Rectangle2D. Be sure to update the bounding space whenever the entity is moved or resized.
Parameters:
shape - The bounding space of the entity, as a SerializableShape
Since:
Mar 12, 2006

getDrawOrder
double getDrawOrder()

Description: Returns the order in which the entity should be drawn on the screen. Higher values will be drawn on
top of lower values.
Returns:
A double representing the draw order
Since:
Sep 13, 2005

setDrawOrder
void setDrawOrder(double drawOrder)

Description: Sets the order in which the entity should be drawn on the screen. Higher values will be drawn on top
of lower values.
Parameters:
drawOrder - A double representing the draw order
Since:
Mar 12, 2006

update
void update()

Description: Method containing all updates to be processed on the entity each time unit. The update method allows
an entity to change state or interact with the world. The world will call the update method on every entity once
every time unit. Any code to autonomously alter the entity at runtime should be put in the update method.
Since:
Sep 23, 2005

55

getProperties

EntityProperties getProperties()
Description: Returns an instance of the EntityProperties interface specific to this entity. The getPropertiesPanel
method will be called on this instance by each client when the entity is clicked by the user on the client side. The
properties panel will then display the controls and settings specific to that entity. This method may return null if the
entity should not have properties.
Returns:
An instance of EntityProperties that defines getPropertiesPanel, or null if no properties are desired for the enity.
Since:
Sep 23, 2005

setProperties

boolean setProperties(EntityProperties properties)
Description: Assigns the entity's properties to the properties paramater. The setProperties method is called from a
client where the user has changed a property on the GUI. The client will call this method with the new
EntityProperties as a paramater. The entity must then attempt to change its properties to those contained in
properties paramater. If this attempt is successful, the method returns true, otherwise false. If you entity does not
support property alterations, it should return false.
Parameters:
properties -
Returns:
True on successful replacement of entity's properties with the properties paramater, otherwise false
Since:
Sep 23, 2005

receiveCommunication

void receiveCommunication(CommunicationData commData)
Description: This method provides a way for other entities to communicate with the current entity by sending
CommunicationData.
Parameters:
communicationData -
Since:
Mar 22, 2006

3 . E N V I R O N M E N T

I N T E R F A C E E N T I T Y P R O P E R T I E S
All Superinterfaces:

java.io.Serializable
All Known Implementing Classes:

EntityAdaptor.MyProperties

public interface EntityProperties
extends java.io.Serializable

Description: The properties interface is used to define properties for entities that should be sent over the network. Only
necessary properties should be included as it is costly to send many properties over the network for each entity.
Important: this class should be made static, otherwise the associated entity will be sent accross the network as well -
greatly reducing performace.

56

Since:
Sep 8, 2005

Author:
Keller

See Also:
Entity

Method Summary

 javax.swing.JPanel getPropertiesPanel()
 Description: Returns the JPanel that represents these properties.

 boolean refreshValues(EntityProperties props)
 Description: This method should update all properties with current values.

Method Detail

getPropertiesPanel
javax.swing.JPanel getPropertiesPanel()

Description: Returns the JPanel that represents these properties. May contain edit boxs, sliders, ect. to adjust
properties contained in the EntityProperties instance. Any changes made to the properties by these tools will be
returned to the entity by the Client using environment.Entity.setPropertiesPanel()
Returns:
The properties panel to be displayed on the client.
Since:
Sep 23, 2005
See Also:
Entity

refreshValues

boolean refreshValues(EntityProperties props)
Description: This method should update all properties with current values. The method is used to refresh the
property values on the fly without having to remake the properties panel.
Parameters:
entity - The entity that corresponds with these properties.
Returns:
True on successful assingment, false on failure or if property refreshing is not supported.
Since:
Nov 1, 2005

4 . C L I E N T

C L A S S L O C A L W O R L D
java.lang.Object

 client.LocalWorld

public class LocalWorld
extends java.lang.Object

Description: The LocalWorld handles all communication with the World Server. It serializes objects, as necessary, and
may cache data between refresh requests that is known not to change.

57

Since:
Sep 10, 2005

Author:
Keller

Constructor Summary

LocalWorld()
 Description: Default constructor, used to initialize LocalWorld on a stand-alone system.

LocalWorld(java.lang.String worldServerURL)
 Description: Constructs a LocalWorld to connect to the specified World Server URL.

Method Summary

 long addEntity(int entityTypeIndex, SPoint2D center)
 Description: Adds an entity of the specified type at point center in the World.

 int addEntityType(java.lang.String entityClassName)
 Description: Adds a type of entity to the known entities in the World.

 java.util.Vector
<java.lang.String>

getEntityTypes()
 Description: Returns the fully qualified class names of all entities known to the world.

