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ABSTRACT: The motivation for this project was to minimize the injury and fatality rate of loggers 

across the world due to inclement weather, structurally unsound tress, and bulky equipment used to trim 

trees by designing a robot with the ability to climb trees and trim branches.  Due to budget and time 

constraints, the scope of the project was limited to autonomously climbing and descending a tree trunk 

while avoiding branches; however, the possibility of future modifications was considered in the design.  

Design criteria included maneuverability, reversibility, simplicity, vertical speed, the ability to climb a 

tree of fixed diameter, and the ability to carry extra weight.  The final design was a “caterpillar”-style 

robot, and the major modular subsystems of the design included clamping, extension, rotation, and branch 

detection. The final design, construction, and testing of each of these subsystems is discussed, as well as 

the testing of the system as a whole.  Ultimately, the design was deemed a success, with the exception of 

the failure of the rotation system. 



Page 1 

 

1 Executive Summary 

The success of this project depended on the robot’s capacity to autonomously climb trees 

while detecting and maneuvering around branches.  Motivation for the project stemmed from an 

attempt to minimize injuries sustained by loggers due to traversing dangerous heights in 

structurally unsound trees and harnessing bulky equipment during possible inclement weather 

conditions such as wind and rain.  Limitations in budget and time constrained the project to be 

designed for a tree diameter of thirteen inches, and even though the diameter for this project 

yields no flexibility for the diversity a natural forest, it was felt that this project would provide 

motivation for future projects similar to the group’s tree climbing robot.  Other criteria included 

maneuverability around branches, the ability to reverse the direction of climbing, simplicity of 

design, vertical speed, and the ability to carry extra weight.  

The mechanical construction of the robot consisted of three unique subsystems.  First, a 

simple clamping system was devised using a linear actuator to lever the arms of each clamp, 

allowing the robot to grip the tree.  Next, the extension system incorporated another linear 

actuator with a different extension length and force than the clamping actuators that would 

extend and contract the two identical clamping subsystems.  Finally, a gear and chain system was 

implemented to rotate a tread and roller system on each clamp.  A motor, which coordinated with 

a controlling circuit and program, rotated through a gear box, which increased the torque to 

overcome the friction between the robot and the tree.  These treads conformed to the tree and 

allowed the entire robot body to roll around the tree trunk, while at the same time maintaining 

enough frictional force to stay attached to the tree. 

The electrical design met the criteria for an automated robot with the capacity to navigate 

the tree in both directions.  Control circuits applied voltages to the actuators and motors, 

allowing them to move autonomously.  Sonar detectors were placed on the top clamp of the 

robot, allowing for the detection of branches as the robot climbed the tree, as well as a real time 

map that allowed the robot to navigate the tree in reverse.  The rotation system’s motors also 

followed inputs provided by programming and circuits designed to rotate the robot when a 

branch impeded the upward and downward motion of the robot.  Finally, all circuits 

implemented communicated with a master computer which oversaw the delicate movements of 

the robot. 

Each subsystem was tested modularly as it was constructed, and then the subsystems 

were put together to form the robot.  The entire robot was then tested to ensure that it met the 

working criteria.  The testing showed that all of the subsystems except rotation worked properly, 

and the design was ultimately deemed successful.   
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5 Introduction 

The current logging industry requires loggers to trim branches off of large trees to 

prevent both wind damage to the trunks and fall damage when they are cut.  Motivation for this 

project stemmed from an attempt to minimize injuries sustained by loggers due to traversing 

dangerous heights in structurally unsound trees and harnessing bulky equipment during possible 

adverse weather conditions such as wind and rain.  Due to time and budget constraints, the scope 

of this project was limited to the development of an autonomous robot capable of scaling a tree 

and avoiding collisions with branches.  Ultimately, the purpose of the project was to design, 

build, and test a robot that was able to traverse a tree trunk to a height preset by the operator and 

then return to the ground, all the while maneuvering around obstacles in its path.  This robotic 

platform could then later be modified to accommodate various modifications, such as the 

addition of a saw, allowing it to perform tasks that currently put a human at risk of injury or even 

death. 

At the beginning of the design process, several criteria for success were identified. The 

robot needed to be agile enough to maneuver around branches, yet robust enough to support its 

own weight and an additional weight of 15 pounds.  This extra payload was incorporated to 

ensure that the design would be capable of accommodating future modifications.  The robot 

needed to be able to climb a tree of a fixed diameter at a reasonable speed, as well as reverse its 

climbing and maneuver back down the tree; if it were to climb to the top of a tree and not be able 

to get back down, a person would have to climb up after it, defeating the purpose of the robot.  

Due to the limited budget and timeline of the project, the design also needed to be as simple as 

possible, while still encompassing all of the goals.  The weighting of each of these criteria is 

shown in  
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Table 1. 

Table 1.  Weighted Working Criteria 

Working Criteria Weight (%) 

Maneuverability around branches 30 

Fairly simple design 20 

Climb fixed diameter trunk 15 

Reversible climbing 15 

Extra weight 15 

Vertical speed 5 

 

To achieve these goals, the group settled on a basic concept of two separate clamps 

connected by a center system that was extended and contracted in a caterpillar-like motion, 

allowing the robot to alternately push and pull itself up the tree.  A sonar array and a system of 

treads and rollers gave the robot the ability to detect branches or obstacles in its path and rotate 

around the tree to avoid them.  All of the subsystems were then integrated together to be 

controlled by a master computer.   

The robot design was broken into four modular subsystems: clamping, rotation, vertical 

extension, and branch detection.  After coming up with an initial design for each subsystem, the 

group constructed, tested, and revised each module separately.  Once each module was working 

properly, they were combined to form the final system.  The robot as a whole was then tested to 

ensure that the design criteria were met. 

6 Construction and Module Testing 

As with any project, once the construction phase began the initial prototype design began 

to change. Both the mechanical and electrical components of the design went through extensive 

evolution throughout the process of testing and revisions. The final design ended up looking 
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similar to the original design, as seen by a comparison of Figure 1 andFigure 2, but the goals of 

each module were accomplished in slightly varied forms.  

 

Figure 1. Original Project Model in ProE 
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Figure 2. Final Robot Design 

6.1 Clamping System 

A strong clamping system was necessary for the robot to be able to support its weight as 

it climbed up the tree.  The final design decision was based on the system’s simplicity and its 

ability to conform to the tree and maximize the surface area of the robot in contact with the tree. 

6.1.1 Final Design 

On a basis of simplicity and cost effectiveness, the group decided that a linear actuator 

provided the best solution for the clamping system.  The ideas of using pneumatics or hydraulics 

were briefly considered, but were disregarded due to the cost, construction time, and additional 

weight that would be added to the robot by the required supply subsystems.  Each clamp 

consisted of two arms connected by a linear actuator at one end and also fixed to free rotating 

shoulder joints, so that when the actuator mounted behind these joints extended, it caused the 
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arms to rotate about the shoulder joints and compress and grip the tree, as demonstrated by the 

arrows in Figure 3. 

 

 
 

 

This actuator was sized using basic force and moment balances based on geometry and 

the estimated weight of the robot to ensure that the clamp would be strong enough to grip the tree 

without slipping.  The applied force was increased to an acceptable level by lengthening the 

distance between the shoulder joint and the point of applied force from the actuator, as well as 

increasing the strength of the actuator to amplify the moment.  This shoulder to actuator length 

also governed how far back the arms could swing away from the tree, which was an important 

factor in the design.  Refer to Appendix A for detailed mathematical modeling code and 

solutions.   

The final clamping design is shown in Figure 4 and Figure 5. 

