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Abstract 
 
Animal communication allows information to be transferred from a sender to a receiver, and can 

occur via visual, chemical, auditory, and tactile modalities. Communication behaviors are known 

to be generally associated with specific brain regions, but it is currently unknown how the 

cellular morphology of these regions differs in species that quantitatively differ in the use of 

particular communication modalities. Further, these relationships are rarely considered in an 

evolutionary context. In this thesis, I investigated the relationship between the use of 

communication modalities and neural morphologies (in particular, soma size and density) in the 

brains of six species of lizards: Anolis carolinensis, Aspidoscelis gularis, Hemidactylus turcicus, 

Leiocephalus carinatus, Sceloporus olivaceus, and Scincella lateralis. I performed behavioral 

observations of these species, quantifying their rates of visual and chemical communication 

behaviors. I then collected brains from 10 males of each species and measured soma size and 

density in two brain regions associated with visual behaviors (the lateral geniculate nucleus, and 

the optic tectum), one brain region associated with chemical behaviors (the nucleus sphericus), 

and one brain region generally associated with social behaviors (the preoptic area). I found that 

species that communicate with higher rates of visual displays had a denser lateral geniculate 

nucleus, and that species that communicate with a higher percentage of chemical displays had 

larger somas in the nucleus sphericus. These relationships between communication behaviors 

and neural morphologies suggest that structures within the brain have evolved convergently in 

species with similar communication behaviors.   
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Introduction 

Communication is crucial for the survival and the reproductive success of almost all 

animals. One central function of the behaviors used to send or receive messages between 

conspecifics and/or heterospecifics is to provide important information about the social 

environment. For example, signals can be used to communicate the size and strength of a 

competitor, a predator's level of aggression, or a potential mate’s availability for copulation. 

These signals can be sent and received using several modalities, including visual, chemical, 

auditory, and tactile sensory mechanisms (Dangles et al., 2009). In each case, specialized 

morphologies are needed to detect messages communicated using a specific modality. For 

example, among species that utilize visual communication, there must be light-sensitive cells, 

such as in an eye, so the receiver of the message can sense visual stimuli. For chemical 

modalities, there must be morphologies that allow chemical signals to be sensed and secreted. 

Further, all messages must be processed by the brain so that appropriate responses can be 

produced. Each modality is associated with certain brain regions, and species that rely more 

heavily on certain modalities over others may exhibit enhanced neural morphologies in these 

regions. In this thesis, I studied a group of six lizard species to explore the relationships between 

behaviors that facilitate communication using two modalities (visual and chemical), and the 

morphology in brain regions associated with these modalities. I used phylogenetically-informed 

comparative analyses to test for convergent evolution in brain morphology in species with 

similar communication behaviors. 

The relationship between brain morphology and communication behavior is a prime 

candidate to explore using phylogenetic comparative methods, because few studies have 

examined this relationship across multiple species. Under normal statistical assumptions, all data 
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points are independent of one another, while phylogenetic comparative methods consider how 

species are hierarchically related to one another and use these hierarchical relationships to 

determine whether similarities among species are derived from evolutionary history alone, or in 

association with other traits (Felsenstein 1985). Phylogenetic comparative studies are used to 

hypothesize patterns of evolution (Martins, 1996) and provide a powerful tool for examining 

morphological or physiological relationships throughout a taxonomic group. However, 

comparative studies of brain and behavior remain rare in the literature. Brenowitz (1997) is one 

example of a comparative study that examined brain morphology and communication behaviors 

across a group of six bird species by studying the relationship between the volume of song 

control brain regions and song repertoire size, but the data in this study were not analyzed in a 

phylogenetic context. Thus, the present study is one of the first to directly consider the 

hypothesis that communication behaviors have evolved in association with brain morphologies 

using phylogenetically informed statistics. 

In this introduction, I first review the modes of communication, behaviors involved in 

lizard communication, and the role of the brain in communication before I describe the 

hypotheses tested in the present study.  

 

Modes of communication 

The method by which an animal sends a message to another individual can be just as 

important as the information that is included within the signal. Sensory drive (e.g., Endler and 

McLellan, 1988) predicts that natural selection promotes the evolution of a signal that will be 

most easily detectable in the habitat in which it is used. For example, Leal and Fleishman (2004) 
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found that throat fans of the lizard Anolis cristatellus vary in color between populations to allow 

for higher visibility in either mesic or xeric environments.  

Visual communication requires the combination of light from the environment and 

photoreceptors (specialized neurons capable of detecting light) in the receiver to relay messages 

from a sender to a receiver. There are two types of photoreceptors that characterize the categories 

of animal vision: rods and cones. Rods are used to perceive brightness and work well in dimly lit 

environments, while cones are used to detect certain wavelengths of light (ultraviolet, short, 

medium, and long wavelength). Animals that have only rod photoreceptors, such as nocturnal 

monkeys in the genus Aotus (Jacobs et al., 1993), have monochromatic vision, in which they can 

only perceive brightness (and so cannot distinguish among colors). Dichromatic vision occurs 

where there are two types of functioning color receptors (cones) in the eye, and is characteristic 

of most placental mammals (Bowmaker, 1998), with the exception of primates, who exhibit 

trichromatic vision, in which there are three types of cone cells (Osorio and Vorobyev, 2008). 

