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Abstract

The nature of the interaction between ultracold atoms is sensitive to their internuclear separation distance
r. When the collision partners are far apart, they are regarded as non-interacting and the state of the
system is characterized by the internal degrees of the freedom of the individual atoms, namely their re-
spective electronic and nuclear spins. However, as r begins to diminish, the atoms start to feel a weak
attractive force represented by a sum of van der Waals terms with interaction energies on the order of 10−6

Hartree. This attractive force grows stronger as the particles continue to move towards each other, with
associated interaction energies approaching ∼ 10−2 Hartree, until r reaches a point re, beyond which the
atoms experience a strong repulsive force because the two cannot physically be on top of each other.

Quantum defect theory (QDT) lends itself to calculations involving such systems because it exploits the
natural separation of length and energy scales outlined above. In the simplest QDT approximation, two
constants with respect to both field and energy, the singlet and triplet quantum defects, fully describe the
short-range properties of the collision. These parameters are used to approximate the short-range reaction
matrix Ksr with a frame transformation (FT) formula. In the long-range region, a collection of quantities
that are smooth in energy and field characterize the physics. Moreover, at low collision energies, these
long-range parameters behave as simple, analytic functions of energy to a good approximation. With the
long-range parameters and Ksr in hand, the real properties of the atomic system, such as elastic cross
sections, can be tabulated in a relatively few easy steps.

We used this FT approximation to describe elastic s-wave collisions of 6Li, 7Li, 23Na, 39K and 87Rb
atoms in which the particles enter and exit the lowest-lying interaction channel. For each, we calculated
the elastic cross section as a function of magnetic field, finding that our FT method is able to reproduce the
resonance features of a full coupled channels (FCC) calculation for systems where the hyperfine/Zeeman
splitting of the collision channels is negligible in the area where the short- and long-range regions overlap.

Thesis Supervisor: Prof. Nirav Mehta
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Chapter 1

Introduction

Ultracold systems, in particular alkali gases cooled to milli- or nanoKelvin temperatures, have found appli-

cations in a wide range of fields—from condensed matter physics to atomic, molecular, and optical (AMO)

physics to few- and many-body physics. These systems possess an extraordinary degree of control, allowing

theorists and experimentalists alike to explore a number of physical phenomena and investigate fundamen-

tal properties of quantum matter. For example, in the late 1990’s advancements in cooling technologies,

such as laser- [38] or evaporative [30] cooling and magnetic or optical trapping, allowed for the attainment

of Bose-Einstein condensates (BECs) in vapors of 87Rb [1], 7Li [6], and 23Na [12] atoms and degenerate

atomic Fermi gases of 40K [13] and 6Li [47] [54]. In all of these breakthroughs, Fano-Feshbach resonances

were the essential tool that allowed experimentalists to control the interactions between atoms [10] and

thus, it is important that the properties of these features are known to a considerable degree.

Here we develop and assess the success of a numerical method for predicting the number, positions,

and widths of Fano-Feshbach resonances in alkali collisions based on multichannel quantum defect theory

(MQDT) with the addition of an energy-independent frame transformation to approximate the short-range

reaction matrix Ksr. In Chapter 2, we outline the theoretical background of quantum scattering, focus-

ing on low-energy, two-body s-wave collisions and covering key concepts such as collision or dissociation

channels, Fano-Feshbach resonances, and the total elastic cross section. Then, in Chapter 3, we discuss

the properties of ultracold alkali collisions, the components of the total interaction potential, and what

quantum numbers are conserved. Next, in Chapter 4, we describe our MQDT-FT approximation in de-

tail, applying the method first to a single-channel collision of 7Li atoms, then a series of multichannel

problems for various alkali atoms, including 6Li, 23Na, 39K, 87Rb and 85Rb. We compare our results to

a full coupled-channels (FCC) calculation and analyze how well our MQDT-FT method is able to repro-

duce the resonance features in each collision. Lastly, in Chapter 5, we summarize our results and offer

recommendations for future projects.
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Chapter 2

Scattering in the Quantum Picture

In classical mechanics, collisions, like the one depicted in Figure 2-1, between two particles are completely

determined by their velocities and impact parameter b, that is the distance at which they would pass by

each other if they did not interact.

Figure 2-1: A “classical” collision in which a lighter, smaller particle with velocity v is scattered off at an
angle θ after colliding with a larger, heavier particle that is initially at rest.

However, in quantum mechanics, the Heisenberg uncertainty principle eliminates any notion of definite

velocities or distances such as impact parameters. Instead, the idea is to determine the likelihood that a

collision will occur, and if so, the probability that the particles will scatter through a particular angle. In

the following discussion we will only be covering elastic collisions in which the particles’ internal quantum

states are left unchanged after the interaction.

The time independent Schrodinger equation for a two-body collision is given by,[
− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V (r1, r2)

]
ψ(r1, r2) = Eψ(r1, r2) (2.1)

where m1,m2 are the masses of the particles and V (r1, r2) is the interaction between them. V (r1, r2) is

assumed to be only a function of the internuclear separation distance r = r1− r2 between the two colliding

bodies and to be spherically symmetric. As a result, we can separate Eq. (2.1) into a set of two uncoupled

Schrodinger equations, [
− ~2

2µ
∇2
r + V (r)

]
ψrel(r) = Erelψrel(r)

− ~2

2M
∇2
RψCM (R) = ECMψCM (R)

(2.2)
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The first of these describes the motion of a relative particle of the reduced mass µ = m1m2
m1+m2

in a potential

V (r), while the second characterizes the motion the center of mass of the system where M = m1 +m2 is

the total mass and R = m1r1+m2r2
M is the center of mass. Moreover, the second expression of Eq. (2.2) can

be neglected if we elect to work in the reference frame of the center of mass. Thus, our two-body collision

problem amounts to solving a single time-independent Schrodinger equation,

− ~2

2µ
∇2ψ + V (r)ψ(r) = Eψ(r). (2.3)

for a single particle of mass µ in a spherically symmetric potential V (r). Here − ~2
2µ∇

2 = 1
r2

∂
∂r (r2 ∂

∂r ) + L2

2µr

where L2 is the orbital angular momentum operator. In this newly reduced problem, we envision that the

relative particle is initially described as a plane wave, ψ(z) = Aeikz, traveling along the z-axis, as shown

in Figure 2-2 [23].

Figure 2-2: A plane wave of form eikz is incident on a symmetric scattering potential resulting in a outgoing
spherical wave eikr/r.

This plane wave encounters a centrally symmetric scattering potential, resulting in an outgoing spherical

wave ψ(r) = Af(θ) e
ikr

r . Solutions of Eq. (2.3), therefore, must approach

ψ(r) −−−→
r→∞

A

[
eikz + f(θ)

eikr

r

]
(2.4)

at large distances. The scattering amplitude f(θ) is related to the likelihood that the particle pass through

V (r) will scatter at a given angle θ [23]. By calculating the probability currents of the incident plane wave

jinc,

Pinc = jincdσ

=
~k
m
|A|2dσ

(2.5)

and outgoing spherical wave jout,

Pout = joutdσ

=
~k
m

|A|2|f |2

r2
r2dΩ

(2.6)
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and requiring that Pinc = Pout, we arrive at the following expression for the effective cross-section, or just

the cross-section of the collision,

dσ = |f(θ)|2dΩ (2.7)

where dΩ is an element of solid angle [34].This equation is also of interest to experimentalists, since it

gives the number of particles arriving at a detector spanning solid angle dΩ per unit time in terms of the

incident flux of particles in the beam. Integrating this expression, the total elastic cross-section is

σ =

∫
|f(θ)|2dΩ. (2.8)

This is the quantity that is of interest to experimentalists because it reflects the likelihood that a collision

will occur, and the problem now becomes calculating the scattering amplitudes f(θ).