Linear actuator 

Shoulder 

Joints 

Figure 3. Prototype clamping system 
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Figure 4. Final Clamping System, Single Clamp 

 

Figure 5. Final Clamping System, Both Clamps 

The two clamps were constructed so that they were mirror images of each other in order 

to maintain system symmetry when the clamps were attached to each other via the extension 

system.  The arms and base were constructed out of “L” shaped metal with predrilled holes 
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spaced one inch apart.  Both legs of the “L” were one inch wide.  They were supported by flat 

pieces of metal which were one inch wide with predrilled holes half an inch apart.  The shoulder 

joints were constructed with pieces of 3/8”-16 threaded rod.  Lock nuts were used to fasten the 

threaded rod in place.  These served to properly secure the shoulder joints in place without 

having to tighten the nuts so tight that the joint was unable to hinge.  Each joint was fastened by 

1” long, 3/16” wide bolts and nuts.    

6.1.2 Module Testing 

The construction of the robot began with the clamping system, and upon completion the 

first clamp was tested to see if it could in fact attach to the tree.  The actuator was attached to a 

variable power supply set to 12V to generate a clamping action.  Once attached to the tree, it was 

found that the base of the robot came into contact with the tree.  This was corrected by extending 

the length of each arm by two inches, with all the extended length added between the shoulders 

and the tread wheels.  It was also found that tread’s protrusion from the arms was greater than 

expected in the original design.  In order to keep the joints at 90° when clamped, the distance 

between the arms had to be increased.  To do this, extenders were designed to connect the 

actuators to the arms.  This kept the strength ratio equal to the original design.  The joint between 

the actuator and arm is shown in Figure 6. 
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Figure 6.  Joint Between Arm and Linear Actuator 

Once the revised clamp was fully tightened to the tree, a force meter was attached to the 

back plate and a downward force of 50 lbs was applied to ensure that the single clamp could 

more than adequately support the entire robot and additional weight of 15 pounds.  Although the 

roller axles were not connected to a motor, the robot was manually rotated around the tree to 

ensure that the grip did not inhibit rotational motion and that there was minimal slip between the 

rollers and tread.  The first arms worked very well and held considerably more force than was 

expected.  This test was then repeated with the second clamp when its construction was 

completed.  The second clamp’s testing was also successful with no slipping occurring when 

additional weight was added to it.  

 Once the two clamps were connected via the extension system (to be discussed later in 

the report), the completed robot was once again subjected to a clamping test to ensure that it 

would not slip as a whole robot.  The robot was first clamped to the tree with both clamps and 

manual rotation was once again applied to ensure that the robot would not slip during a rotation.  

The robot was able to rotate a full 360° without any noticeable change in gripping capability.  

The next full scale test conducted consisted of extending the robot to its full length and testing 

each clamp’s ability to individually support the weight of the entire system and keep the robot 

from falling.  This test was performed at full extension because that was when the rotational 
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moment due to the loose clamp had the greatest effect on the robot.  First the bottom clamp was 

tested to ensure that it could withstand the full weight of the robot from the top.  This test 

showed a stable robot without any slippage downward on the tree.  It also showed that there was 

not any leaning toward or away from the tree.  Next the top clamp was tested.  As with the 

bottom clamp’s test, this showed that the top clamp was able to withstand any downward force 

and remain securely clamped on the tree.  This test did however show the loose clamp on the 

bottom leaning into the tree.  After re-gripping the tree, this problem rectified itself.  The robot’s 

clamping system proved successful with these tests. 

6.2 Rotation System 

The goal of the rotational module was to allow the robot to travel around the tree to 

position itself to avoid branches.  The difficulty in designing this system was that there was an 

inverse relationship between the ability to rotate and the ability to stay clamped onto the tree; the 

more securely the robot was clamped to ensure no slippage, the more torque was required to 

rotate the robot around the tree.  This tricky balance of forces was an integral part of the design 

throughout the project. 

6.2.1 Final Design 

After numerous debates between treads and wheels, it was decided that a compromise of 

two small tread arrangements on each set of arms would work best.  As seen in Figure 7, an 

arrangement of bike gears and chain powered by a DC motor and gear box was designed to drive 

the rollers closest to the shoulders. 
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 A gear box was used to amplify the torque from the DC motor because a specific motor 

had already been chosen due to familiarity and available feedback options.  Two bike gears were 

attached on the same axis to the output shaft of the gear box.  Separate bike chain loops 

connected these two gears to one of two more gears sharing a same axis mounted on each 

shoulder joint.  The other gear on each joint turned a secondary chain loop, which powered a 

gear mounted on each of the closer rollers.  The rotation of the roller then turned the tread, 

causing the robot to travel around the circumference of the tree.  The intermediary gears on the 

shoulder joints were added to the design to eliminate the need for a device to keep the chain taut, 

since a direct motor to roller system would require different lengths of chain to remain taut as the 

arms were swinging to clamp or release.  

During the design of this system, it was decided that treads had an advantage over wheels 

because of the difference in contact area between the robot and the tree, but the fallback for this 

application was that the contact area was cylindrical. To create this curved surface, the tread 

system was designed to shape to the tree as the arms were clamped. As seen in Figure 8, the 

tread systems were designed to conform to the curve of the tree, with the tread pulled taut by the 

Roller

s 

Tread 

Gears 

Motor 

Figure 7.  Prototype Rotation System 
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distance between the two fixed sets of wheels.  This allowed for a maximum surface area of the 

tread to be in contact with the tree.   

 

 

The tread system was constructed with a series of three 2” diameter wooden cylinders 

with 1/4”-20 threaded rods through the centers of the cylinders.  Nuts were placed between each 

cylinder in order to keep them from rotating extraneously from the rod.  The tread around the 

two sets of cylinders is a piece of sandpaper designed for a belt sander.  Because of this it is 

connected in a loop, and can fit around the inner and outer wheels of the tread system.  The 

wheels were connected to the arms via the same flat metal as used to support the arms and 

shoulders.  These were fastened to the arms loosely at first, but then two wheels were pulled 

apart as far possible in order to tighten the tread.  Figure 9 shows the construction of one tread 

and roller system. 

Figure 8. Compressed Tread Systems for Curved Contact Surface 
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Figure 9.  Fixed Axle Support and Tread Conformity 

While being extended, the tread systems were fastened to the arms using the same bolts 

as used in the arms and base.  Lock nuts were placed on the outside of the wheels in order to 

keep them from sliding up and down while being clamped.  The bike gears were then fastened to 

the end of the threaded rod and held in place by a nut and jam nut combination. 

The DC motor used to power the rotation system was originally planned to be mounted in 

the center of the robot.  This task proved impossible, however, since the linear actuator used for 

the extension system had to be mounted in the center to ensure uniform extensions and 

contraction, and took up all of the space in this area.  It was decided that the motors and their 

gear boxes be attached to the piping system’s supports.  Thus the motor was cantilevered to the 

body from its base.  Having the rotation system off center did not affect the symmetry of the 

system, as the gear ratio remained the same between both arms of the clamp. 

The biggest challenge in the rotational design was the way that the bike chain and gears 

were implemented throughout the system.  After searching numerous bike shops around the area, 

no gears were found that were small enough to fit the rollers of the clamp.  The smallest gear 

obtained would, if used, rub against the tree.  To solve this problem, many alternatives were 

discussed.  The easiest solution would have been to create larger wheels for the tread.  This 
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alternative was given so much credence that it was actually implemented briefly.  However, it 

was not successful because the clamping system had been designed for the wheels already in 

place, and the larger wheels simply compromised the integrity of the clamping system.  

Ultimately, the only way to solve the problem within the project’s budget was to custom make 

four bike gears small enough to fit the clamp.  These gears, shown in Figure 10, have 8 teeth and 

were constructed by cutting out notches in washers to fit the necessary spacing to work correctly 

with a bike chain.  The washers were then welded to ¼” nuts so that they could be fastened to the 

threaded rods on the tread system. 

 

Figure 10.  Custom Constructed Gears 

Another challenge in the bike gear system was that there were still not enough other gears 

of any one size to complete the rest of the system.  This problem was solved by connecting two 

of the same sized gears (13 teeth) to the gear box. Chains connect these gears to the gears on the 

shoulder joint of size 14 teeth.  Each of these gears was fastened to one side of a wooden circle, 

with a 15-tooth gear fastened on the other side, as shown in Figure 11. 
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Figure 11. Rotation Gears 

Finally these gears were connected by chain to the custom made gears which were mounted to 

the inner wheels of the tread system. 