Finally, animals that possess four types of cones, such as birds, possess tetrachromatic vision 

(Bowmaker, 1980). Tetrachromatic vision allows for detection of light whose wavelength is in 

the ultraviolet part of the spectrum. Similarly to birds, many species of lizards are known to see 

in the ultraviolet spectrum, including some species of anoles, iguanians, and geckos (reviewed in 

Stoehr and McGraw, 2001).  

The evolution of vision, and color vision in particular, has been long associated with the 

evolution of large or elaborately colored animal morphologies that are used to communicate 

messages to other organisms. Darwin (1871) hypothesized that extreme sexual dimorphisms, 

such as the coloration and morphology of bird plumage, evolved for communication in 

competition and/or mate choice. In competition, these morphological traits are assessed visually 
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to size up a potential mate or rival, such as in roe deer, Capreolus capreolus, where an individual 

can determine his size relative to his opponent’s by assessing the size of his opponent’s antlers 

(Vanpé et al., 2007), or in the paper wasp, Polistes dominulus, where an individual’s agonistic 

behavior can be predicted by facial coloration patterns (Tibbets and Izzo, 2010). Additionally, 

females can use these visual characteristics to choose a mate. In three-spined stickleback fish, 

Gasterosteus aculeatus, for example, females are able to assess male quality by the intensity of a 

male’s red abdominal patch. Those individuals that are more highly parasitized and are lower in 

body condition have less intense red abdominal patches and therefore are selected for copulation 

by females less often than males of higher condition, which in turn possess a more intense red 

abdominal patch (Milinski and Bakker, 1990). Since the vast majority of animals have eyes used 

to assess visual stimuli, visual signals have evolved to convey a wealth of information about an 

individual to both conspecifics and heterospecifics. 

Chemical communication, which is widespread throughout animal taxa and is the oldest 

form of communication (Steiger et al., 2011), occurs when an individual uses pheromones to 

convey information to others. Pheromones are species-specific chemical signals (Karlson and 

Lüscher, 1959) that can be described as either primers or releasers (Wilson and Bossert, 1963). A 

primer is a pheromone that causes something to happen gradually over time, including over the 

course of an individual’s development. In honeybees, a primer pheromone is crucial for the 

division of labor among individuals in a nest, such that ‘brood pheromone’ (a collective term for 

a mixture of ten fatty-acid esters on honeybee larvae) regulates behavioral development and the 

transition from a nurse bee to a foraging bee (Le Conte et al., 2001). A releaser, on the other 

hand, is a pheromone that causes an immediate behavioral response. In the masu salmon, 

Oncorhynchus masou, a releaser pheromone is secreted in the urine of ovulating females, which 
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causes downstream males to turn and swim against the current so that they can find these 

receptive females (Yambem et al., 1999). As such, chemical communication can produce a very 

localized message, which can tell conspecifics detailed information about a given location. 

Morphologies that allow for chemical communication can be quite specialized. For 

instance, organisms must have some way to secrete their pheromones, and in many cases, 

pheromones are released in the same manner as excrement, such as via urine, or even with fecal 

excreta (e.g., Brennan, 2010). But some organisms have special secretory glands for pheromone 

release, such as the femoral pores that are found on the hindlimbs of some species of lizards 

(e.g., Martín and López, 2000). Specialized structures are also required to detect chemical 

signals. The vomeronasal organ (VNO), also known as the Jacobson’s organ, is a chemosensory 

organ separated from the nasal cavity and is found many taxa, including amphibians, mammals, 

and reptiles (Stoddart, 1980; Keverne, 1999). The VNO has distinct odorant receptors, and 

innervates a network of neurons that travel through the brain (Keverne, 1999).  

Auditory communication is a modality that relies on the transfer of sound waves from 

sender to receiver. Organisms can produce sounds in multiple ways. For example, many birds 

can produce calls (single note vocalizations), and most passerine birds produce songs (elaborate 

vocalizations used to attract mates or defend territories), that are highly stereotyped and are often 

learned during a distinct developmental period (Marler and Mundinger, 1971). Song production 

in birds is dependent on syringeal muscles that control the syrinx, the vocal producing organ 

(Larsen and Goller, 2002). But, auditory communication does not have to rely on vocal 

performances exclusively, as external parts of the body can produce sound in some species. For 

example, the sage grouse, Centrocercus urophasianus, is a lek breeding bird species whose 

males use a characteristic strut with stereotyped visual and auditory components that is used to 
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attract mates (Wiley, 1973; Gibson, 1996). The auditory part of the strut is caused by the 

inflation of two esophageal sacs that are lifted and then dropped at the same time that the bird’s 

wings are moving (Wiley, 1973). Since auditory communication uses sound waves, messages 

can travel far and be picked up by multiple receivers. But, these messages are difficult to direct 

to specific receivers, and therefore can be costly, particularly if it allows a predator to hone in on 

where the sender is located. Auditory messages are less constrained by the environment than 

other modalities, such that they are not completely blocked by physical barriers like visual 

modalities, which require a clear line of sight. They can be modified in different environments to 

circumvent an obstacle, such as changing the pitch of a call in a dense forest to allow the sound 

waves to cut through the foliage.  

Tactile communication is the fourth major type of communication and uses the sense of 

touch. It requires very little morphological complexity, such that organs specialized for other 

tasks can still be used in tactile communication, but it also has low range of transmission because 

information must be passed on directly (i.e., physically) from a sender to the receiver. For 

example, in Indian langurs, Presbytis entellus, touch is used to show intimacy and familiarity 

with another individual and to build social bonds that can be critical for survival in a group 

setting (Weber, 1973). In many species, tactile communication can also be manifested in the 

form of physical combat. 