Figure 2-3 schematically illustrates the behavior of the scattering potential V (r) as the separation dis-

tance r between the atoms changes. In the language of atomic physics, we say that the curve, V (r),

represents an interaction or collision channel which is available to the system. At very large r, the channel

approaches a constant energy or threshold which corresponds to a specific combination of the internal

states of the well-separated (and thus, non-interacting) atoms. The internal states of an atom, as will

be discussed in Chapter 3, are related to its nuclear and electronic spins and depend on whether any ex-

ternal magnetic or electric fields are applied to the system, which cause the energy levels/thresholds to shift.

If the threshold energy of the channel is less than the energy of the system, as E1 is in Figure 2-4, then

the channel is said to be energetically accessible, or open to the system, while if the reverse is true—i.e.,

the threshold is greater than the energy—then the channel is closed. As r begins to decrease, the atoms

begin to interact and the interaction is characterized by a weak attractive force which draws the bodies

nearer to each other. This attractive force grows stronger with decreasing r until the particles reach a

minimum separation distance re, beyond which the collision partners experience a strong repulsive force

which causes the two to separate. This strong, short-range interaction is indicated by a deep potential well

in Figure 2-3, which supports a number of bound states.

8



Figure 2-3: Schematic representation interaction channel V (r) for a two-body collision. At large r, V (r)
approaches a constant energy E1, while at very small r, it is characterized by a deep, attractive well which
supports bound states E1

b and E2
b .

In some atomic collisions, multiple interaction channels may be “coupled” together so that more than one

channel is available to the system as depicted schematically in Figure 2-4. Here, there are two interac-

tion channels, each defined by a different combination of the internal states of the atoms at large r and

approaching a different threshold as r → ∞. One of these, the lowest channel, is open, while the other is

energetically inaccessible to the system. This means that the atoms will “enter” and “exit” the collision in

the lowest channel, indicated as V1(r) in Figure 2-4. This type of collision is said to be elastic because the

particles return to their initial internal states (if the atoms exited in a different channel than they entered

in the collision is said to be inelastic). However, the latter channel supports of a number of bound states

at small r, with energies Ebound. If one of these energies is near the threshold of the entrance/exit channel,

as Eb is to E1 in Figure 2-4, then that bound state will be accessible to the system at small separation

distances r, and the atoms will form an unstable molecule temporarily, before dissociating and exiting the

collision back out V1(r). This phenomenon is called a Fano-Feshbach resonance [17].

9



Figure 2-4: Two channel collision; when the the collision threshold is at zero, E = Ecollision. The lowest
channel V1(r) is open since E1 < E, while V2(2) is closed because E2 > E. Thus, the atoms must enter
and exit the collision in quantum states corresponding to V1(r).

If the atoms are placed in an uniform magnetic field with magnitude B, then the energy thresholds will

shift, causing the interior bound states to shift as well. This means that, if the collision energy is kept at

a constant just above the threshold of the lowest channel E1, Fano-Feshbach resonances will occur at the

values of field when one of the bound state energies crosses E1.

The succeeding sections briefly cover the mathematical formalism underlying the theory of quantum scat-

tering. First, we begin by considering single-channel, two-body collisions, covering concepts such as the

scattering phase shift, scattering length, and elastic cross section. Then we generalize these results for

multichannel problems and discuss how the number, positions, and widths of Fano-Feshbach resonances

are calculated.

2.1 Single-Channel Scattering Theory

In order to calculate the elastic cross-section σ in Eq. (2.8) for a single channel problem, we need to

determine the scattering amplitudes f(θ) by solving Eq. (2.3) and matching the solution to Eq. (2.4).

The following is a brief outline of this calculation and a more in-depth analysis can be found in refs.[34],

[23], or [53]. Because V (r) is assumed to be spherically symmetric, the solution ψ(r) to Eq. (2.3) can be

represented as a superposition of wavefunctions with different values of orbital angular momentum l,

ψ(r) =
∞∑
l=0

AlPl(cos θ)Rl(r) (2.9)

10



where Al are constants, Pl(cos θ) is the lth Legendre polynomial, and Rl(r) are radial functions [34]. The

coefficients Al are by requiring that ψ(r) asymptotically approaches Eq. (2.4) and are given by,

Al =
1

2k
(2l + 1)ileiδl (2.10)

where k =
√
2µE
~ is the wavenumber and δl is the phase shift that the functions Rl(r) accumulate in V (r)

[34]. Figure 2-5 shows how much phase the wavefunction accumulates in a square well potential,

V sqr(r) =

−V0, r < r0

0, r ≥ r0
(2.11)

where V0 is the depth of the well and r0 is the width of the well.

Figure 2-5: Wavefunctions ψ(r) for V (r) = 0 (black curve) and V (r) = V sqr(r) (red curve). In the presence
of a potential at small r, ψ(r) accumulates phase because the kinetic energy is greater and therefore, the
wavelength is smaller. This causes the wavefunction to differ by an amount δl at large r.

Asymptotically, Rl(r) approach

Rl(r) −−−→
r→∞

1

ir

[
(−i)lei(kr+δl) − ile−i(kr+δl)

]
(2.12)

and therefore, ψ(r) goes as

ψ −−−→
r→∞

1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
(−1)l+1e−ikr + Sle

ikr
]
, (2.13)

11



where Sl = e2iδl , at large r [34]. Next, we expand the plane wave eikz in Eq. (2.4), using Rayleigh’s formula,

eikz −−−→
r→∞

1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
(−1)l+1e−ikr + eikr

]
(2.14)

and match the resulting expression to Eq. (2.13) [34]. This leads to the following formula for the scattering

amplitude,

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(Sl − 1)Pl(cos θ). (2.15)

Substituting this expression in Eq. (2.8) and recalling the orthogonality relationship between the Legendre

polynomials [34], the total-cross section is,

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl (2.16)

In the following chapters, we will be considering ultracold collisions which are dominated the l = 0 or

s-wave term. In this low-energy regime,

f0 =
1

2ik
(e2iδ0 − 1) ≈ δ0

k
(2.17)

where δ0 is the phase shift for the l = 0 partial wave, and σ is well-approximated by

σ ≈ 4πa2 (2.18)

for distinguishable particles, or

σ ≈ 8πa2 (2.19)

for identical particles, where a = − limk→0
δ0
k is called the “scattering length” of the collision [34]. At

higher energies, a is related to the s-wave phase shift by the effective range formula,

k cot δ0 = −1

a
+

1

2
rek

2 + ... (2.20)

where re is the “effective range” of the potential well [17]. The scattering length fully encapsulates the

properties of a low-energy collision. A negative a, such as in Figure 2-6, signifies that V (r) fails to support

a bound state near-zero energy; that is ψ(r) fails to turn downward before the edge of the potential and

therefore, cannot be matched a decaying exponential function which characterizes a bound state outside

the well [17]. As the depth of the potential is increased, the wavelength of ψ(r) decreases, “flattening out”

the wavefunction beyond r0, as depicted in Figure 2-7, and making a more negative until it eventually

approaches −∞ [17]. This means that V (r) is on the verge of supporting a new bound state, and if its

attractive well is made slightly deeper, the slope of ψ(r) at r0 will turn over so that a bound state is

support and a is positive, as in Figure 2-8 [17].