The original design called for the use of a hand drill gear box to step up the torque from 

the motor. Upon further research into this option, however, it was determined that this method 

would be too costly to implement, as it would have incurred a cost that was double the allocated 

funds.  

The remaining type of gear boxes that were readily available were made for small 

motorized robots.  This type of gear box would have worked as well, but upon closer inspection, 

it was found that these gear boxes were essentially constructed from Lego gears under a different 

name.  The decision was made to construct gear boxes from Legos, since one of the group 

members offered to loan the necessary parts.  This donation resulted in a much needed increase 

in budget for the project as a whole. 

A gear train of 1:100 was constructed out of Legos, which were epoxied and screwed 

together, and mounted onto a sheet of steel along with the motor as seen in Figure 12. 
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Figure 12. Constructed Gear Box 

A coupling was made to attach the D shaft of the motor output to the input of the gear train. A 

secondary coupling was machined to convert the Lego shaft output of the gear train to a ¼”-20 

threaded rod.  Finally a sheet of aluminum was formed to create a casing to prevent any kind of 

debris from interfering with the gears.  

The motor and gear box assembly was mounted to the robot as mentioned before.  

Another 1/4”-20 threaded rod was attached to the output of the gear box so that the bike gears 

could be attached.  The system of one set of wooden cylinders and two bike gears was connected 

to the rod similarly to the 8-tooth gear mounted to the tread system.  Regular nuts were fastened 

into the wooden circle, followed by jam nuts, followed by another set of regular nuts.  This 

system was used to keep the gears from spinning independently from the rod.  The gears located 

on the shoulder joints were the only gears that did not need to be securely fastened to the rod.  In 

fact, a free spinning gear was preferred because the shoulder joint rod was used to support the 

robot’s structure, and should not have had a torque applied to it.  These gears were secured on 
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the rod in the same way as the others, except that they were not tightened.  This kept the gears in 

place, yet also allowed them to spin freely.  Finally, bike chain was placed on the gears in the 

configuration mentioned before. 

6.2.2 Module Testing 

Unfortunately, testing on this system was never completed.  During the construction of 

the system, it was found that the group had not been detailed enough in the design, leading to 

discrepancies in the calculations of chain length required to connect the gears.  Bicycle chain can 

only be sized and connected in ½” increments, and it was found that the spacing between the 

fixed axles on which the gears were mounted did not line up correctly with the bike chain.  The 

materials chose for the body, the L-bars with pre-drilled holes, did not allow for the flexibility 

required to place the gears at the correct distances from each other.  Thus, when the chain loops 

were added to the system, they were either too tight and did not allow for any rotation, or they 

were too loose and slipped off the gears without allowing for any translation of motion.  The 

group was never able to get the rotation system in working order. 

6.3 Vertical Extension System 

The purpose of the extension system was to allow the robot to climb up the tree, and then 

back down.  This system allowed the robot to extend and contract so that it could climb in the 

same fashion as a caterpillar.  The extension system had to be able to support half the robot’s 

weight, as the other half was supported by the stationary clamp.  

6.3.1 Final Design 

After weighing several alternatives involving gears and scissor lifts, the use of electric 

linear actuators for the basis of the extension system was deemed the best solution to accomplish 
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the module’s goals.  The final design centers on a linear actuator mounted perpendicularly 

between the two body sections, as shown in Figure 13. 

 

 

Additional support was provided by a PVC pipe brace on either side of the actuator 

comprised of a larger diameter pipe with a slightly smaller diameter pipe inside to create a 

telescoping action.  PVC was chosen for the support braces because of its relatively light weight 

and the ability to easily machine the tubing for increased structural support from the telescoped 

length.  Using a rotary lathe, the outer radius of the one foot long segment of 1-5/8” outer 

diameter pipe was reduced by 2 mm to allow 10” to slide easily inside the slightly larger foot 

long section of 2” outer diameter pipe.  Since the extension actuator extended a maximum of 8”, 

the piping allowed for 2” of overlap at full extension.  This machining created a tight telescoping 

support with relatively low friction.  This telescoping is demonstrated in Figure 14. 

Upper Body Section 

Lower Body Section 

Arm 

Actuator 

Pipe Braces 

Figure 13.  Prototype Extension System 
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(a) 

 (b) 

Figure 14. Telescoping Extension Support (a) Fully collapsed; (b) Partially extended 

The final design of the extension system is shown in Figure 15. 

 

Figure 15. Final Extension System 
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The linear actuator and PVC braces were held firmly in place on both ends by “L” shaped 

brackets, lengths of ¼”-20 threaded rod, and nuts.  The clamp structures were strengthened by 

adding support strips of “L” material to distribute the force from the actuator and piping to 

prevent the generation of a torque on the inner side of each clamp during extension.  A Plexiglas 

backing to mount the electronics (not shown in the figure) was attached to the larger diameter 

piping by U bolts.  It should be noted that the weight of the extension system was relatively 

balanced during construction by placing the weight of the actuator on the bottom clamp to offset 

the weight of the electronics attached to the top clamp.  This balance of weight was crucial since 

the extension actuator had a strength of 20 lbs and each side weighed approximately 12 lbs. 

6.3.2 Module Testing 

 During the design and comparison of the alternatives, the extension system was designed, 

but the actual connections were never thoroughly discussed.  As a result of this, the joining of the 

clamps to the piping and actuator was created during construction and revised as the system was 

tested.  Originally the pipes were secured on each end by only a longer threaded rod a piece, but 

during testing of the system it was discovered that this setup allowed the entire extension system 

to swivel back and forth.  This problem was corrected by adding an additional “L” bracket to 

each side of each pipe.  

The backing for the electronics was originally planned to be mounted directly to each 

clamp.  This was quickly thrown out as the dimensions of the extension system increased and 

this method would no longer be feasible.  The backing was ultimately attached to the larger brace 

pipes by U bolts, since there was no other solution that would have supplied enough strength and 

been easy to implement without interfering with the braces’ ability to telescope. 
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 In the original design, the extension actuator was mounted to the outer “L” member of the 

clamp to shorten the overall height of the robot.  This shorter height would potentially allow the 

robot to maneuver through more complicated branch arrangements by decreasing the minimum 

vertical distance between each branch.  However, it was found during construction and testing 

that this solution did not allow for enough space to mount all of the electronics on the backboard 

when the robot was entirely compacted,  and it was found that mounting the actuator to the inner 

members of the clamps was a better solution.  This mounting method also opened up much 

needed space between the outer and inner members of the clamp for the gear boxes, which were 

actually mounted on the same threaded rods as the pipe supports. 

Once the extension system was constructed and joined the two working clamps, 

rudimentary climbing was attempted by connecting a power supply to each actuator in turn.  

During this testing the robot was closely monitored to see if it extended as close to parallel to the 

tree as possible without tipping back away from the tree, which would eventually cause the robot 

to lose grip in a longer climb.  Additionally, the clamping of the arms was watched for 

asymmetric gripping motion that could potentially generate a moment within the extension 

system.  As was previously mentioned, the extension system twisted during the initial extension 

and prompted the addition of another “L” bracket attached to each end of each pipe.  The same 

test after the extra support was added proved successful. 

6.4 Vertical Actuator Controller 

The vertical actuator controller was designed to be simple and straightforward.  A slight 

increase in labor cost associated in creating a controller by hand was chosen over purchasing a 

prefabricated controller.  This decision was made for budget conservation and simplicity, as the 

controller needed for this module was only ON/OFF.  The controller went through a large 
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number of revisions, all of which proved to be extremely useful later in the development of the 

other controllers.  The end result was an elegant but rugged and simple controller that performed 

flawlessly. 