It is well understood that specific areas of the brain control certain types of sensory 

perception. Indeed, each communication modality uses a unique sensory network (i.e., in visual 

communication the visual system is used and in auditory communication the auditory system is 

used). For example, in macaque monkeys, lesions that cause inactivation of the lateral geniculate 

nucleus (LGN), a region of the brain involved in processing visual information (De Valois et al., 
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1965), led to a lack of behavioral responses when the monkeys were presented with visual 

stimuli (Schmid et al., 2010). Although there is a clear relationship between brain morphology 

and communication modalities, little research has investigated how variation in the cellular 

morphologies of these regions are associated with the degree of usage of a particular modality. 

To accomplish such a study, researchers would need a group of species with variable 

communication modalities, as well as one where the behaviors associated with communication 

are easily quantifiable, and tools to assess variation in brain morphology are available. Lizards 

make an excellent system for such a study because of their diversity in communication 

behaviors, particularly using visual and chemical modalities, and the availability of lizard brain 

atlases (e.g., Northcutt and Butler, 1974; Greenberg, 1982). Also, because the frequency of use 

of a modality can vary between species of lizards, studies using a phylogenetically diverse 

sampling can provide the opportunity to test for evolutionary relationships between the 

frequency of communication behaviors and development of the associated brain regions.  

 

Lizard communication 

Lizards are a diverse taxonomic group, comprised of 5907 species in 36 families (The 

Reptile Database; http://www.reptile-database.org). Most of the major variation in lizard 

communication modality occurs among families, although species within families often vary 

substantially in the frequency with which different communication modalities are used. Visual 

displays are particularly common in many lizard taxa. For example, head-bob and push-up 

displays (i.e., the raising and lowering of the head and trunk of the animal in a stereotypical 

fashion) are visual displays seen in many lizard families, including Iguanidae, Polychrotidae, 

Phrynosomatidae, and Leiocephalidae (Martins, 1993a; Ord and Stamps, 2008). Traditionally, 
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head-bobs and push-ups are categorized as assertion or challenge displays, but head-bobs can be 

used to communicate disparate messages. For example, Nava et al. (2012) showed that in the 

fence lizard Sceloporus undulatus, males use relatively slow head-bobs as a sign of aggression, 

while relatively fast head-bobs are used in courtship displays.  

Additionally, there are several groups of lizards that use a dewlap, a conspicuous throat 

fan extended by the bowing of the ceratobranchial cartilage (Bels, 1990), in their visual display 

behaviors. Although the most studied lizards that possess a dewlap are those in the speciose 

genus Anolis, (Nicholson et al., 2005), other genera are known to use the throat fan as a signal as 

well, including Urosaurus (Hover, 1985; Thompson and Moore, 1991), and Sitana (e.g. Patankar 

et al., 2013). An individual’s dewlap can function in signaling information about its size, sex, 

and condition (Williams and Rand, 1977; Vanhooydonck et al., 2005; Cook et al. 2013). 

Moreover, Ord (2012) showed that in order to compensate for visual noise (i.e., foliage that 

blocks or distracts from the signal due to wind), some species of anoles, such as Anolis 

cristatellus, can alter how fast they perform head-bob and dewlap displays. This flexible 

signaling behavior allows the signal that they are intending to send to be visible through the 

environmental noise.  

Another component of visual display common across lizards involves movements of the 

tail. The zebra-tailed lizard, Callisaurus dranconoides, constantly moves its tail, with one use of 

the tail curling being as an anti-predator, pursuit deterrent signal (Hasson et al., 1989). Similarly, 

the Mediterranean house gecko, Hemidactylus turcicus (Selcer, 1986) and the curly tail lizard, 

Leiocephalus carinatus (Cooper, 2001) use tail wags to attract a potential predator’s attention 

away from their bodies, and if the tail is then attacked by the predator, the lizards can easily 
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autotomize their tails to escape. Tail wagging in geckos can also be used as social displays (e.g., 

Regalado, 2003; Briggs, 2012).  

The aforementioned visual displays are often accompanied by species-specific displays 

that can be used to modify the information in a display. For example, when anoles are locked in 

an antagonistic interaction, males take on a posture higher from their perch, they develop dark 

spots behind their eyes, and they develop raised nuchal and dorsal crests (Losos, 2009). 

Similarly, Martins (1993b) suggests that head bobs in Sceloporus spp. can convey different 

information depending on the shape (jaggedness) and number of head bobs.  

Chemical communication in lizards is also quite prevalent. Many species of lizards can 

be seen flicking their tongues in a manner that is very much like the stereotypical behaviors of 

snakes. This behavior is used to bring pheromone molecules into contact with the VNO, as 

described above. Male desert iguanas, Dipsosaurus dorsalis, flick their tongues at a baseline rate 

of about 1.02 licks per minute to locate food, conspecifics, and nesting burrows (Krekorian, 

1989). Even in the highly visual collared lizard, Crotaphytus collaris, individuals may use 

chemical cues to detect if a fecal pellet belongs to a conspecific (Wilgers and Horne, 2009).  

Pheromones can send more complex messages as well. Cooper and Pèrez-Mellado (2002) 

showed that the lacertid lizard Podarcis hispanica can not only discriminate sex by using 

pheromones, but can also determine whether or not a female conspecific is gravid or receptive to 

copulation. Additionally, male and female ground skinks (Scincella lateralis) avoid areas where 

they detected pheromones of another male (Duvall et al., 1980), which could indicate that 

pheromones are used to define territorial boundaries.  