 SPoint2D getInitialViewingPosition()
 Description: Retuns the inital viewing position of the LocalWorld.

 java.lang.String getWorldServerURL()
 Description: Accessor Method

 boolean loadWorld(java.io.File file)
 Description: Loads the elements of the World back to a point saved in the past.

 EntityProperties lookupPropertiesByID(java.lang.Long id)
 Description: Returns the EntityProperties for an entity in the world, given its unique
identifier.

 boolean pauseWorldUpdates()
 Description: Pauses all World updates.

 boolean removeEntity(long id)
 Description: Removes the specified entity from the World.

 boolean removeEntityType(java.lang.String entityClassName)
 Description: Removes a type of entity from the known entities in the World.

 boolean resumeWorldUpdates()
 Description: Resumes all World updates.

 boolean saveWorld(java.io.File file)
 Description: Saves elements of the world that will be necessary to restore the world later.

 java.util.Vector
<SBasicEntity>

search(java.awt.geom.Rectangle2D rectangle2D)
 Description: Searches the world within the specified rectangle and returns a Vector of all
SerializableEntities intersecting that area.

 java.util.Vector
<SBasicEntity>

search(java.awt.geom.Rectangle2D rectangle2D,
SEntityFunctor entityFunctor)
 Description: Searches the world within the specified rectangle for entities meeting the
criteria of entityFucntor, and returns a Vector of matching SerializableEntities intersecting that
area.

 boolean setProperteisByID(java.lang.Long id, EntityProperties properties)
 Description: Attempts to assign the given EntityProperties to the entity specified by the
unique identifier.

58

Constructor Detail

LocalWorld
public LocalWorld()

Description: Default constructor, used to initialize LocalWorld on a stand-alone system. Only use this constructor if
you do not wish to run a seperate Client and Server.
Since:
Sep 27, 2005

LocalWorld
public LocalWorld(java.lang.String worldServerURL)

Description: Constructs a LocalWorld to connect to the specified World Server URL.
Parameters:
worldServerURL - URL of the World Server
Since:
Sep 27, 2005

Method Detail

getInitialViewingPosition

public SPoint2D getInitialViewingPosition()
Description: Retuns the inital viewing position of the LocalWorld.
Returns:
initial default viewing position
Since:
Sep 27, 2005

search

public java.util.Vector<SBasicEntity>
search(java.awt.geom.Rectangle2D rectangle2D)

Description: Searches the world within the specified rectangle and returns a Vector of all SerializableEntities
intersecting that area.
Parameters:
rectangle2D - Area in world to be searched.
Returns:
Vector of SerializableEntities i specified area
Since:
Sep 27, 2005

search

public java.util.Vector<SBasicEntity>
search(java.awt.geom.Rectangle2D rectangle2D,
 SEntityFunctor entityFunctor)

Description: Searches the world within the specified rectangle for entities meeting the criteria of entityFucntor, and
returns a Vector of matching SerializableEntities intersecting that area.
Parameters:
rectangle2D - Area in world to be searched.
entityFunctor - Instance of SEntityFunctor that defines the isAccepted method
Returns:
Vector of SerializableEntities intersecting specified area that match the criteria of the entityFunctor
Since:
Sep 27, 2005
See Also:
EntityFunctor

59

lookupPropertiesByID

public EntityProperties lookupPropertiesByID(java.lang.Long id)
Description: Returns the EntityProperties for an entity in the world, given its unique identifier.
Parameters:
id - The unique identifier for the desired entity.
Returns:
The properties for that entity.
Since:
Sep 27, 2005

setProperteisByID
public boolean setProperteisByID(java.lang.Long id,
 EntityProperties properties)

Description: Attempts to assign the given EntityProperties to the entity specified by the unique identifier. Returns
true on a successful assignment, false on failure or if the entity does not support Property assignment.
Parameters:
id - The unique identifier for the desired entity.
properties - The properties to be assigned to the entity.
Returns:
True on a successful assignment, false on failure or if the entity does not support Property assignment.
Since:
Sep 27, 2005

getWorldServerURL
public java.lang.String getWorldServerURL()

Description: Accessor Method
Returns:
Returns the worldServerURL.
Since:
Sep 12, 2005

getEntityTypes
public java.util.Vector<java.lang.String> getEntityTypes()

Description: Returns the fully qualified class names of all entities known to the world. Entities may be added to the
world using addEntityType() and removed using removeEntityType().
Returns:
A vector of Strings containing the fully qualified class names of all entities known to the world.
Since:
Oct 16, 2005

addEntityType
public int addEntityType(java.lang.String entityClassName)

Description: Adds a type of entity to the known entities in the World. In order to add an entity to the World, the
entity's type must first be made known to the world through this mehtod. Once the entity type is known, an entity
of that type may be added in the World using addEntity().
Parameters:
entityClassName - The fully qualified class path of the entity type to be added.
Returns:
The index of the entity in the entityTypes vector (as returned by getEntityTypes). Returns -1 if type was not added
or if class name is incorrect. Calling this method will add the entity to the end of the vector (as per
Vector.add(Object)).
Since:
Oct 16, 2005