12



Figure 2-6: Scattering length a for a low-energy, two atom collision in an attractive, spherically symmetric
potential of radius r0. The scattering length is defined as the x-intercept of the wavefunction beyond r0
and is negative here.

Figure 2-7: Scattering length a for a low-energy, two atom collision in a spherically symmetric potential
of radius r0 which is more attractive than that in Figure 2-6. Consequently, a is more negative and the
wavefunction at large r has a more gradual slope.

13



Figure 2-8: Scattering length a for a low-energy, two atom collision in a spherically symmetric potential of
radius r0 which is more attractive than that in Figure 2-7. The increase in the strength of the potential
has decreased the wavelength of ψ(r) at small r, causing ψ(r) to turn downward at r0, so that a bound
state wavefunction can be match to it. As a result, a is now positive.

2.2 Multi-Channel Scattering Theory

The full relative wavefunction for an N -channel, two-body collision is,

Ψ(r, ξ) =
N∑
j=1

ψj(r)Υj(ξ) (2.21)

where the index j labels the N channels [18]. Here ψi are the respective channel wave functions, ξ

represents all internal degrees of freedom, and Υi(ξ) are the eigenstates of the “internal Hamiltonian” (i.e.,

the Hamiltonian of the well-separated collision partners) Hξ, with associated energy eigenvalues Ei. These

Ei define the energy thresholds of the channels, while the internal states Υi correspond to the collision

channels for the scattering process [18]. The full wavefunction satisfies,[
−~
2µ

d2

dr2
+Hξ +W (r, ξ)

]
Ψ(r, ξ) = EΨ(r, ξ), (2.22)

where W (r, ξ) is an operator that acts on functions of r and ξ and we assume that it vanishes as r →∞,

and obeys the boundary condition,

Ψ(r, ξ) −−−→
r→∞

Υi(ξ)e
ikiz +

No∑
j=1

fi→j(θ)
eikjr

r
Υj(ξ) (2.23)

14



Here No denotes the number of open channels and ki =

√
2µ(E−Ei)

~ and kj =

√
2µ(E−Ej)

~ are respective

wavenumbers of the ith and jth channels.

Inserting the expansion for Ψ(r, ξ) into Eq. (2.22) and taking the overlap with Υj(ξ), we arrive at the

coupled-channels equation:

− ~
2µ
∇2ψj(r) +

N∑
j

Wji(r)ψi(r) = (E − Ej)δjiψj(r) (2.24)

where Wji(r) =
∫
dξΥj(ξ)W (r, ξ)Υi(ξ) [18]. Similarly to the single-channel problem, the wavefunction

ψi(r) of an open channel should approach

ψj(r) −−−→
r→∞

∝ eikizδij + fi→j(θ)
eikjr

r
(2.25)

while that of a closed channel must go as

ψj(r) −−−→
r→∞

∝ e−κjr

r
(2.26)

with κj = ikj [18]. Like Eq. (2.4), the first term of Eq. (2.25) represents the incident wave in state Υi

traveling the ẑ-direction, while the second term represents the scattered, spherical wave. Here, fi→j is

related to the probability that the particle will scatter out into the channel defined by Υj , and the effective

cross section dσ is given by,

dσ =
kj
ki
|fi→j |2dΩ. (2.27)

[18]. The total cross-section is given by

σtot =
∑

σi→j (2.28)

where σi→j is the integral of Eq. (2.27) over all solid angles dΩ = r2 sin θdθ. For an elastic collision, the

particles enter and exit in the same channel, and the total elastic cross section is,

σel = σi→i =

∫
|fi→i|2dΩ. (2.29)

To determine fi→j , we follow a similar procedure as in Section 2.1. First, we expand the open channel

wavefunction ψi(r) as a superposition of partial waves,

ψi(r) =
∞∑
l=0

uil(r)

r
Pl(cos θ), (2.30)

substitute this expansion into Eq. (2.24), and take the overlap with Pl′ :

− ~2

2µ

∂2uil
∂r2

+
~2l(l + 1)

2µr2
uil(r) +

∑
j,l′

V i,j
l,l′ (r)u

j
l′(r) = (E − Ei)uil(r) (2.31)
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[18]. Since we are assuming the interaction between the particles is spherically symmetric, V i,j
l,l′ (r) =

Vij(r)δl,l′ and each partial wave can be treated separately [18]:

− ~2

2µ

∂2uil
∂r2

+
~2l(l + 1)

2µr2
uil(r) +

∑
j

V i,j
l (r)ujl (r) = (E − Ei)uil(r). (2.32)

Now, at large r, we assume that the elements of the potential matrix Vij(r) vanish and Eq. (2.32) becomes,

−
∂2uil
∂r2

+
l(l + 1)

r2
uil(r)− k2i uil(r) = 0 (2.33)

with k2i = 2µ(E−Ei)
~2 . The solutions to Eq. (2.33) depend on whether or not the ith channel energetically

accessible to the system. If the channel is closed, i.e., E − Ei < 0, then the solution is proportional to a

decaying exponential

uil −−−→r→∞
∝ eκir. (2.34)

If the channel is open, i.e., E − Ei > 0, then the solution/wavefunction is a linear combination of the

energy-normalized Riccati-Bessel functions sl(kr) and cl(kr) [42]:

uil,jl′(r) −−−→
r→∞

δi,jδl,l′sl(kir) +Kil,jl′cl′(kjr) (2.35)

where

sl(kir) = kirjl(kir) −−−→
r→∞

√
2µ

~2πki
sin

(
kir −

lπ

2

)
, (2.36)

and

cl(kir) = −kirnl(kir) −−−→
r→∞

√
2µ

~2πki
cos

(
kir −

lπ

2

)
(2.37)

and jl(x) and nl(x) are the spherical Bessel functions of the first and second kind, respectively. Eq. (2.35)

defines the “K-matrix”, or “reaction matrix”. The diagonal elements of these matrix are equal to the

reaction amplitude tan δl where δl is the phase shift [17]. In matrix form, Eq. (2.35) becomes,

U = s+Kc (2.38)

where U is the solution matrix with elements uil,jl′(r) and s and c are diagonal matrices with elements

sl(kir)δijδll′ and cl(kir)δijδll′ , respectively. The asymptotic solution in the open channels can also be

written in terms of incoming and outgoing waves,

φil,jl′ −−−→
r→∞

δi,jδl,l′f
−
l (kir)− Sil,jl′f+l′ (kjr) (2.39)

where

f+l (kir) =

√
2µ

~2πki
ei(kir−lπ/2) (2.40)

and

f−l (kir) =

√
2µ

~2πki
e−i(kir−lπ/2) (2.41)
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[18]. Eq. (2.39) defines the “S-matrix”, or “scattering matrix”. The diagonal elements of these matrix are

equal to the scattering amplitude e2iδl [17]. In matrix form, Eq. (2.39) is,

Φ = f− − Sf+. (2.42)

Note, that s, c, f−, f+,K, S and U are No ×No matrices. The S- and K-matrices are related by

S = (1 + iK)(1− iK)−1 (2.43)