Despite pheromones being an important method of communication for many lizards, 

some species use them very little, or not at all. In the green anole, Anolis carolinensis, Jenssen et 
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al. (1995) reported that substrate licks occur relatively rarely (about once per hour). 

Consequently, Jenssen et al. (1995) concluded that pheromone use is likely not used as a means 

for social communication in this species, which is supported by the fact that they have a highly 

underdeveloped VNO (Crews and Greenberg, 1981).  

Although some lizards communicate with auditory and tactile modalities, these strategies 

are uncommon, and so they are not a focus of this study.  

 

Brain in communication 

 Compared to other vertebrate taxa, we know relatively little about the neural mechanisms 

that influence lizard communication. However, regions in the Social Behavior Network – the 

medial amygdala, lateral septum, preoptic area, anterior hypothalamus, ventromedial 

hypothalamus, and periaqueductal gray of the midbrain (Newman, 1999) – have homologues in 

most vertebrates (Goodson, 2005), and some of these have known functions in lizard 

reproductive behaviors, particularly in the visual displays used in courtship and aggression 

(reviewed in Wade, 2005). In the green anole, the preoptic area (POA), part of the social 

behavior network described above, has been experimentally shown to control both copulatory 

and antagonistic display behaviors. When the POA is bilaterally ablated, these behaviors cease to 

occur (Wheeler and Crews, 1978). This effect was also shown in a whiptail lizard, 

Cnemidophorus inornatus, in which individuals with lesions to the POA showed decreased 

courtship and copulatory behaviors (Kingston and Crews, 1994). Additionally, Greenberg et al. 

(1984) highlighted the role of the ventromedial hypothalamus (VMH) and the paleostriatum (PS) 

in courtship and challenge displays of the green anole. When the VMH of male anoles were 

lesioned, courtship displays were almost eliminated and challenge displays were unaffected, 
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while individuals with lesions to the PS showed a decrease in challenge displays with courtship 

displays being unaffected (Greenberg et al., 1984).   

 Outside of the Social Behavior Network, there are other regions that are known to play 

some role in receiving and processing signals. For visual signals, the optic tectum (OT) (e.g., 

Foster and Hall, 1975), LGN (e.g., Ulinski, 1977), and nucleus rotundus (Hoogland, 1982) 

receive retinal projections and send these messages to other parts of the brain. Additionally, there 

are many motor nuclei, such as the accessory oculomotor nucleus, the trochlear nucleus, and the 

principal abducens nucleus that control muscles around the eye (Barbas-Henry and Lohman, 

1988). For chemical signals, the VNO sends signals to the nucleus sphericus of the amygdala 

(NS), which is known to have chemosensory functions (Bruce, 2009). Furthermore, pheromone 

molecules are brought into contact with the VNO after they are picked up by the tongue, whose 

movement is controlled by the hypoglossal nucleus (Barnard, 1940).  

 

Study system 

In this study, I examined the neural morphology in four brain regions associated with 

communication using six species of lizards (Figure 1), each of which belongs to a different 

taxonomic family. Of these six species, two communicate primarily using visual signals: the 

green anole and the curly tail lizard. The green anole, Anolis carolinensis (Family: Dactyloidae), 

possesses a brightly colored dewlap that is extended and paired with pushup and head-bob 

displays to visually communicate to potential mates, rivals, and predators (Jenssen, 1977). The 

curly tail lizard, Leiocephalus carinatus (Family: Leiocephalidae), also communicates visually, 

by performing pushup and head-bob displays and by curling their tail (Evans, 1953). Two other 

species in this study communicate primarily using chemical signals. The spotted whiptail, 
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Aspidoscelis gularis (Family: Teiidae) and little brown skink, Scincella lateralis (Family: 

Scincidae), primarily communicate using pheromones. Pheromones are secreted from femoral 

pores located on the hindlimbs in the spotted whiptail and from the cloaca in the little brown 

skink (Duvall et al., 1980; Alberts et al., 1992). The final two species in this study use both 

chemical and visual modalities. The Texas spiny lizard, Sceloporus olivaceus (Family: 

Phrynosomatidae), performs pushups, dorsoventral flattening (which shows off its bright blue 

bellies), and secretes pheromones from femoral pores on the hindlimbs (Bissinger and Simon, 

1981; Roggenbuck and Jenssen, 1986). The Mediterranean house gecko, Hemidactylus turcicus 

(Family: Gekkonidae), performs tail wags, arches its back, secretes pheromones, and performs 

auditory clicking sounds (though auditory communication was not included in this study) 

(Regalado, 2003).  

I investigated four brain regions associated with the visual and chemical communication 

modalities in these six species of lizards. I tested the hypothesis that lizards have evolved brain 

morphologies associated with their primary modes of communication that are more highly 

developed than regions associated with modes rarely used. In particular, I predicted that species 

that communicate using predominantly visuals cues will have larger, denser neurons in the OT, 

which is important in visual integration and spatial attention (Newman and Hartline, 1981), and 

in the LGN, which receives visual information from the retina (Ulinski, 1977). I predicted that 

lizard species that communicate using pheromones will have larger, more densely packed 

neurons in the NS, which is correlated with chemosensory function (Bruce, 2009) and is 

projected to almost exclusively from the accessory olfactory bulb, a projection of the VNO. 