6.4.1 Final Design 

The vertical linear actuator control was decided upon based on the needs of the robot.  

Speed control of this linear actuator was not required, since the maximum speed of vertical lift 

was only 2” per second, switching currents was minimal, and the control design compensated for 

back electromagnetic force (EMF) from the motor.  The robot weighed less than the rated force 

for the actuator (i.e. rated torque for the motor), therefore it held at full extension without harm 

to the actuator.  Relays were used for simplicity and ease of digital control.  The selected relays 

were OMIH-L with a 12VDC activation coil and were activated by open-collector buffers with 

pull-up resistors to 12VDC voltage regulators.  This was due to the relatively large current 

demands for lower voltage activation (~100mA at 5VDC).   Also, 5A fuses were added in-line 

with the motor to prevent permanent damage to system components.  

As seen in Figure 16, the vertical linear actuator control consisted of a simple ON/OFF 

control with diodes to allow for back EMF to pull current and allow for the motor to ease off 

before the current was switched to improve system fluidness and longevity by allowing low 

switching currents. 
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Figure 16. Vertical Linear Actuator Controller 

Two specific relay positions worked in pairs and allowed for current to flow through the motor 

forward and backward. 

Figure 17 shows the forward biased relay position of the vertical actuator, but this 

arrangement had potentially harmful positions which could ground the power supply (+V). 

 

Figure 17. Forward Bias Relay Positions for Vertical Linear Actuator 
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There were however, two other acceptable positions as illustrated in Figure 18 andFigure 19, 

which illustrate the reverse bias and off position respectively. 

 

Figure 18. Reverse Bias Relay Positions for the Vertical Linear Actuator 

 

Figure 19. Off Relay Position for the Vertical Linear Actuator 
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To prevent destruction of the power supply by accidentally grounding it, a small logic circuit was 

implemented to interface with the system, only allowing for the outputs forward, backward, and 

off.  This system had two inputs as there were three outputs requiring two bits of information.  

The outputs of the logic circuit to the relays (1, 2, 3, and 4) were decided by the inputs (A and 

B). 

Applying digital logic design, it was found that these functions could be represented by 

two NAND chips.  By utilizing NAND gates, OR and AND gates were constructed with two of 

the same integrated circuit (IC), instead of having to use two IC’s of different types.  This 

increased manufacturability by decreasing the types of IC’s required for the design.  These 

control logic outputs were the inputs to the added open-collector buffers as seen in Figure 20. 

 

Figure 20. Simple Chip Logic Control for Vertical Linear Actuator 

 

After many iterations, the final design of the controller added two IC buffers and a small 

fan (provided by a power supply) as shown in Appendix B.1.  This made the controller slightly 

more complicated to construct, but still maintained its ease of programmability and use. 
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6.4.2 Module Testing 

When this circuit was originally constructed, nothing worked; however, debugging led to 

several understandings.  For starters, the inputs were out of specification, as the Diolan U2C 

provided insufficient current and nearly insufficient voltage (one input was ~2.8VDC when high, 

and the other was ~3.8VDC when high).  When connected to a TTL chip and put to ground, the 

chip could not get below 1.5 VDC.  The exact cause was never found, but the theory is that the 

low current cap on the I/O pins prevented the pin from being a true ground.  After struggling 

with different solutions, the first attempt to correct this was a series of unitary gain operational 

amplifiers to bump the signal up to TTL logic levels in both current and voltage.  This worked 

originally on a protoboard with ideal conditions, unfortunately when they were put under single 

polarity the low-level voltages were too high to turn off the TTL buffer they were attached to 

(low voltages were about 1VDC - 1.2VDC).  This attempt at solving the plug and play problem 

only absorbed large amounts of time without providing any answers.   

The next attempt at solving this problem luckily proved to be both a simple and favorable 

solution.  While researching this problem, an inverting buffer was found that required only a 

micro amp or so to activate, and operated on TTL levels with a low-cutoff voltage of about 1.4 

volts.  Through double buffering the Diolan U2C inputs and outputting that to the logic, a layer 

of separation was created between the U2C and the rest of the circuit, and the plug and play 

problem was resolved.  This addition to the design unfortunately made it more complex, but 

luckily made it even more robust. 

Even with this problem solved, the circuit still did not function as planned.  The current 

that was output from the TTL NAND gates was insufficient to power the OMI relays.  After a 

quick search, another kind of relay was found that required about 1/4 the coil activation current 
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and proved to be a more favorable option, as it was solid state.  Unfortunately the TTL NAND 

gates were also insufficient to power these relays.  When this was discovered, a non-inverting 

open collector buffer was used to quadruple the current sent to the coils and luckily drive the 

relays without a problem. 

At this point, another problem was discovered with the melting of a 5VDC regulator.  

The current draw was much less than the rated capacity (around 300mA), but the constant draw 

caused the regulator to overheat.  To solve this problem, a heat sink was added to a new 

regulator, which still heated up considerably in ambient air, but with a constant perturbation of 

the surrounding medium had no problem.  To solve this, one of the power supplies (EFIKA or 

DC) was placed so that its fan blew over the heat sink.  A half hour test was conducted to ensure 

there would be no problem later on. 

Further testing was performed by first ensuring the correct inputs to the circuit were 

being applied.  The two I/O pins of the U2C were attached to the available oscilloscope and 

Figure 21 and Figure 22 were recorded for the PC0 set to high and low respectively. 

 

Figure 21. PC0 Set High on the U2C-12 
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Figure 22. PC0 Set Low on the U2C-12 

Knowing that the inputs were valid, the outputs of the two motor pins were tested when the 

inputs were set to the predetermined logical combinations 00, 01, 10, and 11.  With both inputs 

low, the outputs should all be low, as shown in Figure 23. 

 

Figure 23. Logic Circuit Response to Two Low Inputs 

With both inputs high, the outputs should all be low, as shown in Figure 24. 
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Figure 24. Logic Circuit Response to Two High Inputs 

Now if input A is high (input 1) in the figures, and input B is low (input 2), then two of the 

function outputs should be high, shown in Figure 25. 

 

Figure 25. Logic Response to High Input 1 and Low Input 2 

If the other input is put high, the other two function outputs, in this case F1 and F2, should go 

high, while F4 and F3 should drop low.  This is shown in Figure 26. 
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Figure 26. Logic Response to High Input 2 and Low Input 1 

At this stage of testing the I/O was set on a timer, because the control system was open 

loop, and the ADC was tested independently and integrated later (to close the control loop).  

When this test was completed successfully, the motor was ready to be tested.  The motor itself 

gave the correct response on the first trial, and pending the successful testing of the ADC, was 

ready to become a closed loop controller.   

To test the ADC, a circuit was constructed based on the schematic seen in Figure 27. 
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Figure 27. Analog to Digital Converter Schematic 

 

In the circuit shown in Error! Reference source not found., the potentiometer is used to adjust 

the voltage input to the ADC, while the recorded value is monitored on the computer screen.   

 

Figure 28. Potentiometer for Input Voltage 

The values ranged nearly the full possible byte and corresponded linearly with the recorded 

voltage.  With this testing done, the ADC was attached to the protoboard as shown in Figure 29. 
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Figure 29. ADC Attached to Protoboard 

The ADC was tested independently to ensure correct values before the two programs 

were integrated to make a smart motor controller.  Once the ADC again proved to be valid, the 

program was integrated into a single C++ program.  Empirical measurements were taken of the 

full open and closed voltages of the wiper on the actuator and limits were set to create simple 

functions that opened and closed the actuators.  After successful testing using these limits, the 

motor controller proved to be robust, reliable, and easy to use, just as it was originally designed 

to be. 

6.5 Clamp Actuator Controller 

The drivers originally designed for the clamp actuator drivers were adequate in all ways 

but feedback.  The resulting complexity of the previously designed multiple input analog to 

digital (ADC) converters made it a nearly impossible task to complete on a single printed circuit 

board (PCB).  This was the majority of the changes applied to the design throughout the 
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prototyping cycle.  In controller terms, the resulting controller was accurate, robust, and simple, 

yet allowed for a large amount of flexibility in programming without being overly cumbersome. 