[18]. After rewriting the asymptotic form of ψi(r) in the terms of these matrices, we expand the plane

wave eikiz using the Rayleigh formula as,

eikiz =

√
~2πki

2µ

1

2kir

∞∑
l=0

il−1(2l + 1)
(
f+(kir)− f−(kir)

)
Pl(cos θ) (2.44)

so that Eq. (2.25) becomes,

ψj(r) = δij

[√
~2πki

2µ

1

2kir

∞∑
l=0

il−1(2l + 1)
(
f+(kir)− f−(kir)

)
Pl(cos θ)

]
+ fi→j(θ)

eikjr

r
. (2.45)

Matching this expression to,

ψj(r) =
∞∑
l=0

Pl(cos θ)
φil,jl′(r)

r
(2.46)

we find that fi→j

fi→j =
1

2i
√
kikj

∞∑
l=0

(2l + 1)(Sil,jl′ − δijδll′)Pl(cos θ). (2.47)

For an s-wave collision this reduces to

f l=0
i→i =

√
4π

kikj

(Si,j − δij)
2i

. (2.48)

and the total elastic cross section for the l = 0 partial wave is,

σel = σi→i =
π

k2i
|Si,i − 1|2. (2.49)

In the succeeding chapters, our goal will be to accurately calculate this last quantity, σel, as a function

of magnetic field B for multichannel s-wave collisions of alkali atoms. In doing so, we will be able to

identify and predict the number, positions, and widths of Fano-Feshbach resonances, which appear as

sharp features in the graphs of σel versus B, within these systems—parameters which are of interest to

experimentalists. Moreover, for all of the calculations performed, we only consider elastic collision in which

there is only one asymptotically open channel and typically four additional closed channels that contribute

to the short-range physics.
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Chapter 3

Properties of Ultracold Alkali Collisions

The first step in any scattering calculation is identifying the components of the interaction between the

collision partners and the asymptotic dissociation channels of the collision. In this chapter, we will discuss

the terms that comprise the total interaction potential V (r) of two alkali atoms in their electronic ground

states, beginning with the interactions of a single atoms which dominate V (r) at very large r and define the

collision channels. We then tackle the two-atom problem, outlining the full interaction potential, covering

which quantum numbers are conserved in the collision, and discussing the various bases one could elect to

work in.

3.1 Single Atom Interactions

Alkali atoms inhabit the leftmost column of the periodic table, including every element in group 1 except

for hydrogen. In their ground state configuration, these atoms have a lone valence electron occupying a

half-filled s-orbital. The stationary states of these atoms are characterized by their internal degrees of

freedom, namely the spin ~s of the valence electron and the spin ~i of the atomic nucleus, and can be found

by diagonalizing the Hamiltonian H,

HHZ = Hhf +HZ (3.1)

where Hhf is the hyperfine interaction and HZ is the Zeeman interaction.

3.1.1 Hyperfine Interaction

Within an atom, magnetic interactions couple the spin and angular momenta of the composite bodies of

atom (i.e, the electrons and nucleus) to each other and to any externally applied magnetic field ~B. The

hyperfine interaction Hhf between the electronic and nuclear magnetic dipoles is one such perturbation,

coupling the electronic spin ~s with the nuclear spin ~i into the total spin ~f = ~s+~i, ranging from
∣∣∣~s+~i

∣∣∣ to∣∣∣~s−~i∣∣∣ in integer steps. Hhf may be written as,

Hhf =
Ahf

2
(~s ·~i) (3.2)
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where Ahf is the hyperfine constant of the atomic species of interest in their electronic ground state.

Table 3.1 lists the values of Ahf along with the nuclear spins for various alkali atoms and the electronic

spin ~s = 1
2 for every alkali atom since each only has a single valence electron. Using the definition of ~f , we

can rewrite (~s ·~i) as f2−s2−i2
2 and Eq. (3.2) as,

Hhf =
Ahf

2

(
f2 − s2 − i2

)
. (3.3)

The hyperfine effect splits the degeneracy in n, separating the electronic energy levels of the atom based on

their value of f . Each of these “hyperfine levels” is (2f +1)-fold degenerate and characterized by the set of

quantum numbers n, f , and the projection of f on the z-axis, mf . That is, the set of states |(s i) n f mf 〉
are stationary states of Hhf with associated eigenvalues of Ahf~2

2

(
f(f + 1) − s(s + 1) − i(i + 1)

)
. Note,

however, that the projections of the electronic and nuclear spins along the z-axis, ms and mi, are not

conserved by Hhf because this interaction “mixes” states with different ms and mi together. In other

words, the states |(s i) n f mf 〉 are linear combinations of the states |n s ms i mi〉,

|(s i) n f mf 〉 =
∑
ms,mi

C
f,mf
ms,mi |n s ms i mi〉 (3.4)

where C
f,mf
ms,mi are the appropriate Clebsch-Gordan coefficients.

3.1.2 Zeeman Interaction

When an atom is placed in a uniform external field ~B, the electronic energy levels shift and split due to

the coupling of ~B with the nuclear and electronic magnetic moments. This phenomenon is known as the

Zeeman effect, and for an alkali atom in its ground state (with l = 0), the perturbation caused by this

interaction is given by,

HZ = −( ~µs + ~µi) · ~B (3.5)

where ~µs and ~µi are the magnetic dipole moments of the valence electron and nucleus, respectively. ~µs and

~µi can be expressed as ~µs = −gsµB~s and ~µi = −giµB~i where µB = e~
2me

= 1.3996244936142 MHz/Gauss is

the Bohr magneton, gs = 2.00231930436256 is the electronic gyromagnetic ratio expressed in units of µB,

gi is the nuclear gyromagnetic ratio expressed in units of µB, ~s is the electronic spin and ~i is the nuclear

spin. The value for gi for each alkali species can be found in Table 3.1. Choosing ~B to lie along the z-axis

and substituting in the expressions for ~µs and ~µi, H
Z becomes,

HZ = µBB(gssz + giiz) (3.6)

where B is the magnitude of the applied field and sz and iz are operators which pick out the component

of the electronic and nuclear spins along the ẑ-axis. As the magnitude of the applied field B increases,

the Zeeman effect begins to dominate the hyperfine interaction, breaking the degeneracy in f and caus-

ing the hyperfine energy levels to shift and separate further. Good quantum numbers for the Zeeman

interaction are n, i, s,ms, and mi and eigenstates of HZ are |n s ms i mi〉 with corresponding eigenvalues

µBB~(gsms + gimi). The total angular momentum f and its z-projection mf are no longer good quantum
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numbers because the stationary states of Eq. (3.6) are linear combinations of states with different values

of theses quantities. Put another way, the operators HZ and HHF are not diagonal in the same basis

because the operators sz and iz do not commute with f2 and therefore, one cannot find states that are

simultaneous eigenstates of both HZ and Hhf .

Moreover, as a result of this fact, there is some freedom in deciding which atomic basis to work in.

Presently, we have elected to use the single-atom hyperfine basis defined as |(s i) n f mf 〉, since at zero

field, these are the eigenstates of Eq. (3.1). Another choice is the Zeeman basis with states |n s ms i mi〉;
however, the Hamiltonian is only diagonal in this basis as B → ∞ and therefore, it is less advantageous

to construct H in terms of the |n s ms i mi〉 kets. Figures 3-1 and 3-2 show the hyperfine and Zeeman

splitting of the atomic ground state of 6Li and 7Li.
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Figure 3-1: Hyperfine and Zeeman splitting of 6Li plotted versus magnetic field B. The labels correspond
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Figure 3-2: Hyperfine and Zeeman splitting of 7Li plotted versus magnetic field B. The labels correspond
following hyperfine states at zero field: 1 = |1 1〉, 2 = |1 0〉, 3 = |1 − 1〉, 4 = |2 − 2〉, 5 = |2 − 1〉, 6 = |2 0〉,
7 = |2 1〉, 8 = |2 2〉.