Thirdly, I predicted that lizards that use both visual and chemical communication will have 

enlarged neuron soma size and enhanced neuron density in all three of these brain regions. I also 
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examined neuron size and density in the preoptic area (POA). Since this region is part of the 

Social Behavior Network, which is important in controlling social behaviors in general, I 

predicted that species with higher overall rates of display (i.e., more frequent visual and chemical 

behaviors) will have larger, more densely packed neurons than species with lower rates of 

display. I used both standard and phylogenetically informed statistical methods to test whether 

brain morphologies have evolved convergently in species that use similar modalities.  
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Materials and Methods 

Study Species 

To determine relationships between communication modalities and brain morphology, I 

performed behavioral observations and captured adult males from each of five lizard species (see 

below) in south-central Texas from May to August of 2012 and May to August 2013, and one 

species, the curly tail (Leiocephalus carinatus) in natural areas around Crooked Island Bahamas 

in July 2013. In Texas, I studied green anoles (A. carolinensis) in Palmetto State Park in 

Gonzales, Texas, in natural areas near San Antonio, Texas, and on the campus of Trinity 

University in San Antonio, Texas; house geckos (H. turcicus) in Palmetto State Park in 

Gonzales, Texas, and on the campus of Trinity University in San Antonio, Texas; spotted 

whiptails (A. gularis) and spiny lizards (S. olivaceus) on private properties in Bastrop, Bexar, 

Comal, Hays, and Travis counties in Texas. Little brown skinks (S. lateralis) were collected from 

Brazos Bend State Park in Needville, Texas, and observed at Trinity University, as described 

below.  

 

Behavioral observations  

I performed 10-60 min focal observations in the field on individual males for each 

species, except for skinks (described below), recording the occurrence of communication 

behaviors for each individual. Chemical communication behaviors included rubbing the 

hindlimbs or cloaca on the substrate (indicators that an individual is spreading femoral pore or 

fecal secretions), and licking the air or substrate tasting for pheromones; visual communication 

behaviors included dewlap extensions, push ups, dorsoventral flattening, or tail curls. In total, I 

collected 122.6 hours of behavioral data (Table 1).  
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Adult male lizards were located for observation by scanning the ground (for little brown 

skinks, spotted whiptails, and curly tails), trees (green anoles and spiny lizards), and buildings 

(Mediterranean house geckos). Because not all observed individuals could be captured, 

whenever possible, I identified the sex of each lizard from a distance. I visually identified the sex 

of green anoles, spiny lizards, and spotted whiptails by their size and secondary sex 

characteristics. Adult male green anoles are generally substantially larger than females, and 

males have a significantly larger dewlap. Male spiny lizards were distinguished by the bright 

blue coloration on the lateral parts of their bellies, as females of this species have white belly 

coloration. If a green anole or spiny lizard was captured after an observation, I examined it for 

enlarged post-anal scales, the presence of which further confirmed that an individual was male. 

Whiptails are sexually dichromatic, such that males have blue-black ventral coloration while 

females possess a white, unmarked belly. For curly tails, geckos, and skinks, there were no 

sexually dimorphic characteristics that could be consistently identified in the field prior to 

capture. Schoener et al. (1982) found that the snout-vent length (SVL) of male L. carinatus 

punctatus, the curly tail subspecies that inhabits Crooked Island, Bahamas, differed from female 

SVL by approximately 1 cm, a difference insufficient to accurately determine the sex of an 

individual in the field. House geckos are sexually dimorphic in head size (Johnson et al. 2005), 

but mean differences in head depth, length, and width between the sexes were each within 1 mm 

of each other. Therefore, after observations of these three species, it was necessary to capture the 

focal individuals to determine sex. In curly tails, I visually checked for the presence of 

hemipenes by eversion and in geckos, for the presence of bugles caudal to the cloacal vent, 

which indicated the presence of hemipenes (hemipene eversion was not performed on geckos 

because the tail is easily autotomized and I did not wish to stress an individual any more than 
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necessary). Because I was unable to differentiate between male and female skinks on the basis of 

external characteristics, sex was determined by dissection after sacrificing the animal.  

Because of the complex structural niche that little brown skinks occupy (they are 

primarily found under leaf litter on the ground), undisturbed skink behavior is extremely difficult 

to observe in the field. Therefore, I captured little brown skinks and observed their behavior in 

captive semi-natural conditions. These captured skinks were put into shallow plastic pools (93 

cm diameter, 21 cm deep, Summer Escapes™) with leaf litter covering the bottom 1 cm of the 

pool. Because both male and female little brown skinks avoid areas where other male odors are 

sensed (Duvall et al., 1980), I wiped the pool with 100% ethanol and replaced the leaf litter 

between trials to ensure an individual’s behavior was not influenced by the presence of a skink in 

a previous trial.  Each skink was observed for two 60 min trials. 

 For the other five species in the study, 8-10 male lizards for each species (Table 1) were 

captured by hand or by noose after observations were complete, and their sex was confirmed as 

described above. I then transported lizards to Trinity University for temporary housing, 

following recommendations for lizard care described in Sanger et al. (2008). In brief, animals 

were housed in individual cages with a perch (or for geckos, a refuge), and every other day, fed 

2-3 crickets coated in calcium powder. Cages were misted with water several times daily to 

provide drinking water and increase the humidity in the cage. The light cycle was set to 13 h 

light/ 11 h dark to simulate the natural summer environment.   