6.5.1 Final Design 

The two horizontal linear actuators, which controlled the clamping mechanism, needed a 

different control methodology other than ON/OFF control, as an ON/OFF controller would drive 

the actuators beyond the rated torque when they clamped onto the tree.  All of the linear 

actuators came with a simple analog position feedback, which was used to judge the current 

position of each actuator utilizing a quad-ADC which communicates via I2C (AD7924).  A 

constant torque controller was taken from the application notes of an 18200 H-bridge datasheet 

to derive a controller as seen in Figure 30. 

 

Figure 30. Constant Torque Controller Utilizing the LMD 18200 (LMD18200) 

This controller used a voltage comparator in the LM3524D to compare the current sense 

output of the LMD18200.  The current sense output was pin 8 on the LMD18200, which was 
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input to pin 2 on the LM3524D and compared to pin 1.  Pin 1 was connected to a variable 

resistor, which effectively set the desired torque.  The variable resistor in the controller was 

replaced by a digitally controlled potentiometer, which could be controlled by a variety of 

methods including SPI, I2C, and parallel.  This resulted in a controller that controlled torque 

based on the position feedback and action of the clamp with a relationship similar to that of the 

one in the application notes for the LMD18200 shown in Figure 31. 

 

 

Figure 31. Expected Current Response for Horizontal Actuator Controller Output 

(LMD18200) 

In using two distinct I2C slaves for each motor driver, programming became even 

simpler, as each motor driver called a specific ADC.  Due to this, the modularity of the 

programming was even more effective, as the same writes to the command register were 

maintained and the same read cycle was repeated as each was connected to the first input.  This 

allowed both driver functions of the clamps to vary only the pin number (which drove direction), 

and the two I2C slave addresses.  This modularity allowed for easier debugging and quick 
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replication for the complimentary clamp.  As seen in Appendix B.2, the circuit was fairly 

complex, but was extremely robust and allowed for both easy and flexible programming.   

Although the control system was reliable and was only used for position in the program, it could 

have been used further to dynamically determine velocity and acceleration to further refine the 

control system.  The final controller can be seen in Figure 32.  

 

Figure 32. Final Soldered Clamp Motor Driver 

6.5.2 Testing  

Originally the design implemented was to use a single ADC for all of the actuators as it 

had four inputs, and a differential to the reference voltage applied to the actuator feedback pots 

could be used for slightly better accuracy.  However, the datasheet revisions of the IC revealed 

that a large amount of external circuitry was needed to guarantee that the interference of each 

signal on the others would be minimal.  An example from the PCF8591 datasheet in Figure 33 

shows the extent of additional work required to use multiple inputs. 
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Figure 33. Multiple Inputs with the PCF8591F 

This design would have required a long period of prototyping on a protoboard before being able 

to solder to a printed circuit board, and apply nearly the same additional cost that purchasing 

additional ADCs implied.  Due to this, the team opted to have several ADCs instead of the large 

labor cost that would have been required to ensure signal accuracy.  With this solution there was 

slightly less accuracy and more I2C slaves, however, the accuracy surpassed that which was 

needed and gave a much simpler, less labor-intensive, and more cost-effective solution. 

Similarly to that of the vertical linear actuator, this driver also required signal 

conditioning for the input signal.  This was solved in exactly the same fashion; a buffer was 

added to the I/O prior to entering the digital XOR that controlled the direction input to the 18200.  

The digital potentiometer also required a small amount of additional work in that it needed to be 

soldered onto a DIP style PCB before being added as it was MSSOP packaging. 



Page 41 

 

During testing, a few problems were found: a mystery pin that was attached to nowhere, 

and a point which needed to be attached to +12VDC.  After a few quick fixes, the motor driver 

performed flawlessly. 

6.6 Rotational Motor Control 

        The two motors controlling the treads, which propelled the robot circumferentially 

around the tree, were constrained to strict uncertainties, as positioning on the tree was the most 

meticulous attribute of the overall system.  Without this capability the robot would have been 

unable to descend the tree based on memory, and the uncertainty would have caused problems as 

the system’s position would have drifted.  Also, the torque required to spin the robot around the 

tree was provided by a traditional DC motor rather than an actuator; therefore, speed control 

needed to be implemented.  For this application, a handmade controller would have been too 

complex and too intensive, and it would require a lengthy design period.  Given these dilemmas, 

a more advanced manufactured controller was preferable to designing one from the ground up.  

The selected controller for the application was the MD23 by Devantech Ltd.  Based on the 

simple I2C interface, the ability to control velocity curves, and the coupling with the EMG30 DC 

motor to produce an extremely accurate feedback system; the MD23 was the preferred choice 

and was used to control the circumferential rotation motion. 

6.6.1 Testing 

The motors worked as expected; the motors spun up and down accordingly.  No real 

deviation was required or desired, so testing did not involve anything more than clockwise, 

counterclockwise, and stop.  The extremely high gear ratio (100:1) on top of the (30:1) just made 

the output axle very slow.  Since the mechanical portion of the rotation system did not work, 

further testing of the motor controllers was not possible. 
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6.7 Branch Detection System 

The branch detection system utilized was a sonar array, as it allowed for maximum 

detectability, in a relatively small and low-cost package.  The sonar array consisted of six I2C 

controlled sonar devices that allowed for binary segmental divisions of the tree trunk to be 

observed in two-dimensions.  Incoming dimensions allowed for the possibility of branch 

tracking, and the critical regions near the robot could be looked at and logic applied in a 

simplified fashion. 

6.7.1 Final Design 

The sonar array offered a challenge of both conformity to the other systems and 

simplicity, as the array had to be large enough to measure around the circumference of a tree 

with a 13” diameter.  Given the precedent of an I2C interface for the motor controller and the 

digital potentiometers, the preference for the communication of the sonar array was also I2C.  

The same company that produces the MD23 also produces a large selection of sonar devices for 

robotics applications.  The SRF02 was chosen from the available sonar devices due to self tuning 

resonance, range, settable output (English/metric unit choices), and I2C interface. The advertised 

angle of sonar dispersion is 55°.  Despite this information, an experiment provided dispersion 

closer to 45° for objects of thin cylindrical geometries close to that of small tree branches.  The 

smallest object accurately sensed by the available SRF02 was less than 1/3” wide.  The test also 

showed that the SRF02 could accurately sense these small cylindrical objects 20cm – 45cm away 

with the new measured half-angle.  Based on this experiment, the number of needed sonar 

devices was approximated to 6 for full surface mapping. 

The threshold was set at 20cm creating a blind region, which had to be tracked by the 

computer for object avoidance.  Similarly, the maximum distance the sonar array could record 
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was 45cm.  The devices were setup so the threshold was the distance at which the ranges began 

to overlap.  This created a variety of analytical solutions to the sonar responses, which fully 

satisfied the desired 2-dimension ranged limb tracking criterion. 

The sonar array, as all aspects of the electronic design, was subject to top down design, 

and bottom up testing.  Once the sonar devices were purchased and wires attached, each 

individual device was used to ensure both functionality and accuracy.  Each sonar behaved as 

predicted, with a ~45 degree signal dispersion angle for large objects, and ~35 degree dispersion 

angle for small objects.  Each sonar device was then individually named for distinction on the 

I2C bus, which is provided by the Diolan U2C-12, and tested on a digital logic analyzer for 

functionality (shown in Figure 34).   

 

Figure 34. I2C Bus Initial Test On Digital Logic Analyzer 

The labeled inputs to the DLA in Figure 34 are the SDA and SCL lines, which are the 

serial data, and the serial clock lines. The SCL goes low for a beat to signal the beginning of data 
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transfer, which it does twice in the figure.  With this in mind it is easy to see that one complete 

byte is transferred in between the low beats of the SCL line.  