Isotope Ahf (MHz) gi ~i mass (amu)

6Li 152.1368407(20) -0.0004476540(3) 1 6.0151223
7Li 401.7520433(5) -0.001182213(6) 3/2 7.016004

23Na 885.8130644(5) -0.0008046108(8) 3/2 22.98976928
39K 230.8598601(3) -0.00014193489(12) 3/2 38.963708
40K -285.7308(24) 0.000176490(34) 4 39.964008
85Rb 1011.910813(2) -0.0002936400(6) 5/2 84.911789738
87Rb 3417.34130642(15) -0.0009951414(10) 3/2 86.909180527

Table 3.1: Hyperfine constants Ahf , nuclear g-factors gi, nuclear spins ~i, and masses for various isotopes
of alkali atoms. The values for the Ahf ’s and gi’s come from [2].

3.2 Two Atom Interactions

The full interaction potential for two ground state alkali atoms can be broken down into three components:

(1) the Born-Oppenheimer potentials which correspond to the ground singlet X1Σ+
g (S = 0) and lowest-

lying triplet a3Σ+
u (S = 1) molecular states, (2) the hyperfine interaction of each atom HHF

α and (3)

Zeeman interactions HZ
α of each atom:

P0V0(r) + P1V1(r) +
2∑

α=1

(
Hhf
α +HZ

α

)
. (3.7)
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Here P0/1 are the singlet and triplet projection operators, V0/1(r) are the ground state singlet and triplet

Born-Oppenheimer potentials, and the Greek letter α indexes the atoms. The projection operators are

given by

PS =
∑

IMSMI

|S MS I MI〉 〈S MS I MI | (3.8)

where S is the total electric spin quantum number ranging from |~s1 − ~s2| to |~s1 + ~s2| in integer steps, MS

the total electronic spin projection range from −S to S in integer steps, I is total nuclear spin quantum

number ranging from
∣∣∣~i1 − ~i2∣∣∣ to

∣∣∣~i1 + ~i2

∣∣∣ in integer steps, and MI is the total nuclear spin projection

ranging from −I to I in integer steps. Eq. (3.8) picks out the portion of the two-atom state |αβ〉 along the

singlet |0 MS I MI〉 or triplet |1 MS I MI〉 molecular state. The Born-Oppenheimer potentials describe

the interaction between the atoms. Refs.[45] and [44] provide analytical forms for the X1Σ+
g and a3Σ+

u

potentials of 6Li2 and 7Li2, ref.[31] for 6Li2, ref.[14] for 39K2 and 40K2, and ref.[52] for 87Rb2 and 85Rb2.

It is important to note that all of the operators—Hhf
α , HZ

α , and P0/1—in Eq. (3.7) cannot be diagonalized

in the same basis. Recall from the previous section that the hyperfine and Zeeman operators (for each

atom) do not commute, and therefore do not share the same eigenstates. Likewise, the singlet and triplet

projection operators, P0/1 are not diagonal in the stationary states of the hyperfine interaction because the

total spin operator ~S = ~s1+ ~s2 does not commute with total angular momentum operator f2 for each atom.

However, P0/1 and HZ
α do commute with each other. Thus, the total Hamiltonian will have off-diagonal

elements no matter which basis we choose to construct Eq. (3.7) in. It is exactly this off-diagonal nature of

the Hamiltonian which necessitates a full “coupled-channels” calculation where each collisional channel is

labeled by the internal states of the individual atoms. However, this does not mean that all channels will

couple together. Because the potential described by Eq. (3.7) is central (any dipolar interaction between

the atoms has been neglected) the total angular momentum of the system cannot change during the inter-

action and the total spin projection MF = mf1 + mf2 = MS + MI must be conserved. This means that

states with the same MF will couple together.

Moreover, since each term in Eq. (3.7) is characterized by a different set of “good” quantum numbers,

there is some freedom in choosing which basis set to use for solving a scattering problem. One could select

to work in the “molecular basis” given by

|αβ〉 = |(s1 s2) S MS (i1 i2) I MI〉 (3.9)

where the electronic and nuclear spins of the composite atoms are coupled, resulting in the total electronic

spin ~S = ~s1+~s2 and the total nuclear spin ~I =~i1+~i2 and MS and MI are their respective projections. The

projection operators P0/1 and the combined Zeeman interactions of the particles HZ
1 +HZ

2 are diagonal in

this basis. However, as noted above the hyperfine interaction for each atom is proportional the term ~s ·~i,
which couples its electronic and nuclear spin to some total angular momentum ~f , the magnitude of which

ranges from |s− i| to |s+ i| in integer steps. This means that the f , s, and i values for each atom are

good quantum numbers for describing HHF
α and it will, therefore, not be diagonal in the molecular basis.
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Another choice is the “uncoupled-atomic basis”:

|αβ〉 = |s1 ms1 i1 mi1 s2 ms2 i2 mi2〉 . (3.10)

Like the molecular basis, both the projection operators and Zeeman interactions are diagonal in this basis,

but the hyperfine interactions of the individual atoms are not. Finally, one could also elect to use “two-atom

hyperfine basis” with states

|αβ〉 = |(s1 i1) f1 mf1 (s2 i2) f2 mf2〉 . (3.11)

Only the hyperfine interaction is diagonal in this basis, P0/1 and HZ
α are not.

One also must take into account whether the collision partners are identical when selecting which basis set

to use. Following the notation of refs. [51] and [37] we can properly represent the symmetry requirements

for identical bosons or fermions by defining the basis kets as,

|{αβ}〉 =
|αβ〉 ± (−1)l |βα〉√

2(1 + δα,β)
. (3.12)

where the Greek letters refer to the internal states of the individual atoms, the ± specifies if the particles

are bosons or fermions and the factor (−1)l accounts for the dependence of the internal/spin state on the

symmetry of the spatial part of the wavefunction. For our collisions of two alkali atoms, we have chosen

to work in a symmetrized version of the atomic hyperfine basis given by,

|{f1 mf1 f2 mf2}〉 =
|f1 mf1 f2 mf2〉 ± (−1)l |f2 mf2 f1 mf1〉√

2(1 + δ1,2)
. (3.13)

We have elected to use this basis because the states |{f1 mf1 f2 mf2}〉 are the eigenstates of the threshold

Hamiltonian,

Hthresh =

2∑
α=1

Hhf
α +HZ

α (3.14)

in the limit that B = 0, and therefore, define the collision channels at zero field and their corresponding

eigenvalues define the channel thresholds. In Section 3.6, we give expressions for the elements of the pro-

jection operators and the total two-atom hyperfine/Zeeman operator in the symmetrized hyperfine basis.