60

removeEntityType
public boolean removeEntityType(java.lang.String entityClassName)

Description: Removes a type of entity from the known entities in the World. Use this method if an entity type will
no longer be used, and no further entities of that type will be added in the World. A call to this method will alter the
indexing of the entityType Vector. All entity types in the vector will be assigned new indicies.
Parameters:
entityClassName - The fully qualified class path of the entity type to be added.
Returns:
True if the entity type was successfully removed, otherwise false.
Since:
Oct 16, 2005

addEntity
public long addEntity(int entityTypeIndex,
 SPoint2D center)

Description: Adds an entity of the specified type at point center in the World. The entity's type must first be added
to the world using addEntityType(). To add an entity using this method the Entity type must have a constructor that
accepts a single SPoint2D paramater. All other properties of the entity will be added with default values, as per the
respective entity type's constructor.
Parameters:
entityTypeIndex - This is the index of the entity's type in the vector of entityTypes (as per getEntityTypes()).
center - The centermost point of the entity.
Returns:
The unique long ID created for the new entity. Returns -1 on error.
Since:
Oct 16, 2005

removeEntity
public boolean removeEntity(long id)

Description: Removes the specified entity from the World. If the entity cannot be found, this method will return
false.
Parameters:
entity - The entity to be removed from the World.
Returns:
True if the entity was successfully removed from the World, otherwise false.
Since:
Oct 16, 2005

pauseWorldUpdates
public boolean pauseWorldUpdates()

Description: Pauses all World updates.
Returns:
True on success, false on failure/error.
Since:
Nov 3, 2005

resumeWorldUpdates
public boolean resumeWorldUpdates()

Description: Resumes all World updates.
Returns:
True on success, false on failure/error.
Since:
Nov 3, 2005

61

saveWorld
public boolean saveWorld(java.io.File file)

Description: Saves elements of the world that will be necessary to restore the world later. These elements will
include the list of entities in the World.
Parameters:
file - The file to save the world properties to.
Throws:
java.rmi.RemoteException
Since:
Nov 15, 2005

loadWorld
public boolean loadWorld(java.io.File file)

Description: Loads the elements of the World back to a point saved in the past. For a load to be successful, the
entities' serialized output stream must be the same. In other words, if any changes have been made since the file was
saved to fields in the entity classes that are not declared transient, the file will not be able to be loaded.
Parameters:
file - The World file to load - a file creaded by saveWorld().
Throws:
java.rmi.RemoteException
Since:
Nov 15, 2005

5 . C L I E N T

I N T E R F A C E R E M O T E C L I E N T
All Known Implementing Classes:

Client

public interface RemoteClient

Description: This interface defines the paradigm for RemoteClients. All methods defined in this interface must be
implemented to allow for network communication from the Server to the Client.

Since:
Sep 6, 2005

Author:
Keller

62

6 . W O R L D

I N T E R F A C E R E M O T E W O R L D
All Superinterfaces:

java.rmi.Remote
All Known Implementing Classes:

World

public interface RemoteWorld
extends java.rmi.Remote

Description: The Remote World interface provides the methods that may be called on the World through RMI.

Since:
Sep 6, 2005

Author:
Keller

Method Summary

 long addEntity(int entityTypeIndex, SPoint2D center)
 Description: Adds an entity of the specified type at point center in the World.

 int addEntityType(java.lang.String entityClassName)
 Description: Adds a type of entity to the known entities in the World.

 java.util.Vector
<java.lang.String>

getEntityTypes()
 Description: Returns the fully qualified class names of all entities known to the world.

 SPoint2D getInitialViewingPosition()
 Description: Returns the default initial viewing position for a client.

 boolean loadWorld(java.io.File file)
 Description: Loads the elements of the World back to a point saved in the past.

 EntityProperties lookupPropertiesByID(long id)
 Description: Returns the EntityProperties for an entity in the world, given its unique
identifier.

 boolean pauseWorldUpdates()
 Description: Pauses all World updates.

 boolean removeEntity(long id)
 Description: Removes the specified entity from the World.

 boolean removeEntityType(java.lang.String entityClassName)
 Description: Removes a type of entity from the known entities in the World.

 boolean resumeWorldUpdates()
 Description: Resumes all World updates.

 boolean saveWorld(java.io.File file)
 Description: Saves elements of the world that will be necessary to restore the world later.

 java.util.Vector
<SBasicEntity>

search(SRectangle2D rectangle2D)
 Description: Searches the world within the specified rectangle and returns a Vector of all
SerializableEntities intersecting that area.

 java.util.Vector
<SBasicEntity>

search(SRectangle2D rectangle2D, SEntityFunctor entityFunctor)
 Description: Searches the world within the specified rectangle for entities meeting the
criteria of entityFucntor, and returns a Vector of matching SerializableEntities intersecting that
area.

 boolean setProperteisByID(long id, EntityProperties properties)
 Description: Attempts to assign the given EntityProperties to the entity specified by the
unique identifier.