 

Morphological and brain measurements 

I measured snout-vent length (SVL) of each lizard to the nearest 0.5 mm using a ruler, 

and weighed every individual to the nearest 0.1 g using a Pesola scale. Lizards were then 
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euthanized via rapid decapitation and brain tissues were collected immediately. Brains were 

flash-frozen in cold isopentane (4-methylbutane) on dry ice, and stored at -80˚C until they were 

sectioned. All procedures were approved by Trinity University’s Animal Research Committee. 

  The brain of each lizard was coronally sectioned using a Leica cryostat at 20 µm in four 

alternate series, and sections were thaw-mounted onto SuperFrost Plus (Fisher Scientific; 

Hampton, NH) microscope slides. Sections were stored at -80˚C until further processing. 

Alternate slide series (i.e., those containing sections at 40 µm intervals) were dehydrated, cleared 

with xylene, and stained using thionin, which stains the Nissl bodies of golgi in neurons. Slides 

were coded so that species could not be identified during measurement. I measured the cross-

sectional area of neuron somas (hereafter, soma size) and their density in LGN, OT, NS, and 

POA using a microscope at 400X magnification and the software programs FlashPoint FPG32 

and ImageJ. I quantified each individual’s average soma size in each region by measuring 20 

arbitrarily-chosen neurons within the middle of a region on each side of the brain and averaging 

these 40 measurements. Density was calculated by counting the number of neurons in a 167 µm 

X 125 µm area, using the same sections from which the soma size measurements were taken. To 

see if lizards with larger brains inherently had larger neurons, I measured the length of the third 

ventricle, which served as a proxy for brain size.  

 

Statistical analyses 

 To determine whether lizards with larger brains had larger neurons, I used linear 

regression analysis. There was no significant relationship between the length of the third 

ventricle and soma size in the LGN (F1,32 = 0.87, R2 = 0.036, p = 0.36), OT (F1,32 = 0.051, R2 = 

0.002, p = 0.82), NS (F1,29 = 2.84, R2 = 0.089, p = 0.10), or POA (F1,29 = 2.40, R2 = 0.088, p = 
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0.13). Therefore, all analyses for these brain regions were performed using non-size corrected 

data. To test for differences in soma size and density between species, I used ANOVA, followed 

by Tukey’s HSD post hoc tests. 

For each behavioral observation, I calculated the percentage of total communication 

displays that each individual used in visual communication, and the percentage that were used in 

chemical communication. I also calculated the rate of visual behavior, the rate of chemical 

behaviors, and the overall display rate for each individual, with each rate defined as the number 

of displays per minute. Percentage data were arcsine transformed to meet the assumptions of 

normality (Sokal and Rohlf, 1995). Each measure of individual lizard data was then averaged for 

each species. Using SPSS 21, I used an ANOVA with Tukey’s HSD post hoc tests to test for 

differences between species in their rates of visual and chemical displays, with separate analyses 

for each modality. Using R, I used a series of linear regression to test for relationships between 

percent of visual displays and soma size and density in the LGN and the OT, as well as the 

percent of chemical displays and NS soma size and density. Using a molecular phylogeny of 

lizard taxa constructed using up to 44 nuclear genes (33,717 base pairs) from Wiens et al. (2012), 

pruned to include only the species in this study (Figure 2), I then calculated phylogenetic 

independent contrasts (Felsenstein, 1985) in R using the ape package (Paradis et al., 2004), and 

performed linear regression using contrasts for percent of visual displays against contrasts for 

LGN soma size and density, as well as OT soma size and density. Similarly, I performed a linear 

regression using the contrasts for percent of chemical displays against contrasts for NS soma size 

and density. Finally, I performed a linear regression using contrasts for overall display rate and 

POA soma size and density. All regressions using independent contrasts were forced through the 
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origin. Because the hypotheses tested in this study were directional in nature, all regression 

analyses were one-tailed. 
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Results 

Behavior  

 Species differed in the percentage of visual displays used (F5,200 = 282.78, p < 0.001), 

such that anoles and curly tails used visual displays more than all other species, followed by 

spiny lizards, then house geckos, and finally whiptails and skinks (Figure 3). They differed in the 

rate of visual displays (F5,269 = 32.57, p < 0.001; Figure 4), such that anoles had a higher rate of 

visual display than all other species. The six species also differed in chemical display rates (F5,269 

= 45.84, p < 0.001; Figure 5), such that whiptails had a higher rate of chemical display than 

skinks, which had a higher rate of chemical display than the other four species.  

 

Brain morphology 

The soma size of the LGN (F5,48 = 24.22, p < 0.001), OT (F5,50 = 5.97, p < 0.001), NS 

(F5,42 = 15.27, p < 0.001), and POA (F5,60 = 7.52, p < 0.001) differed between species (Figure 6). 

Tukey’s post hoc tests showed that the soma size of the LGN was largest in curly tails and spiny 

lizards. Curly tail LGN soma size was significantly larger than all species except for spiny 

lizards. Spiny lizards did not differ in LGN soma size from curly tails, whiptails, or anoles, but 

were larger than geckos and skinks. Whiptails did not differ in LGN soma size from spiny 

lizards, anoles, or geckos, but were larger than skinks. Geckos did not differ from anoles or 

whiptails, but were larger than skinks (Figure 6a). For the OT, geckos, spiny lizards, curly tails, 

and skinks had the largest soma size. Geckos had larger somas than whiptails and anoles while 

spiny lizards had larger somas than anoles (Figure 6a). Whiptails, spiny lizards, and skinks had 

the largest soma size in the NS (Figure 6b). Whiptails had larger somas than geckos, curly tails, 

and anoles. Spiny lizards and skinks had larger somas than curly tails and anoles. Geckos had 
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larger somas than anoles. In the POA (Figure 6c), curly tails, geckos, whiptails, and curly tails 

had significantly larger soma than those in skinks and anoles.  