At finite B, the collision channels and energy thresholds are the eigenstates and eigenvalues, respectively,

of Hthresh. Figures 3-3 and 3-4 show the energy thresholds for collisions of 6Li2 with MF = 0 and 7Li2

with MF = 2.
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Figure 3-3: Hyperfine and Zeeman splitting for 6Li2 with MF = 0. Each threshold is labeled by the states
of the individual atoms seen in Figure 3-1.
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Figure 3-4: Hyperfine and Zeeman splitting for 7Li2 with MF = 2. Each threshold is labeled by the states
of the individual atoms seen in Figure 3-2.
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3.3 Operators in Symmetrized Hyperfine Basis

3.3.1 Hyperfine and Zeeman Interactions

The matrix elements of the two-atom hyperfine/Zeeman Hamiltonian HHZ
1 + HHZ

2 in the symmetrized

hyperfine basis |{αβ}〉 = |{f1 mf1 f2 mf2}〉 are,

〈
{α′β′}

∣∣HHZ
1 +HHZ

2 |{αβ}〉 =
1√

(1 + δα′β′)(1 + δαβ)

[ 〈
α′
∣∣HHZ |α〉 δββ′

+
〈
β′
∣∣HHZ |β〉 δαα′ ± (−1)l

( 〈
α′
∣∣HHZ |β〉 δβ′α +

〈
β′
∣∣HHZ |α〉 δβα′

)] (3.15)

where the terms 〈α′|HHZ |α〉 are the elements of the HHZ
α = Hhf

α + HZ
α operator in the single atom

hyperfine basis |α〉 = |fmf 〉:

〈
f ′ m′f

∣∣HHZ |f mf 〉 =
Ahf

2

[
f(f + 1)− s(s+ 1)− i(i+ 1)

]
δff ′δmfm′

f

+µBB
√

(2f ′ + 1)(2f + 1)
∑
msmi

(gsms + gimi)

(
s i f ′

ms mi −m′f

)(
s i f

ms mi −mf

)
δmfm′

f

(3.16)

[37].

3.3.2 Projection Operators

In the symmetrized hyperfine basis, the elements of the singlet and triplet projection operators P0/1 become,

〈
{f ′1 m′f1 f

′
2 m

′
f2}
∣∣P0/1 |{f1 mf1 f2 mf2}〉 =〈

f ′1 m
′
f1
f ′2 m

′
f2

∣∣∣P0/1 |f1 mf1 f2 mf2〉 ± (−1)l
〈
f ′2 m

′
f2
f ′1 m

′
f1

∣∣∣P0/1 |f2 mf2 f1 mf1〉√
2(1 + δ12)

(3.17)

[37]. Here
〈
f ′1 m

′
f1
f ′2 m

′
f2

∣∣∣P0/1 |f1 mf1 f2 mf2〉 are the elements of P0/1 in the unsymmetrized hyperfine

basis |f1 mf1 f2 mf2〉,〈
f ′1 m

′
f1 f

′
2 m

′
f2

∣∣P0/1 |f1 mf1 f2 mf2〉 =
∑

S I mS mI

δS,(1 or 0) 〈S mS I mI |f1 mf1 f2 mf2〉×〈
S mS I mI

∣∣f ′1 m′f1 f ′2 m′f2〉 . (3.18)

Eq. (3.18) is used for collisions between distinguishable atoms and is found by expanding the hyperfine

states into the basis functions which are eigenvalues of the triplet and singlet operators:

|f1 mf1 f2 mf2〉 =
∑

S I mS mI

|S mS I mI〉 〈S mS I mI |f1 mf1 f2 mf2〉 (3.19)
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where |S mS I mI〉 〈S mS I mI |f1 mf1 f2 mf2〉 are the appropriate Clebsch-Gordan coefficient given by

[37],

〈S mS I mI |f1 mf1 f2 mf2〉 =

(−1)2i2−2s1−mf1−mf2−mS−mI
√

(2f1 + 1)(2f2 + 1)(2S + 1)(2I + 1)×∑
ms1mi1ms2mi2

(
s1 i1 f1

ms1 mi1 −mf1

)(
s2 i2 f2

ms2 mi2 −mf2

)
×

(
s1 s2 S

ms1 ms2 −mS

)(
i1 i2 I

mi1 mi2 −mI

)
(3.20)
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Chapter 4

Quantum Defect Theory

4.1 History of Quantum Defect Theory

The concept of the quantum defect arose from modifications made to the Bohr-Sommerfeld model of the

hydrogen atom to account for the effects that interactions between electrons had on the spectra of non-

hydrogenic atoms (i.e., atoms containing more than one electron). In the early 1910’s, Niels Bohr and

Arnold Sommerfeld had built a semi-classical model that accurately described hydrogen atom, including

its fine structure, and ions containing a single electron [33]. However, the Bohr-Sommerfeld model had

been specifically tailored to hydrogenic particles–it did not account for interactions between electrons–and

failed to accurately reproduce the spectral lines of more complicated atoms [4] [5] [50]. In 1921, Erwin

Schrodinger attempted to generalize the Born-Sommerfeld model to include these effects, introducing what

he called the “Quantendefekt,” or quantum defect in English, and the idea of an effective quantum number

[48]. Expanding on the Bohr-Sommerfield model, Schrodinger considered the path or motion of a valence,

or outermost, electron around the atomic nucleus, dividing it into two different regions based on the dis-

tance separating the two bodies [48]. Schrodinger’s justification for this division that was at long-range,

the valence electron was almost entirely shielded from the nucleus by the other electrons, and therefore, it

only “saw” an effective nuclear charge Z = 1, while at short-range, the electron would feel the full nuclear

charge Z [48].

Schrodinger’s concept of the quantum defect remained in his later quantum theory of wave mechanics

[49], which, along with Heisenberg’s matrix formulation [25], forms the basis of modern quantum the-

ory. In modern quantum theory, the quantum defect, now denoted as µ, is related to the short-range

phase shift δsr = µπ that an electron accumulates when it penetrates the atomic core, in addition to the

phase shift from the effective Coulomb potential that it experiences when it is farther from the nucleus

[46]. Moreover, the key idea behind Schrodinger’s “Quantendefekt”—i.e., the separation of the electronic

interaction into short- and long-range regions—became the basis for modern quantum defect theory (QDT).

Over the decades, this idea has been used to compute bound to bound state transitions of atoms [3],

explore photoionization [7], and to develop a multichannel quantum defect theory (MQDT) to analyze

complex atomic [19] and molecular [15] [16] spectra. In the 1980’s, MQDT was further generalized to work

27



for other long-range potentials besides the the typical Coulomb interaction [21] [22] [39] [43]. Recently, it

has been applied to atomic and molecular collisions [29], especially cold or ultracold collisions [9] [40] [11]

to predict scattering observables like the locations and width of Fano-Feshbach resonances.

4.2 Application of QDT to Ultracold Collisions

Collisions between ultracold atoms are exceedingly complex. Atoms contain a multitude of internal states

defined by their nuclear and electronic spins as we saw in Chapter 3. What’s more, all of these states have

to be accounted for since their associated energies are typically large compared to the kinetic energy of

the atoms. This means that one has to simultaneously solve a set of coupled radial Schrodinger equations,

leading to expensive, intensive computations.