63

Method Detail

getInitialViewingPosition

SPoint2D getInitialViewingPosition()
 throws java.rmi.RemoteException

Description: Returns the default initial viewing position for a client. This is the 2D point that the client's screen
should be centered on in the world upon initialization.
Returns:
SPoint2D represent initial viewing position
Throws:
java.rmi.RemoteException
Since:
Sep 27, 2005

search

java.util.Vector<SBasicEntity> search(SRectangle2D rectangle2D)
 throws java.rmi.RemoteException

Description: Searches the world within the specified rectangle and returns a Vector of all SerializableEntities
intersecting that area.
Parameters:
rectangle2D - Area in world to be searched.
Returns:
Vector of SerializableEntities i specified area
Throws:
java.rmi.RemoteException
Since:
Sep 27, 2005

search

java.util.Vector<SBasicEntity> search(SRectangle2D rectangle2D,
 SEntityFunctor entityFunctor)
 throws java.rmi.RemoteException

Description: Searches the world within the specified rectangle for entities meeting the criteria of entityFucntor, and
returns a Vector of matching SerializableEntities intersecting that area.
Parameters:
rectangle2D - Area in world to be searched.
entityFunctor - Instance of SEntityFunctor that defines the isAccepted method
Returns:
Vector of SerializableEntities intersecting specified area that match the criteria of the entityFunctor
Throws:
java.rmi.RemoteException
Since:
Sep 27, 2005
See Also:
EntityFunctor

lookupPropertiesByID

EntityProperties lookupPropertiesByID(long id)
 throws java.rmi.RemoteException

Description: Returns the EntityProperties for an entity in the world, given its unique identifier.
Parameters:
id - The unique identifier for the desired entity.
Returns:
The properties for that entity.
Throws:
java.rmi.RemoteException

64

Since:
Sep 27, 2005

setProperteisByID
boolean setProperteisByID(long id,
 EntityProperties properties)
 throws java.rmi.RemoteException

Description: Attempts to assign the given EntityProperties to the entity specified by the unique identifier. Returns
true on a successful assignment, false on failure or if the entity does not support Property assignment.
Parameters:
id - The unique identifier for the desired entity.
properties - The properties to be assigned to the entity.
Returns:
True on a successful assignment, false on failure or if the entity does not support Property assignment.
Throws:
java.rmi.RemoteException
Since:
Sep 27, 2005

getEntityTypes
java.util.Vector<java.lang.String> getEntityTypes()
 throws java.rmi.RemoteException

Description: Returns the fully qualified class names of all entities known to the world. Entities may be added to the
world using addEntityType() and removed using removeEntityType().
Returns:
A vector of Strings containing the fully qualified class names of all entities known to the world.
Throws:
java.rmi.RemoteException
Since:
Oct 16, 2005

addEntityType
int addEntityType(java.lang.String entityClassName)
 throws java.rmi.RemoteException

Description: Adds a type of entity to the known entities in the World. In order to add an entity to the World, the
entity's type must first be made known to the world through this mehtod. Once the entity type is known, an entity
of that type may be added in the World using addEntity().
Parameters:
entityClassName - The fully qualified class path of the entity type to be added.
Returns:
The index of the entity in the entityTypes vector (as returned by getEntityTypes). Returns -1 if type was not added
or if class name is incorrect. Calling this method will add the entity to the end of the vector (as per
Vector.add(Object)).
Throws:
java.rmi.RemoteException
Since:
Oct 16, 2005

removeEntityType
boolean removeEntityType(java.lang.String entityClassName)
 throws java.rmi.RemoteException

Description: Removes a type of entity from the known entities in the World. Use this method if an entity type will
no longer be used, and no further entities of that type will be added in the World. A call to this method will alter the
indexing of the entityType Vector. All entity types in the vector will be assigned new indicies.
Parameters:
entityClassName - The fully qualified class path of the entity type to be added.
Returns:
True if the entity type was successfully removed, otherwise false.
Throws:
java.rmi.RemoteException

65

Since:
Oct 16, 2005

addEntity
long addEntity(int entityTypeIndex,
 SPoint2D center)
 throws java.rmi.RemoteException

