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Numerical Simulations of Density Waves in Saturn’s A-Ring

Keaton Holt

Abstract

In this work, we report on the use of a local cell N-body simulation method to model density

waves in Saturn’s A-ring. Specifically, we focus on waves excited at the 31-30 Inner Lindblad

Resonance with Prometheus. We find that the local cell qualitatively matches larger cells

in the formation process but is able to run more quickly and at higher resolution. The

density waves that form in the local cell return theoretical surface density predictions (σ0

= 46.51 g/cm2) within 4% of the parameter value of 45.0 g/cm2. Additional simulations

run without particle self-gravity do not result in the formation of density waves, confirming

that the waves are not a product of the cell or boundary conditions used. In the sudden

absence of the moon, our simulations suggest that a fully formed density wave decays almost

completely on the timescale of 1-2 years. However, a region of higher density appears to

persist just outside the resonance location. Finally, by decreasing particle radius from 8.4m

to 2.6m we were able to observe the formation of straw between wave peaks. Photometric

renderings of these simulations show qualitative agreement with Cassini images.
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to left). These trends are further illuminated by Figure 5.5, which shows the propagation

of the highest density wave peak in the “super” resolution simulation.

Figure 5.6: Photometric renderings of the original (left) and super (right) resolution simu-
lations. These mimic what an oberver like Cassini might see using optical imaging (Figure
5.1). The ring material is located between the sun and observer for both images.

Figure 5.6 contains the output of a photometric rendering tool [15] applied to the orig-

inal and super resolution simulations. The renderings approximate the optical view of an

observer who looks toward the sun through the ring-plane (from the unlit side). Despite

using the same rendering method, the two images are quite distinct, and differ noticeably

from direct particle plots (Figures 5.3, 5.4, 5.5). In the lower resolution image, regions

between wave peaks appear dark, while the highest-density regions are bright. Due to two

competing scattering effects, the opposite is true of the high resolution image, which more

closely resembles Figure 5.1. At one extreme, regions of low particle count and surface

area provide little opportunity for light to scatter, so photons mostly pass through and the

region appears darker. An increase in particle count contributes to increased scattering and

therefore brightness. At the opposite extreme, regions of high particle count and surface

area provide sufficient material to block the transmission of light, causing the region to



30

appear dark. A decrease in particle count therefore leads to increased brightness.

Because our method of increasing resolution conserves mass and particle density, it

necessarily increases surface area, which is proportional to Nr2. The relative surface area

and optical depth therefore scale linearly with the ratio of the original to final particle

radius. Looking again to the photometric renderings of Figure 5.6, this shift (about a factor

of 3 here) is clearly enough to push the observed image from one regime of scattering effects

to the other. Recalling that the A-ring particle size distribution has an estimated cut-off

point around 5m, we may have simply transitioned to a realistic baseline optical depth. The

fact that the rendering of the high-resolution simulation qualitatively matches real Cassini

images of density waves suggests that our method is valid in capturing the physics of density

waves and straw.



Chapter 6

Conclusion

In conclusion, we find that the local cell method is viable and superior to the global cell for

the purposes of N-body density wave simulations. Unlike the global cell, which necessitates

either impossibly large particle counts or poor resolution for computational feasibility, the

local cell is able to capture density wave formation under reasonable run times and reso-

lutions. In accordance with theory and observations, our simulated density waves follow a

characteristic decrease in wavelength and amplitude with distance from the resonance loca-

tion. We also find that simulations with fully formed density waves can be used effectively

as initial conditions for new simulations that test perturbations to the standard system.

First, sudden removal of the moon was found to result in the damping of the wave over the

course of about 1000 orbits, or 1-2 years of real time. The wave did leave behind a region of

elevated density just outside the resonance location, an effect which would be interesting to

compare against observations of the time-dependent Janus-Epimetheus density waves. Sec-

ond, increasing the particle count by generating and redistributing an expanded set based

on the statistical properties of the original was found to be a useful tactic for improving

resolution. Starting a new simulation with the new set as its initial conditions allowed us to

“skip” the long density wave formation process and quickly see the higher-resolution straw

31
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features we were interested in. Photometric renderings also confirmed that this process

resulted in optically realistic density waves when compared to observation.

Future work would involve the use of our redistribution technique to quickly simulate the

formation of other density waves at the minimum possible resolution before enhancing the

resolution to observe fine-grain structure. As all simulations considered in this work used

a uniform particle-size distribution, it would also be potentially interesting and valuable to

apply a power law or other distribution when generating the new particle set. We would also

like to repeat the analysis of Section 3.4 on our higher-resolution simulations to examine

whether particle size contributes to deviation from the linear theory.
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