 Knowing that the U2C's I2C bus worked, a physical bus to allow the attachment of all the 

slave devices to the master was constructed; this is shown in Figure 35.   

 

Figure 35. I2C Bus Expander to Accommodate I/O Needs 

At this point, the challenge of programming the sonar array began; but first, a mock-up of 

correct proportions to the top of the robot was devised, shown in Figure 36.   
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Figure 36. Wooden Mockup of the Top of the Robot 

The wooden mockup allowed for the programming of the sonar devices to be done with 

accuracy, even without the physical presence of the robot.  Initial programming involved simply 

taking the simple available program from the Diolan website and adapting it to ping all of the 

sonar devices.  The order in which the sonar devices were pinged was very important, as incident 

readings from an adjacent sonar would cause bad data and, inevitably, a non-functioning portion 

of the robot.  This was a problem encountered when first constructing the array, as more distant 

objects returned to the adjacent sonar as it pinged and caused incomprehensible data.  This 

problem was avoided by both a minimum time delay and proper sequencing. Pairs of sonar 

opposite each other on the tree were pinged at each time, which allowed time for the signals to 

return before the neighboring sonars were pinged.   

 The sonar resolution of the tree trunk was originally a large concern, but simplicity was 

taken in these aspects.  The circumference of the tree trunk was divided into six regions for each 
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of the six sonar devices; this means that 60 degree sections of the tree were covered by each 

sonar.   

The final design was namely in coding, as it had to be integrated with the overall logic of 

the system, however a schematic of it and the actual attached sonars can be seen in Figure 37. 

 

Figure 37.  Attached Sonars. 

This provided a relatively cheap, effective, accurate, and extremely simple branch to the robot. 

6.7.2 Module Testing 

 The sonar program was tested by passing small cylindrical objects in front of the sonar at 

varying heights and positions around the mock up.  The output in Appendix C shows the results 

of a test involving a 1” copper pipe that spiraled around the center of the sonar array to simulate 

how a branch might pass over while the robot was turning, while Appendix D contains the 

results of a test involving the same small copper pipe placed over a sonar at varying heights to 

show correct data categorization of the program.  Each sonar device was put through these paces 
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to guarantee that the programming was correct.  The sonar device test output in Appendices C 

and D were the result of one continuous test, and are not the results of testing on different 

occasions.  The output in Figure 38 shows no objects within 45cm of the array, and was the 

standard format for which the sonar program operated. 

 

Figure 38. Standard Sonar Output 

Along with this output, the sonar data was stored in a file denoted as “map.txt” in the same 

directory and served as the principle navigation tool for the descent of the climb.  The sonar 

output shown previously was stored within this file, and formed a binary two-dimensional map 

of the tree.  An excerpt of this file is shown in Figure 39. 

 

Figure 39. Map.txt for Descent Navigation 

To simplify the navigation, map.txt only retained the data from the 13-21 cm and 21-30 

cm ranges masked over each other, (ex. 13 – 21 cm = 000100 and 21-30 cm = 000001, such that 

the mask = 000101).  This was done so that the robot could turn right or left and extend its full 

body length without needing to read another line from map.txt.  To complement this, a file 
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containing orientation data was added to supplement the map.txt data to ensure correct 

maneuvering despite orientation changes made along the trip.  

The sonar array could be elaborated on to produce better resolution for more complex 

problem solving in branch navigation, but the resolution used in the design was ample to provide 

a robot with the sensory required to navigate around one and two branch scenarios.    

The revisions in the design were predictable and easy to attain.  The tree and robot were 

slightly larger than originally expected, so the sonars were placed slightly further away from the 

tree trunk.  This fortunately did not affect the programming, as the distance seen by the sonar 

was equivalent.  The only things not seen be the sonar were bumps on the trunk, which caused 

the robot to no longer be level with the regions it was observing.  Due to the large region under 

which the branches were divided, this was of no consequence to the programming itself. 

One basic change was the change of the outgoing file; instead of columns, where each 

column is assigned to a sonar device, the file printed in-line one reading after the other.  For 

instance, the first three rows from Figure 39 would appear as “000000000000000001.”  This was 

so that the file buffer could keep track after each re-reading was taken while coming down the 

tree.  

Due to the large demand on the I2C bus, which was originally constructed prior to the 

prototyping of a large number of the system components, it had to be expanded to meet I/O 

demands.   

6.8 System Logic and User Interface 

The user interface was a simple keyboard and LCD, which was attached to the outer-

midsection of the robot and provided the user an easy access and simple way to communicate to 

the robot the vertical distance to climb.  This went through a few revisions that changed which 



Page 49 

 

LCD that was going to be used, as originally it was going to be a serial (RS232) device by 

Crystal Fontz.  This was replaced by a much smaller and simpler non-RS232 LCD. 

The system logic was a modular system which used predetermined functions from the 

other modules, with very few additional modules for itself.  For instance, to climb vertically it 

used nearly plain English: open top clamp, extend vertical actuator, close top clamp, open 

bottom clamp, close vertical actuator, close bottom clamp.  An excerpt of this code can be seen 

in Figure 40. 

 

Figure 40. System Logic Code 

As can be seen, the bulk of the work was done by many, small prefabricated functions that were 

specific to each actuator, which was the beauty of the overall design.  The flow charts for these 

functions can be found in Appendix E. 

6.8.1 Final Design 

Getting a good understanding of all of the system components was key for creation of the 

small unique functions that made up the overall majority of this system.  For instance, the analog 

to digital converters that used the feedback from the actuators to complete the control loop 
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required knowledge of the IC that took the reading, knowledge of the U2C, programming, and 

empirical data from the actuators themselves.  By setting up the test circuit, it was found that the 

ADCs had a linear trend with an R-squared value of ~0.98, and that the result would return from 

the U2C in one byte hex format.  By measuring the wiper voltage of the actuator, it was found 

that when it was closed it was at ~75mV, and when it was open fully it was at about ~4.25 mV.  

Given that the ADC would return a value from 0 to 256 (in decimal), a few simple if-else 

statements gave a function that would set the pins of the GPIO to close the actuator, and likewise 

with opening the actuator.  The majority of the function to close the actuator is seen in Figure 41. 

 

 

Figure 41. Vertical Actuator Close Function 

As is seen, the vertical actuator close function was extremely simple, and it was simple 

because it used other small simple functions to do the work.  The vert_ADC function called in 

the code above actually read and wrote via the I2C bus and sent its findings to another function 

(convert_ADC), which actually categorized the position of the actuator before returning to 

vert_close.  The ADC information was critical in the vert_ADC function, and the empirical 
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evidence was critical in the convert_ADC function for correct categorization of the actuator 

position.  With just a little programming knowledge it fell into place rather easily. 

Functions like the one mentioned before were used throughout the code.  Specifically, the 

clamp actuator drivers, which bore exactly the same driver as the vertical actuator, with the 

addition of setting a digital potentiometer and using only one I/O pin of the GPIO.  Programming 

this way made it fast and simple, so that the tough problems, such as writing a driver for a motor, 

could be broken down into small, simple, and even lazy solutions. 

6.8.2 Module Testing 

After completing the logic design, this was applied to each actuator and motor controller 

in turn to verify that it functioned correctly.  Once this was done, the system logic was further 

tested in the final testing. 

7 Final Testing 

After the individual components were modularly tested to ensure that they were working 

correctly, the robot was tested against the project’s working criteria to evaluate the relative 

success of the project.  Initial project testing was done on a 5’ section of telephone pole to 

demonstrate the robot’s ability to climb without slipping and to detect obstacles in its path.  

Ideally the diameter would have been constant, but it actually varied up to + 1” from the irregular 

circle of the cross section.  This initial test was repeated several times as a precaution to ensure 

that the clamping and extension systems worked as they were designed to and that the robot 

would not fall or slip from a greater height during the full scale testing.  Obstacles were placed in 

the robot’s path to ensure that the detection system was indeed functioning correctly.  
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Unfortunately, the failure of the rotation system prevented the robot from being fully tested as 

originally planned.   