Description: Adds an entity of the specified type at point center in the World. The entity's type must first be added
to the world using addEntityType(). To add an entity using this method the Entity type must have a constructor that
accepts a single Point2D paramater. All other properties of the entity will be added with default values, as per the
respective entity type's constructor.
Parameters:
entityTypeIndex - This is the index of the entity's type in the vector of entityTypes (as per getEntityTypes()).
center - The centermost point of the entity.
Returns:
The unique long ID created for the new entity. Returns -1 on error.
Throws:
java.rmi.RemoteException
Since:
Oct 16, 2005

removeEntity
boolean removeEntity(long id)
 throws java.rmi.RemoteException

Description: Removes the specified entity from the World. If the entity cannot be found, this method will return
false.
Parameters:
entity - The entity to be removed from the World.
Returns:
True if the entity was successfully removed from the World, otherwise false.
Throws:
java.rmi.RemoteException
Since:
Oct 16, 2005

pauseWorldUpdates
boolean pauseWorldUpdates()
 throws java.rmi.RemoteException

Description: Pauses all World updates.
Returns:
True on success, false on failure/error.
Throws:
java.rmi.RemoteException
Since:
Nov 3, 2005

resumeWorldUpdates
boolean resumeWorldUpdates()
 throws java.rmi.RemoteException

Description: Resumes all World updates.
Returns:
True on success, false on failure/error.
Throws:
java.rmi.RemoteException
Since:
Nov 3, 2005

66

saveWorld
boolean saveWorld(java.io.File file)
 throws java.rmi.RemoteException

Description: Saves elements of the world that will be necessary to restore the world later. These elements will
include the list of entities in the World.
Parameters:
file - The file to save the world properties to.
Returns:
True on successful save, otherwise false.
Throws:
java.rmi.RemoteException
Since:
Nov 15, 2005

loadWorld
boolean loadWorld(java.io.File file)
 throws java.rmi.RemoteException

Description: Loads the elements of the World back to a point saved in the past. For a load to be successful, the
entities' serialized output stream must be the same. In other words, if any changes have been made since the file was
saved to fields in the entity classes that are not declared transient, the file will not be able to be loaded.
Parameters:
file - The World file to load - a file creaded by saveWorld().
Returns:
True on successful load, otherwise false.
Throws:
java.rmi.RemoteException
Since:
Nov 15, 2005

7 . W O R L D

C L A S S W O R L D
java.lang.Object

 java.rmi.server.RemoteObject

 java.rmi.server.RemoteServer

 java.rmi.server.UnicastRemoteObject

 world.World
All Implemented Interfaces:

java.io.Serializable, java.rmi.Remote, RemoteWorld

public class World
extends java.rmi.server.UnicastRemoteObject
implements RemoteWorld

Description: The World class is responsible for managing all entities and updates within the world. The class is a singleton
that exists only on the server (or on the running machine in the stand-alone implementation).

Since:
Sep 10, 2005

Author:
Keller

See Also:
Serialized Form

67

Method Summary

 long addEntity(Entity entity)
 Description: Adds an entity to the pending list of entities that will be added to the world
after the next update.

 long addEntity(int entityTypeIndex, SPoint2D center)
 Description: Adds an entity of the specified type at point center in the World.

 int addEntityType(java.lang.String entityClassName)
 Description: Adds a type of entity to the known entities in the World.

 java.util.Vector
<java.lang.String>

getEntityTypes()
 Description: Returns the fully qualified class names of all entities known to the world.

 SPoint2D getInitialViewingPosition()
 Description: Returns the default initial viewing position for a client.

static World getInstance()
 Description: Returns the singleton instance of World.

 int getUpdatePeriod()
 Description: Accessor Method, returns the period between each World update.

 boolean loadWorld(java.io.File file)
 Description: Loads the elements of the World back to a point saved in the past.

 EntityProperties lookupPropertiesByID(long id)
 Description: Returns the EntityProperties for an entity in the world, given its unique
identifier.

static void main(java.lang.String[] args)
 Description: Main method used to run the server.

 boolean pauseWorldUpdates()
 Description: Pauses all World updates.

 boolean removeEntity(Entity entity)
 Description: Marks an entity for removal, causing it to be reomved form the World after
the next update.

 boolean removeEntity(long id)
 Description: Removes the specified entity from the World.

 boolean removeEntityType(java.lang.String entityClassName)
 Description: Removes a type of entity from the known entities in the World.

 boolean resumeWorldUpdates()
 Description: Resumes all World updates.

 boolean saveWorld(java.io.File file)
 Description: Saves elements of the world that will be necessary to restore the world later.

 java.util.Vector
<Entity>

search(SerializableShape shape)
 Description: Returns all entities intersecting the specified shape.

 java.util.Vector
<Entity>

search(SerializableShape shape, EntityFunctor entityFunctor)
 Description: Returns entities intersecting the specified shape that are accepted by the
entityFunctor.

 java.util.Vector
<Entity>

search(SPoint2D center, double radius)
 Description: Returns all entities intersecting the circle with the specified center and radius.

 java.util.Vector
<Entity>

search(SPoint2D center, double radius, EntityFunctor entityFunctor)
 Description: Returns all entities intersecting the circle with the specified center and radius.

 java.util.Vector
<SBasicEntity>

search(SRectangle2D rectangle2D)
 Description: Searches the world within the specified rectangle and returns a Vector of all
SerializableEntities intersecting that area.