 The six species also differed in soma density in the four regions (LGN: F5,38 = 10.15, p < 

0.001; OT: F5,38 = 11.38, p < 0.001; NS: F5,40 = 5.23, p = 0.001; and POA: F5,59 = 86.71, p < 

0.001; Figure 7). Tukey’s post hoc tests showed that anoles, geckos, and skinks had the densest 

LGN. Anoles had a denser LGN than spiny lizards, whiptails, and curly tails while geckos had a 

denser LGN than curly tails (Figure 7a). For the OT, whiptail somas were significantly less 

dense than all other species (Figure 7a). Skinks, geckos, and whiptails had a significantly denser 

NS than anoles (Figure 7b). Finally, skinks and geckos had the densest POA, followed by spiny 

lizards and curly tails, then by whiptails, and finally anoles (Figure 7c).  

 

Brain and behavior 

The soma size of the NS was positively related to the arcsine transformed percent of 

chemical displays (standard linear regression: F1,4 = 7.06, R2 = 0.64, p = 0.029, regression with 

independent contrasts: F1,3 = 3.88, R2 = 0.49, p = 0.060), such that species with larger soma sizes 

in the NS used chemical communication at a higher percentage than those with smaller soma 

(Figure 8). There was a significant relationship between the density of the LGN and total number 

of visual displays per minute (Figure 9), such that species that have a denser LGN perform 

higher rates of visual displays (standard linear regression: F 1,4 = 3.88, R2 = 0.49, p = 0.060, 

regression with independent contrasts: F 1,3 = 4.84, R2 = 0.55, p = 0.046). There were no other 

significant relationships between soma size or density and behavior (Table 2).   
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Discussion 

In this study of the evolution of visual and chemical communication modalities and brain 

regions associated with these modalities, I found support for the general hypothesis that brain 

regions that are used more frequently by a given species have larger or denser neurons than in 

species that use the region infrequently. One brain region for each communication modality had 

some type of morphological relationship (i.e., either larger somas or a higher density of somas) 

with the modality that I hypothesized would be relevant. These results are consistent with the 

conclusions of Wade (2011), which reviewed the relationships between brain morphology and 

behavior in lizards and showed that neurons in areas that are used more frequently are larger or 

denser, with no study finding that neurons in a highly used region were both larger and denser. 

My study has shown a significant association between visual communication and density 

of neurons in the LGN in a phylogenetic context. Interspecific variation in neuron density in this 

region predicts overall rate of visual displays for a species. Additionally, the phylogenetic 

relationship of these results suggests that the repeated evolution of visual communication as a 

primary modality is associated with the evolution of LGN morphology. Since the LGN projects 

from the retina (the source of visual information) to other brain regions (Aboitiz and Montiel, 

2007), having more neurons packed into the region may allow for signals to be sent efficiently to 

multiple areas of the brain, or for signals to be sent to these regions with variable intensities (i.e., 

sending a weak signal with fewer neurons versus sending a strong signal with many neurons), 

which could result in more nuanced behavioral responses.  

Conversely, I found no relationship between communication modalities and either soma 

size or density in the OT. Since the OT is important in receiving retinal projections and sending 

information to other brain regions (Foster and Hall, 1975) and allowing individuals to orient 
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themselves in response to visual cues (Newman and Hartline, 1981), its function may be too 

diverse to explain its morphology by relating it to one behavioral type, such as communication. 

For example, behaviors as fundamental as finding an appropriately sized perch on which to sit so 

that the individual does not fall off of it require the spatial integration function of the OT. 

Additionally, integration of visual information and subsequent orientation to external stimuli 

could be important for capturing moving prey or interacting with an antagonist or potential mate. 

Since all of these species’ diets consist of live prey (although curly tails are partially 

herbivorous), they must be able to react to their prey item when it is moving through its 

environment. Territorial behavior also requires spatial orientation, as it requires lizards to keep 

competing males out of their territory, so they must be able to recognize the location of their 

territorial boundaries and where a competing conspecific is in reference to those boundaries. 

Furthermore, even when mates can be found using modalities other than vision (that is, in some 

species chemical signals can lead an individual to a potential mate), proper orientation in 

reference to a mate is necessary for copulation to occur. Overall, the important functions of the 

OT may explain why soma size or density is not a predictor of visual communication behaviors. 

I have also shown that there is a significant relationship between chemical 

communication and the soma size of the NS in a phylogenetic context. Species that communicate 

with a higher proportion of chemical displays have larger somas than those with a higher 

proportion of visual displays, and mapping the use of chemical displays on a phylogeny suggests 

that this relationship has evolved multiple times. The NS is a secondary projection of the VNO 

(Halpern, 1987), so species that use the VNO frequently (i.e., those that use pheromones to 

communicate) would use the NS more. Larger neurons in the NS may be able to receive more 

axonal connections from regions projecting to it, so each neuron would receive more information 
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that it then sends to other regions. Action potentials require energy (Attwell and Laughlin, 2001), 

which is produced by mitochondria (Kann and Kovacs, 2007). Neurons that fire more frequently 

may need more mitochondria to allow them a higher energy budget, leading to a larger soma 

size.  