This is where MQDT comes in. Because it takes advantage of the natural separation of the energy

and length scales in collision problems, MQDT greatly reduces the computation time and complexity. In

much the same fashion as Schrodinger, modern QDT separates the collision problem into short-range and

long-range regions. At small internuclear separation distances r, the interaction between the atoms is

characterized by the potentials wells of the ground state singlet and lowest lying triplet Born-Oppenheimer

potentials, V0(r) and V1(r). The depths of these wells, at 10−2 − 10−4 Hartree, are much greater than the

range of ultra-low collision energies Ecollision that we are interested in. This means that the wavefunction

in this region and the short-range phase shifts (and thus, the quantum defects) are largely insensitive to

variations in the collision energy and any applied electric or magnetic fields. This means that one only

needs to perform this short-range calculation at a single value of energy and field. Beyond about 30 a0,

the strong attractive pull of these potential wells is negligible and the interatomic interaction, instead, is

characterized by a sum of attractive van der Waals terms with energies on the order of 103 Hartree. For

alkali atoms, this sum is given by

VLR(r) = −C6

r6
− C8

r8
− C10

r10
(4.1)

where C6, C8, and C10 are the appropriate dispersion coefficients [35]. Because VLR is weaker than the

strong potential wells which dominate at short-range, the physics of this region displays greater sensitivity

to Ecollision and any external fields. Eq. (4.1) quickly vanishes as r → ∞, and out at these separation

distances, the colliding particles are essentially non-interacting and the system is defined by the individual

internal states of the atoms. After separating the atomic collision into these three regions, the solutions to

the Schrodinger equation in each are stitched together by applying appropriate boundary conditions (i.e.,

requiring that the wavefunction and its derivative are continuous) where the regions overlap with each

other. These boundary conditions lead to expressions for the quantum defects and the so-called “QDT”

parameters.

In sum, MQDT describes both the long-range physics and short-range physics in terms of a collection

of simple parameters. The long-range parameter are analytical functions of energy which can be well-

approximated by simple expressions in the limit of small collision energy, while the short-range parameters

are nearly independent of energy and field. The accuracy of this procedure relies on the availability of a pair
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of accurate, linearly independent reference wave functions in each channel at large r. The standardization

technique of Ruzic et al. ensures the maximal linear independence between reference functions even for

higher partial wave angular momentum [46] .

We will begin our discussion of quantum defect theory by first considering a single-channel collision of

two 7Li atoms, calculating the background scattering length and bound states of one channel, then gen-

eralizing the theory for N collision channels, we will see how QDT can be used to predict the number,

positions, and widths of Fano-Feshbach resonances in ultracold alkali collisions.

The total interaction for the 7Li2 s-wave collision, with a total orbital angular momentum ~Ltot = ~l1+~l2+~L =

0 where l1 and l2 are the orbital angular momenta of the separated atoms and L is the relative orbital

angular momentum of the two collision partners, is given by,

V (r) = P0V0(r) + P1V1(r) +
2∑

α=1

HHZ
α (4.2)

where the index α labels the two atoms, HHZ is the hyperfine/Zeeman interaction for each atom which

is given by Eq. (3.1), P0/1 are the singlet and triplet projection operators and V0(r) and V1(r) are the

Born-Oppenheimer potentials which correspond to the ground state singlet and lowest lying triplet molec-

ular states, respectively. The behavior of the Born-Oppenheimer potentials, V0(r) and V1(r), for 7Li2 is

shown in Figure 4-1. At long-range, V0(r) and V1(r) both approach Eq. (4.1), while at small r, they are

characterized by deep wells. Moreover, because the −C6
r6

term dominates VLR, it is advantageous to cast

Eq. (4.2) in terms of the van der Waals length β =
(2µC6

~2
)1/4

and energy Eβ = ~2
2µβ2 , where µ is the

reduced mass of the system and C6 is the appropriate dispersion coefficient. For 7Li2, β = 65.2049 a0,

Eβ = 1.8390× 10−8 Hartree, µ = 6394.7 a.u., and C6 = 1393.39 Hartree/a60.

We initially construct V (r) in the symmetrized hyperfine basis using Eqs.(3.15) and (3.17) to calculate the

matrix elements of P0, P1 and HHZ
α . Recall that because V (r) is central, the z-projection of the total spin

MF is conserved and thus we need only to consider the symmetrized hyperfine states with mfα+mfβ = MF

when calculating the elements of these operators. For our present calculations we will consider an 7Li2

collision with MF = 2. The 7Li2 states
∣∣{fα mfα fβ mfβ}

〉
with MF = 2 are:

|{1 1 1 1}〉

|{1 1 2 1}〉

|{1 0 2 2}〉

|{2 0 2 2}〉

|{2 1 2 1}〉 .

(4.3)
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It should be noted that the states in Eq. (4.3) only correspond to the interaction channels at zero-field; in

general, the channels are the eigenstates of,

HHZ = HHZ
1 +HHZ

2 (4.4)

and the channel thresholds Ethreshi are eigenvalues of Eq. (4.4), which can be seen in Figure 3-4 as functions

of magnetic field B.

4.3 Single Channel QDT

For our single-channel collision, we will calculate the bound states of the lowest lying 7Li2 channel with

MT = 2. This channel corresponds to the symmetrized hyperfine state |{1 1 1 1}〉 state at B = 0 and the

curve labeled (1, 1) in Figure 3-4 shows its energy threshold as a function of magnetic field. The total

Hamiltonian in van der Waals units is,

H =
d2

dr2
+ V (r) +HHZ (4.5)

where V (r) = P0V0(r)+P1V1(r) and HHZ = HHZ
α +HHZ

β . Here, P0, P1, and HHZ
α are just single elements,

P0 = 〈{1 1 1 1}|P0 |{1 1 1 1}〉 , (4.6)

P1 = 〈{1 1 1 1}|P1 |{1 1 1 1}〉 , (4.7)

and

HHZ = 〈{1 1 1 1}|HHZ
α +HHZ

β |{1 1 1 1}〉 , (4.8)

rather than matrices, and are evaluated using Eqs.(3.15) and (3.17). P0 and P1 pick out the portion of

|{1 1 1 1}〉 along the singlet and triplet states, respectively, and HHZ is equal to the channel threshold at

zero field.
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Figure 4-1: Ground state singlet X1Σ+
g and lowest lying triplet a3Σ+

u states for 7Li2 [45] [44].

If E > Ethresh, then the channel is open, and a continuum of physical scattering solutions are accessible to

the system. On the other hand, if E < Ethresh, the channel is closed and the wavefunction must vanish as

r →∞. In the following sections, we will consider the latter of these cases (i.e., E < Ethresh), using QDT

to calculate the bound states of this channel. This essentially boils down to separating the 7Li2 interaction

into three different regions, solving the radial Schrodinger equation in each, and matching the solutions to

calculate relevant scattering observables.

4.3.1 Short-Range Region

At short-range (i.e., r ≤ 30 a0), the deep wells of the Born-Oppenheimer potentials dominate Eq. (4.5).

This means that we can describe the system at short-range with two uncoupled, second-order, ordinary

differential equations.

d2ψ0

dr2
+

[
V0(r)− E

]
ψ0(r) = 0

d2ψ1

dr2
+

[
V1(r)− E

]
ψ1(r) = 0

(4.9)

The solutions ψ0(r) and ψ1(r) are found by solving Eq. (4.9) numerically using Mathematica’s built-in

differential equation solver (i.e., NDSolve function) with boundary conditions requiring that the wavefunc-

tions, ψ1 and ψ0, vanish at r = 0 (in practice, at some small finite r) and their derivatives are small and

finite. We match these two solutions and their derivatives, separately, to linear combinations of two linearly
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independent solutions f̂(r) and ĝ(r) of the long-range region at rm.