68

 java.util.Vector
<SBasicEntity>

search(SRectangle2D rectangle2D, SEntityFunctor entityFunctor)
 Description: Searches the world within the specified rectangle for entities meeting the
criteria of entityFucntor, and returns a Vector of matching SerializableEntities intersecting that
area.

 boolean setProperteisByID(long id, EntityProperties properties)
 Description: Attempts to assign the given EntityProperties to the entity specified by the
unique identifier.

 boolean startWorldUpdates()

Method Detail

main
public static void main(java.lang.String[] args)

Description: Main method used to run the server. This method will intialize the World on the server specified in the
command line arguments.
Parameters:
args - [0]: The string URL that the server is running on. For example, "rmi//computername:Port/WorldServer"
Since:
Sep 27, 2005

addEntity

public long addEntity(Entity entity)
Description: Adds an entity to the pending list of entities that will be added to the world after the next update.
Creates a new unique long ID for the entity and returns it.
Parameters:
entity - The entity to add.
Returns:
The long ID of the new entity.
Since:
Sep 27, 2005

removeEntity

public boolean removeEntity(Entity entity)
Description: Marks an entity for removal, causing it to be reomved form the World after the next update.
Parameters:
entity - Entity to be removed.
Returns:
True if successeful, otherwise false.
Since:
Oct 16, 2005

search

public java.util.Vector<Entity> search(SPoint2D center,
 double radius)

Description: Returns all entities intersecting the circle with the specified center and radius.
Parameters:
center - The center of the circle to search.
radius - The radius of the circle to search.
Returns:
A vector of entites intersecting the specified circle.
Since:
Sep 27, 2005

69

search

public java.util.Vector<Entity> search(SPoint2D center,
 double radius,
 EntityFunctor entityFunctor)

Description: Returns all entities intersecting the circle with the specified center and radius.
Parameters:
center - The center of the circle to search.
radius - The radius of the circle to search.
entityFunctor - An instance of entityFunctor that defines the isAccepted method.
Returns:
A vector of entites intersecting the specified circle.
Since:
Sep 27, 2005

search

public java.util.Vector<Entity> search(SerializableShape shape)
Description: Returns all entities intersecting the specified shape. There is a slight performace benifit if the shape is a
Rectangle2D.
Parameters:
shape - The shape to search.
Returns:
A vector of entites intersecting the specified shape.
Since:
Sep 27, 2005

search

public java.util.Vector<Entity> search(SerializableShape shape,
 EntityFunctor entityFunctor)

Description: Returns entities intersecting the specified shape that are accepted by the entityFunctor. There is a slight
performace benifit if the shape is a Rectangle2D.
Parameters:
shape - The shape to search.
entityFunctor - An instance of entityFunctor that defines the isAccepted method.
Returns:
A vector of entites intersecting the specified shape that are accpted by the entityFunctor.
Since:
Sep 27, 2005
See Also:
EntityFunctor

search

public java.util.Vector<SBasicEntity> search(SRectangle2D rectangle2D)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Searches the world within the specified rectangle and returns a Vector of all SerializableEntities
intersecting that area.
Specified by:
search in interface RemoteWorld
Parameters:
rectangle2D - Area in world to be searched.
Returns:
Vector of SerializableEntities i specified area
Throws:
java.rmi.RemoteException

70

search

public java.util.Vector<SBasicEntity> search(SRectangle2D rectangle2D,
 SEntityFunctor entityFunctor)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Searches the world within the specified rectangle for entities meeting the criteria of entityFucntor, and
returns a Vector of matching SerializableEntities intersecting that area.
Specified by:
search in interface RemoteWorld
Parameters:
rectangle2D - Area in world to be searched.
entityFunctor - Instance of SEntityFunctor that defines the isAccepted method
Returns:
Vector of SerializableEntities intersecting specified area that match the criteria of the entityFunctor
Throws:
java.rmi.RemoteException
See Also:
EntityFunctor

getInitialViewingPosition

public SPoint2D getInitialViewingPosition()
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Returns the default initial viewing position for a client. This is the 2D point that the client's screen
should be centered on in the world upon initialization.
Specified by:
getInitialViewingPosition in interface RemoteWorld
Returns:
SPoint2D represent initial viewing position
Throws:
java.rmi.RemoteException

lookupPropertiesByID

public EntityProperties lookupPropertiesByID(long id)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Returns the EntityProperties for an entity in the world, given its unique identifier.
Specified by:
lookupPropertiesByID in interface RemoteWorld
Parameters:
id - The unique identifier for the desired entity.
Returns:
The properties for that entity.
Throws:
java.rmi.RemoteException

setProperteisByID
public boolean setProperteisByID(long id,
 EntityProperties properties)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Attempts to assign the given EntityProperties to the entity specified by the unique identifier. Returns
true on a successful assignment, false on failure or if the entity does not support Property assignment.
Specified by:
setProperteisByID in interface RemoteWorld
Parameters:
id - The unique identifier for the desired entity.
properties - The properties to be assigned to the entity.