Finally, I found no relationship between neuron size and density of the POA and overall 

communication behavior. The POA is part of the Social Behavior Network (Newman, 1999) in 

mammals, birds, fish, and amphibians (Goodson, 2005). Since the Social Behavior Network is 

comprised of the same brain regions or homologues of these throughout all vertebrates, it stands 

to reason that its function is very important for helping an individual to survive and/or reproduce. 

The POA is known to play two important functions in reptiles, controlling copulation and 

agonistic behaviors (Wheeler and Crews, 1978). Since these behaviors are important for 

guarding territory and acquiring mates, it makes sense that these behaviors and their underlying 

mechanisms would be not necessarily show a direct relationship with communication, since that 

is only one aspect of social interactions.  

Although the structure/function relationship of brain morphology and behavior has 

interested researchers for years, studies investigating this relationship within a phylogenetic 

context remain quite rare. Brenowitz (1997) is a unique study in that it compared brain 

morphology and behavior across several species. This study investigated soma size, volume, and 

number of neurons of brain regions related to song control in six species of birds that differ in 

their song repertoire size, but the data in this study were not statistically analyzed with a 

phylogenetic approach. To the best of my knowledge, my study is the first of its kind to look at 

the relationship between neural morphology and communication behaviors in a phylogenetic 

context. My finding that neurons in brain regions that are used more often are composed of either 
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larger or denser neurons is one that is consistent across taxa, and thus provides support for the 

generality of this structure/function relationship. By using explicit evolutionary frameworks in 

studies of neural morphology, we will be able to more broadly understand the evolutionary 

relationship between brain and behavior.  
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Tables 
 
Table 1. Total hours of behavioral observation per species (Total Obs Time), average 
observation time per lizard (± SE), and number of brains collected per species.  
 

Species Total Obs Time (h) Average Obs Time 
per Individual (min) 

Number of Brains 
Collected 

Green Anole 33.1 25.1 ± 7.0 10 

Texas Spiny Lizard 19.6 40.6 ± 16.9 10 

House Gecko 21.9 20.6 ± 9.1 10 

Spotted Whiptail 18.7 26.0 ± 13.1 10 

Curly Tail Lizard 

Little Brown Skink  

20.3 

9.0 

35.8 ± 18.1 

60.0 ± 0.0 

10 

8 
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Table 2. Results of relationships between brain morphology and communication modalities. 

Communication 
type 

Brain 
morphology F R2 p 

Percent chemical 
communication NS soma size 7.06 0.64 0.03 

Visual display 
rate LGN density 3.88 0.49 0.06 

Visual display 
rate LGN soma size <0.01 <0.01 0.99 

Percent visual 
display LGN soma size <0.01 <0.01 0.94 

Percent visual 
display OT soma size 3.87 0.49 0.12 

Chemical display 
rate NS density 0.14 0.03 0.73 

Percent chemical 
communication NS density 0.14 0.03 0.73 

Total display rate POA soma size 1.08 0.21 0.36 
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Figures 
 
Figure 1. Six lizard species used in this study. A) Anolis carolinensis, green anole; B) 
Sceloporus olivaceus, Texas spiny lizard; C) Aspidoscelis gularis, spotted whiptail; D) 
Leiocephalus carinatus, curly tail lizard; E) Hemidactylus turcicus, Mediterranean house gecko; 
and F) Scincella lateralis, little brown skink. Photographs A-D and F were taken by Michele 
Johnson; photograph E was taken by Tom Brennan.  
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Figure 2. Phylogenetic relationship of species included in this study, pruned from tree in Wiens 
et al. (2012).   
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Figure 3. Communication behaviors of the six focal lizard species of this study. Curly tails and 
anoles use a higher percentage of visual communication than all other species, while whiptails 
and skinks use the highest percentage of chemical communication. Black represents visual 
communication, grey represents chemical communication. 
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Figure 4. Average visual display rate per minute (±1 SE). Anoles perform visual displays at a 
higher rate than all other species.  
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Figure 5. Average chemical display rate per minute (±1 SE). Whiptails display chemical 
behaviors at a higher rate than all other species, while skinks display chemical behaviors more 
than geckos, spiny lizards, anoles, and curly tails.  
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Figure 6. Average soma size (± SE) of a) the lateral geniculate nucleus and optic tectum, b) the 
nucleus sphericus, and c) the preoptic area.  
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Figure 7. Average density (± SE) of a) the lateral geniculate nucleus and optic tectum, b) the 
nucleus sphericus, and c) the preoptic area. 
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Figure 8. a) Average soma size (± SE) of the nucleus sphericus for each species plotted against 
the arcsine transformed percent chemical display (± SE). b) Contrasts of NS soma size plotted 
against the contrasts of the arcsine transformed percent chemical display, with regression line 
forced through the origin. Contrast data were calculated using phylogeny in Figure 2 and 
positivized for graphical visualization.  
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Figure 9. a) Average density (±SE) of the lateral geniculate nucleus for each species plotted 
against the rate of visual display (±SE). b) Contrasts of LGN soma density plotted against the 
arcsine transformed percent chemical display, with regression line forced through the origin. 
Contrast data were calculated using the phylogeny in Figure 2 and positivized for graphical 
visualization.  
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