8 Conclusions and Recommendations 

At the completion of the design process, the final design was analyzed to determine how 

well it met the original project goals and working criteria, and recommendations for further work 

were made. 

8.1 Conclusions 

Since the goal of the project was based on the working criteria initially described, the 

success of the project as a whole can be evaluated based on a relative comparison to the 

completion of each criterion.  As is seen in Table 2, the design was given a percentage of each 

weight, with a maximum of the full percentage allotted for each criterion, to aid in the 

evaluation. 

Table 2.  Evaluation of Final Design Based on Achievement of Working Criteria 

Criterion Weight (%) Score (%) 

Maneuverability around branches 30 15 

Fairly simple design 20 18 

Climb fixed diameter trunk 15 15 

Reversible climbing 15 15 

Extra weight 15 10 

Vertical speed 5 5 

 Total 78 

 

 The only criterion that the robot fell short of was the maneuverability, which was also 

weighted the heaviest.  This category can be thought of to be composed of three equally 
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weighted sub-criterions: branch detection, rotating, and having a body that allows for more 

complex branch geometries.  The final sonar array was in working order and capable of detecting 

branches adequately, so this was awarded the full 10%.  The ability to rotate, on the other hand, 

was not in working order at the time of the project completion and was given a 0 of 10% rating.  

While the final design would have allowed the body to navigate through some branch 

arrangements if the rotational system had worked, the robot’s maneuverability would have been 

increased if the unextended height was decreased and the arms were able to swing back farther.  

Ideally, the robot would have a limited vertical height, but this had to be extended during 

construction for more room to mount the electronics.  The original design had the extension 

actuator mounted to the outer sides of both clamps, but did not provide enough room between the 

clamps.  An ideal design would also have allowed the arms to swing back entirely behind the 

extension system.  The robot’s body was awarded half of the 10% for its vertical height and arm 

swing back for a total of 15 of 30% for the maneuverability criterion. 

 At the beginning of the design process, the group strongly emphasized the necessity to 

have a simple design for a higher chance of project success.  This philosophy drove many 

construction revisions throughout the course of the project and led to an overall simple design.  

The only reason a full 20% weight was not awarded was because several components such as 

gears, gearboxes, and motor controllers had to be constructed.  With additional funding to 

purchase these components prefabricated, the design could be slightly simplified. 

 Throughout the course of testing it was seen that the robot performed well in the areas of 

reversibility and the ability to climb a fixed diameter, so these categories were given the full 15% 

each.  The robot can easily replicate its climbing actions to transverse up as well as down and it 

can map the branch positions necessary to climb back down without two sets of sonar.  The 
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telephone poles used to model the tree were not exactly a constant diameter or perfectly circular, 

which allowed for testing on slightly variable diameters between 12-13 inches.  The robot 

worked well and had no problem 13” diameter sections for which it was designed, but began to 

slip on the undersized 12” diameter sections because the clamping actuators reached their 

maximum extension before the necessary force to tighten the treads was achieved.  This problem 

was expected, but could be fixed with minor body changes, so it was not factored into the 

scoring. 

 The robot’s ability to carry additional weight was satisfactory but limited by the 

maximum strength of the extension actuator.  The 20-lb extension actuator was purchased 

instead of a stronger actuator, which increased speed at the sacrifice of strength, but the system 

was still able to accommodate an additional payload.  When attached to the tree, each clamp was 

able to support 50 extra pounds without slipping.  However, since each clamp weighed about 12 

lbs, it was not possible to increase the payload to the goal of 15 lbs, since this would require the 

20-lb extension actuator to support a total load of 27 lbs during extension and contraction.  For 

this reason, the full score was not awarded.  In hindsight though, 15 lbs would not be necessary 

to add a lightweight attachment, and the problem could easily be corrected by replacing the 

extension actuator with a stronger one.  Although the overall speed of the robot was not stressed, 

the robot moved fairly quickly for the simplistic design, leading to a full score for this criterion. 

 This evaluation of the project based on the working criteria ultimately led to a final score 

of 78 out of 100%.  The group considers this to be a successful score because with the exception 

of the failure of the rotational system, the robot accomplished all of the design objectives.  
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8.2 Recommendations 

Based on the results and conclusions, the group has a several recommendations for 

further work on this project.  First, there should be a more even distribution of concentrations 

working on the project.  The tasks were pretty evenly split between mechanical and 

electrical/computer requirements, but the one electrically-inclined engineer ended up having a 

heavier workload, since the mechanical tasks could be split between four people.  An extra 

electrical engineer would have allowed the workload to be distributed much more evenly.  

As for the rotation system, the group concluded that the system of bike chains and gears 

was not the best possible solution, and further brainstorming, prototyping, and testing would 

definitely be required if further work were continued on the project.  Access to a larger budget 

would obviously improve the quality of design, as this would allow for custom parts.  It would 

also improve the simplicity of the design since prefabricated controllers could be used.  Other 

revisions and variations on the final design, such as replacing the 20-lb extension actuator with a 

100-lb actuator, would also help to improve the overall performance and robustness of the robot.   
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A EES Modeling Code 
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EES Code Solution/ Final Dimensions 

 

denotes important input 

denotes important output 

Criteria for success: 

Clamping System  

if  Fapplied > Fclimb 

Rotation System  

if Tg2 > Tfric 
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B Electrical/Electronic Schematics 

B.1  Vertical Linear Actuator Controller Schematic 
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B. 2  Horizontal Linear Actuator Controller Schematic 
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C Sonar Program Output 

lumberjackL/~Desktop/Desktop/i2c_bridge-0.1.0/u2c/i2c# ./i2c 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000001 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000010 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 
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|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000100 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 001000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 010000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 100000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 
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D Sonar Program Output 2 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 100000 

 

21 - 30cm : 000000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 100000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000000 

 

30 - 38cm : 100000 

 

38 - 45cm : 000000 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000000 

 

30 - 38cm : 000000 

 

38 - 45cm : 100000 
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|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 000000 

 

30 - 38cm : 100000 

 

38 - 45cm : 000000 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 000000 

 

21 - 30cm : 100000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 

 

 

|Ranges   | Sonars 1 thru 6 

 

13 - 21cm : 100000 

 

21 - 30cm : 000000 

 

30 - 38cm : 000000 

 

38 - 45cm : 000000 
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E Flow Charts 

 

 

 
Figure E-1.  Main Flow 

Stop 

Climb Down 

(1B) 

Get User Desired 

Height  
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Figure E-2.  Single Extension Climb Up Flow 
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Figure E-3.  Single Extension Climb Down Flow 
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Close Upper 
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Figure E-4.  Upper Clamp Open Driver 
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Figure E-5.  Upper Clamp Close Driver 
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Figure E-6.  Vertical Actuator Extension Driver 

Return 
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extended? 
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Known value) 
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Figure E-7.  Lower Clamp Open Driver 
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Figure E-8.  Vertical Actuator Close Driver 

Return 

Is the actuator 
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(Check ADC vs, 

Known value) 
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Actuator (2E) 
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Figure E-9.  Lower Clamp Close Driver
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F Mechanical Construction  

Bill of Materials:   

Support and Body 

Part Quantity 

Extension Actuator: Firgelli Automation 

[FA-PO-100-12-12"] 

1 

Clamping Actuator: Firgelli Automation  

[FA-PO-100-12-4"] 