71

Returns:
True on a successful assignment, false on failure or if the entity does not support Property assignment.
Throws:
java.rmi.RemoteException

getEntityTypes
public java.util.Vector<java.lang.String> getEntityTypes()
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Returns the fully qualified class names of all entities known to the world. Entities may be added to the
world using addEntityType() and removed using removeEntityType().
Specified by:
getEntityTypes in interface RemoteWorld
Returns:
A vector of Strings containing the fully qualified class names of all entities known to the world.
Throws:
java.rmi.RemoteException

addEntityType
public int addEntityType(java.lang.String entityClassName)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Adds a type of entity to the known entities in the World. In order to add an entity to the World, the
entity's type must first be made known to the world through this mehtod. Once the entity type is known, an entity
of that type may be added in the World using addEntity().
Specified by:
addEntityType in interface RemoteWorld
Parameters:
entityClassName - The fully qualified class path of the entity type to be added.
Returns:
The index of the entity in the entityTypes vector (as returned by getEntityTypes). Returns -1 if type was not added
or if class name is incorrect. Calling this method will add the entity to the end of the vector (as per
Vector.add(Object)).
Throws:
java.rmi.RemoteException

removeEntityType
public boolean removeEntityType(java.lang.String entityClassName)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Removes a type of entity from the known entities in the World. Use this method if an entity type will
no longer be used, and no further entities of that type will be added in the World. A call to this method will alter the
indexing of the entityType Vector. All entity types in the vector will be assigned new indicies.
Specified by:
removeEntityType in interface RemoteWorld
Parameters:
entityClassName - The fully qualified class path of the entity type to be added.
Returns:
True if the entity type was successfully removed, otherwise false.
Throws:
java.rmi.RemoteException

addEntity
public long addEntity(int entityTypeIndex,
 SPoint2D center)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Adds an entity of the specified type at point center in the World. The entity's type must first be added
to the world using addEntityType(). To add an entity using this method the Entity type must have a constructor that

72

accepts a single Point2D paramater. All other properties of the entity will be added with default values, as per the
respective entity type's constructor.
Specified by:
addEntity in interface RemoteWorld
Parameters:
entityTypeIndex - This is the index of the entity's type in the vector of entityTypes (as per getEntityTypes()).
center - The centermost point of the entity.
Returns:
The unique long ID created for the new entity. Returns -1 on error.
Throws:
java.rmi.RemoteException

removeEntity
public boolean removeEntity(long id)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Removes the specified entity from the World. If the entity cannot be found, this method will return
false.
Specified by:
removeEntity in interface RemoteWorld
Returns:
True if the entity was successfully removed from the World, otherwise false.
Throws:
java.rmi.RemoteException

pauseWorldUpdates
public boolean pauseWorldUpdates()
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Pauses all World updates.
Specified by:
pauseWorldUpdates in interface RemoteWorld
Returns:
True on success, false on failure/error.
Throws:
java.rmi.RemoteException

resumeWorldUpdates
public boolean resumeWorldUpdates()
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Resumes all World updates.
Specified by:
resumeWorldUpdates in interface RemoteWorld
Returns:
True on success, false on failure/error.
Throws:
java.rmi.RemoteException

startWorldUpdates
public boolean startWorldUpdates()

73

getInstance

public static World getInstance()
Description: Returns the singleton instance of World.
Returns:
The singleton instance of World.
Since:
Sep 2, 2005

getUpdatePeriod
public int getUpdatePeriod()

Description: Accessor Method, returns the period between each World update.
Returns:
Returns the Update_Period.
Since:
Sep 12, 2005

saveWorld
public boolean saveWorld(java.io.File file)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Saves elements of the world that will be necessary to restore the world later. These elements will
include the list of entities in the World.
Specified by:
saveWorld in interface RemoteWorld
Parameters:
file - The file to save the world properties to.
Returns:
True on successful save, otherwise false.
Throws:
java.rmi.RemoteException

loadWorld
public boolean loadWorld(java.io.File file)
 throws java.rmi.RemoteException

Description copied from interface: RemoteWorld

Description: Loads the elements of the World back to a point saved in the past. For a load to be successful, the
entities' serialized output stream must be the same. In other words, if any changes have been made since the file was
saved to fields in the entity classes that are not declared transient, the file will not be able to be loaded.
Specified by:
loadWorld in interface RemoteWorld
Parameters:
file - The World file to load - a file creaded by saveWorld().
Returns:
True on successful load, otherwise false.
Throws:
java.rmi.RemoteException

74

BIBLIOGRAPHY

"Application Program Interface." Wikipedia. 26 Mar. 2006

<http://en.wikipedia.org/wiki/Application-programming_interface>.

"Artificial Intelligence." Wikipedia. 26 Mar. 2006

<http://en.wikipedia.org/wiki/Artificial_intelligence>.

Bloch, Joshua. Effective Java. 1st ed. Boston: Addison-Wesley, 2001.

Bloch, Joshua. How to Design a Good API and Why It Matters. Library-Centric

Software Design (LCSD). 2005. 26 Mar. 2006

<http://lcsd05.cs.tamu.edu/slides/keynote.pdf>.

Buckland, Mat. Programming Game AI by Example. 1st ed. Plano, TX: Wordware,

2005. 85.

Carnegie Mellon Robot Soccer. Carnegie Mellon University. 26 Mar. 2006

<http://www.cs.cmu.edu/~robosoccer/main/>.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

1st ed. Boston: Addison-Wesley, 1995.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

1st ed. Boston: Addison-Wesley, 1995.

"Jade - Java Agent DEvelopment Framework." Jade. 26 Mar. 2006

<http://jade.cselt.it/>.

75

"Multi-Agent Systems." Wikipedia. 26 Mar. 2006

<http://en.wikipedia.org/wiki/Multi-agent_systems>.

76

REFERENCES

1. "JACK Intelligent Agents, Software Agent System." The Agent Oriented Software Group. 3 Apr. 2006
<http://www.agent-software.com/>.

2. "Jade - Java Agent DEvelopment Framework." Jade. 26 Mar. 2006 <http://jade.cselt.it/>.

3. Cognitive Agent Architecture Open Source Project Site. DARPA. 26 Mar. 2006
<http://www.cougaar.org/>.

4. "Artificial Intelligence." Wikipedia. 26 Mar. 2006
<http://en.wikipedia.org/wiki/Artificial_intelligence>.

5. "Multi-Agent Systems." Wikipedia. 26 Mar. 2006 <http://en.wikipedia.org/wiki/Multi-
agent_systems>.

6. Buckland, Mat. Programming Game AI by Example. 1st ed. Plano, TX: Wordware, 2005. 85.

7. Carnegie Mellon Robot Soccer. Carnegie Mellon University. 26 Mar. 2006
<http://www.cs.cmu.edu/~robosoccer/main/>.

8. Shoham, Yoav. "Agent-Oriented Programming." Elsevier 60.1 (1993): 51-92.

9. "Multi-Agent Systems." Wikipedia. 26 Mar. 2006 <http://en.wikipedia.org/wiki/Multi-
agent_systems>.

10. Carnegie Mellon Robot Soccer. Carnegie Mellon University. 26 Mar. 2006
<http://www.cs.cmu.edu/~robosoccer/main/>.

11. Bloch, Joshua. How to Design a Good API and Why It Matters. Library-Centric Software Design
(LCSD). 2005. 26 Mar. 2006 <http://lcsd05.cs.tamu.edu/slides/keynote.pdf>.

12. Bloch, Joshua. Effective Java. 1st ed. Boston: Addison-Wesley, 2001.

13. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. 1st ed. Boston:
Addison-Wesley, 1995.

14. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. 1st ed. Boston:
Addison-Wesley, 1995. 185.

15. "Jade - Java Agent DEvelopment Framework." Jade. 26 Mar. 2006 <http://jade.cselt.it/>.

16. "Jade - Java Agent DEvelopment Framework." Jade. 26 Mar. 2006 <http://jade.cselt.it/>.

17. Foundation for Intelligent Physical Agents. IEEE Computer Society. 26 Mar. 2006
<http://www.fipa.org/>.

18. "Jade - Java Agent DEvelopment Framework." Jade. 26 Mar. 2006 <http://jade.cselt.it/>.

19. Cognitive Agent Architecture Open Source Project Site. DARPA. 26 Mar. 2006
<http://www.cougaar.org/>.

20. "Swarm Development Group." Swarm 2.2. 29 Mar. 2006 <http://wiki.swarm.org>.

21. Repast Agent Simulation Toolkit. 29 Mar. 2006 <http://repast.sourceforge.net>.

77

22. Repast Agent Simulation Toolkit. 29 Mar. 2006 <http://repast.sourceforge.net>.

23. Jess. 29 Mar. 2006 <http://www.jessrules.com/>.