2 

PVC Pipe 

 12 1/8” Long 

 2” outer Diameter 

 3/16” Thick 

2 

PVC Pipe 

 12” Long 

 1 5/8” Outer Diameter 

 3/16” Thick 

2 

Angle Bracket w/ 3/8” Holes 

 Rounded ends 

 15 ¾” Long 

 1 ¼” thickness on both sides of 
bracket 

4 

Angle Bracket w/ 3/8” Holes 

 1” Long 

 1 ¼” thickness on both sides of 
bracket 

12 

Angle Bracket w/ 3/8” Holes 

 3” Long 

 1 ¼” thickness on both sides of 
bracket 

6 

Threaded Bar for Hex Nuts 

 5” Long 

 ¼”-20 thread diameter 

6 

Metal Brad Screws 16 

Gear Mounting Sheet Plate 

 4 ½” x 5 ¼ “  

 Scrap Metal Sheet  

2 

Gearbox Cover Plate 2 
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 Scrap Metal 

 9” Long 

 3” Wide 
Hex Bolts 

 1” Long 

 ¼”-20 thread 

18 

Hex Nuts 

 ¼”-20 thread 

38 

Washers 

 ¼” Inner Diameter 

30 

 

 

 

 

Arms 

Part Quantity 

Flat Metal Strip with 3/8” Holes 

 2 ¼” Long 

 1 3/8” Wide 

24 

Flat Metal Strip with 3/8” Holes 

 3” Long 

 1 3/8” Wide 

20 

Threaded Bar 

 ¼”-20 thread 

 6 ¾” long 

8 

Threaded Bar 

 ¼”-20 thread 

 5” long 

4 

Threaded Bar 

 7” Long 

 3/8”-16 thread 

4 

Wood Wheels 

 Scrap wood 

 ¾” thick 

 2” diameter 

24 

36 Grit Sandpaper 4 

Angle Bracket w/ 3/8” Holes 

 20” long 

 1 ¼” thickness on both sides of 

8 
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bracket 
Angle Bracket w/ 3/8” Holes 

 One flap has triangular cut to make 
the lengths ¾” and 2” respectively 

 The other side is 2” long all the way 

 1 ¼” thickness on both sides 

8 

Support Nut 

 1” Long 

 ¼”-20 inner thread 

8 

Hex Nut 

 1/4“-20 inner thread 

104 

Hex Bolt 

 1/4”-20 thread 

 1” Long 

64 

Washer 

 ¼” inner diameter 

80 

Hex Nut 

 3/8”-16 inner thread 

 

Hex Lock Nut 

 3/8”-16 Inner thread 

8 

Hex Lock Nut 

 ¼”-20 inner thread 

16 
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G Final Budget 

 

 

Departmental 

Costs Donations Overall Total Cost 

 

$941.72 $629.45 $1,571.17 

    Product Quantity Unit Cost Extended Cost 

        

Linear Actuators       

Firgelli Automation  

[FA-PO-100-12-4"] 2 $121.86 $243.72 

Firgelli Automation 

[FA-PO-100-12-12"] 1 $122.43 $122.43 

        

USB Adapter       

U2C-12 USB-12C/SPI/GPIO 1 $88.75 $88.75 

Adapter       

        

Sonar Sensors       

R287-SRf02 Devantech 6 $26.50 $166.95 

SRf02 Sensor       

        

Motor Controller       

MD23 1 $187.50 $197.25  

        

Motors & Mounts       

EMG30 DC motor & mount 2 $22.85 $45.70  

        

Single Board Computer       

EFIKA 1 $239.99 $239.99  
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Flash Drive       

pqi i221 4GB Flash Drive 1 $14.99 $14.99  

        

USB Hub       

Belkin F5U045 Hub 1 $6.99 $6.99  

        

Relays       

MSS7 1A05 4 $3.00 $12.00  

        

Integrated Circuits       

SN74LS03N 2 $0.54 $1.08 

SN74LS00N 2 $0.57 $1.14 

SN74LS04N 2 $0.51 $1.02 

SN54LS00N 2 $0.56 $1.12 

LM3524 2 $1.98 $3.96 

LMD18200 H-Bridge 2 $8.00 $16.00 

PCF8591F 3 $3.74 $11.22 

LM7805 2 $1.29 $2.58 

AD5161 2 $2.94 $5.88 

        

Miscellaneous Electronics       

PCB 3 $8.95 $26.85 

Heat Shrink 8 $1.05 $8.40 

Slip on Jumpers (Power Bus) 1 $7.37 $7.37 

3 Pos Term Block (Power 

Bus) 2 $1.85 $3.70 

DPDT Toggle Switch 1 $1.05 $1.05 

Fine Line Solder (12 ft) 2 $2.35 $4.70 

Push Button Switch 1 $1.35 $1.35 
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Output Pins 2 $7.94 $15.88 

#10 Ring Terminals 1 $1.95 $1.95 

        

Power Supply       

Dynamite 10A 12VDC 1 $54.99  

54.99 (without 

shipping) 

        

Telephone Pole Tree 1 $30.00 $30.00 

        

 Body 1 $106.98 $106.98 

L-Bars w/Holes       

Threaded Rods (1/4 & 3/8")       

Bed Rollers       

        

Nuts and Bolts 1 $30.47 $30.47 

1/4" hex nuts       

1/4" hex bolts       

3/8" hex nut       

1/4" lock nuts       

3/8" lock nuts       

        

Bike Chains 4 $15.00 $60.00 

        

Bike Gears 12 $2.50 (estimate) $30.00 

        

Gear Box Materials 1 $30.00 (estimate) $30.00 

        

Final Printing       

B&W 124 $0.04 $4.96 

Color 46 $0.49 $22.54 

Binding/Covers 2 $1.10 $2.20 
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Figure G-1.  Budget Breakdown
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H Design Constraints 

Increasing the safety of loggers motivated the construction of the robot, and thus precedes 

an accomplishment achieved by the robot.  Currently, the logging industry presents one of the 

most dangerous jobs in the modern world, second to king crab fishing.  Assuming the robot 

exhibits sufficient potential to undergo mass construction and implementation, and that future 

modifications incorporate a pruning saw, the death rates could decrease significantly.  Currently, 

loggers are expected to scale some structurally unsound trees to successfully harvest and/or 

remove the trees.  Upon scaling the tree, the logger must haul all the necessary equipment to 

prune branches prone to collateral damage when large chunks plummet to the ground.  Climbing 

to these heights also increases in difficulty during inclement weather conditions such as wind or 

rain.  Once trained to supervise the robot, workers could wait safely on ground level while the 

robot ascends the tree and prunes detrimental branches.  To prevent logger injury from the falling 

branches, a proximity sensor would need to be implemented to postpone pruning until the 

supervisor or employee clears the area. 

 Most components of the robot are environmentally sustainable and recyclable.  The body 

of the robot consists of primarily sheet metals that can be reused and recycle with minimal 

losses.  However, complex circuitry and components such as the actuators are not easy to 

recycle.  Similarly, various saw components might not exhibit recyclable traits.  The construction 

of the robot might require the use of dangerous chemicals when synthesizing computer 

components, some of which might not be environmentally friendly.  Lastly, depending on the 

composition, a battery probably does not exhibit recyclable traits. 

 Economically, the robot should work faster than the typical logger, thus maximizing 

profits earned by the logging industry.  Also, since workers are not allowed to work in inclement 
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weather by law, they could still proceed with logging with the robot.  The robot does not need to 

stop for the weather, and the robot could also climb trees pending natural collapse.  Finally, little 

maintenance should be required due to the simplicity mandated by the group from the beginning.  

Simple parts should be readily available, and implementation of replacement parts should be 

simple to attach.   

 Ease of manufacturability was another high priority of the group.  Once the parts were 

chosen, the group brainstormed until a certain level of simplicity in assembly was reached.  

When comparing alternatives, the number of moving parts was limited, to reduce the chance of 

failure with the final product.  Simpler design and fewer moving parts increased the reliability of 

the systems, thus making the robot fairly sustainable.  Simpler parts also reduced the amount of 

programming necessary to make the robot maneuver around complex systems.  For example, 

electrical feedback actuators were chosen deliver necessary output to the onboard computer.  

Also, the extension actuator was a different version of the same clamping actuators, thus 

reducing the number of unique code segments and circuits. 
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