ψλ(rm) = f̂(rm)− tan (πµλ)ĝ(rm)

ψ′λ(rm) = f̂ ′(rm)− tan (πµλ)ĝ′(rm)
(4.10)

Here, λ labels the total electronic spin quantum number S, µλ are the singlet and triplet quantum defects,

and the distance rm is chosen so that the channel is locally open and Vλ are well-approximated by VLR.

For alkali collisions, rm ≈ 35−50 a0. The quantities πµλ are the short-range phase shifts or the amount of

phase that wavefunction accumulates in the singlet and triplet potential wells. Using Eq. (4.10), we arrive

at the following expression for µλ,

tan (πµλ) =
f̂(rm)Yλ − f̂ ′(rm)

ĝ(rm)Yλ − ĝ′(rm)
(4.11)

where Yλ =
ψ′
λ(rm)

ψλ(rm) is the log-derivative of ψλ at the matching radius. Because the depths of the potentials

at short-range are so much larger than Ecollision, the quantum defects µλ are largely independent of the

magnitude of the applied field or the collision energy as seen in Figure 4-2, and therefore, we will be

performing calculations using an ”energy independent frame transformation”. In that approximation, we

only need to tabulate the quantum defect at E = B = 0.
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Figure 4-2: Singlet µ0 and triplet µ1 quantum defects for 7Li2 as a function of the collision energy in units
of van der Waals energy Eβ. The solutions were matched at rm = 40 a0.

At large r, the total electronic spin S is no longer a good quantum number, and the state of the system is

not given by one of the molecular states |S MS I MI〉 but by the asymptotic channel |a〉 = (1, 1) (which is

the eigenstate of Eq. (4.4) with the lowest energy eigenvalue). Therefore, to calculate the total short-range
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reaction amplitude Ksr, we must to employ the following transformation,

Ksr =
∑
λ

〈a|λ〉 tanπµλ 〈λ|a〉 (4.12)

where |λ〉 = |SMSIMI〉. At zero-field, |a〉 = |{1 1 1 1}〉 and Eqs. (4.12) becomes,

Ksr =
∑
λ

Pλ tanπµλ. (4.13)

4.3.2 Long-Range Region

In this region, the interaction between the two particles is given by Eq. (4.1) and the radial Schrodinger

equation is
d2ψlr
dr2

+

[
− C6

r6
− C8

r8
− C10

r10
− E

]
ψlr(r) = 0 (4.14)

where E = Ecollision − Ethresh. The general solution to Eq. (4.14) is given by,

ψlr(r) = f̂(r)−Ksrĝ(r) (4.15)

where f̂(r) and ĝ(r) are two linearly independent solutions to Eq. (4.14) and Ksr is the total short-range

reaction amplitude given by Eq. (4.12). We use Milne’s phase amplitude method to construct the reference

solutions f̂(r) and ĝ(r):

f̂(r) = α(r) sin

(∫ r

rx

α(r′)−2dr′ + φ

)
(4.16)

ĝ(r) = −α(r) cos

(∫ r

rx

α(r′)−2dr′ + φ

)
(4.17)

[41] [32]. Here, φ is a phase which ensures that Eqs. (4.16)-(4.17) remain linearly independent out to large

r, where we have to match ψlr to solutions at r → ∞. The amplitude function α(r) is found by solving

the following differential equation,

α(r)′′ + k(r)2α(r) =
1

α(r)3
(4.18)

where k =
√
E − VLR, with WKB-like boundary conditions applied at r = rx:

α(rx) = k(rx)−1/2 (4.19)

α(rx)′ =
d

dr

(
k(r)−1/2

)
r=rx

. (4.20)

The selection of the radial distance rx is somewhat arbitrary. All that is required is that VLR(r) is deep

enough that our semi-classical boundary conditions are reasonable (i.e., that the potential varies slowly in

comparison to the wavelength λ = 2π/k).
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Selection of φ

The validity of the QDT calculation relies on the choice of the reference functions f̂(r) and ĝ(r). In

particular, we require that f̂(r) and ĝ(r) remain linearly independent out to large r and thus, we want to

find a value of φ in Eqs. (4.16) and (4.17) which guarantees their maximal linear independence. Following

refs. [8] and [46], we determine this φ by allowing one of the reference functions to asymptotically coincide

with a particular wave function at zero energy. This wave function is one of the zero-energy solutions of

the 1/r6 term which dominates Vlr(r). These two solutions χ+
0 and χ−0 are defined as

χ+
0 (r) =

√
rJ− 1

4
(2l+1)(1/2r

2) ∝ rl+1 (4.21)

χ−0 (r) =
√
rJ 1

4
(2l+1)(1/2r

2) ∝ r−l. (4.22)

where Jν(x) is the Bessel function of the first kind [42]. Any zero-energy solution, therefore, is given by a

superposition ofχ+
0 and χ−0 , including the reference wavefunctions of f̂(r) and ĝ(r):

f̂(r) = Aχ+
0 (r) +Bχ−0 (r)

ĝ(r) = Cχ+
0 (r) +Dχ−0 (r) (4.23)

where A,B,C, and D are coefficients determined by initial boundary conditions. However, as r →∞, χ+
0

grows exponentially for l 6= 0 or linearly for l = 0, while χ−0 quickly decays to zero for l 6= 0 or approaches

a constant for l = 0. Thus, Eq. (4.23) will begin to approach χ+
0 as r increases and therefore, f̂(r) and ĝ(r)

will be linearly dependent at large r, as both will be proportional to Eq. (4.21). This presents a problem

because we require that f̂(r) and ĝ(r) remain linearly independent out to large r. To mitigate this issue,

we demand that C = 0 in Eq. (4.23) and ĝ(r) coincides with χ−0 at zero energy [46]. There is a unique

value of φ that satisfies this condition and it can be found from the expression,

tanφ = −
W
(
χ−0 (r), ĝφ=0(r)

)
W
(
χ−0 (r), f̂φ=0(r)

)∣∣∣∣
r=rf

(4.24)

where W (x, y) is the Wronskian, given by W (x, y) = xy′ − x′y, and rf is an arbitrarily chosen separation

distance at very large r [46]. For s-wave collisions, rf ∼ 150 a0 will suffice. Moreover, the calculation

φ only needs to be done once at E = 0 and B = 0, since we are matching the reference functions to

zero-energy solutions.
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Figure 4-3: f̂(r) and ĝ(r) with φ arbitrarily set to zero. The red curve corresponds to f̂(r), the blue to
ĝ(r), and the green to Vlr(r). Notice that at large r, the solutions are linearly dependent and proportional
to χ+

0 beyond the range of the potential.
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Figure 4-4: f̂(r) and ĝ(r) with φ calculated using Eq. (4.24). The red curve corresponds to f̂(r), the blue
to ĝ(r), and the green to Vlr(r). Notice that at large r, beyond the range of the potential, the solutions
are linearly independent as ĝ(r)→∝ χ−0 and f̂(r)→∝ χ+

0 .
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4.3.3 Very Long-Range Region

Beyond rf , the leading van der Waals term −C6
r6

in Eq. (4.1) is negligible, and the time-independent

Schrodinger equation can be approximated by,

d2ψvlr
dr2

− Eψvlr(r) = 0. (4.25)

The solution ψlr(r) depends on whether or not the interaction channel is open or closed as r →∞. If the

channel is open, then the solution to Eq. (4.25) is a superposition of the phase-shifted, energy-normalized

Riccati functions

f(r) =

√
k

π
rjl(kr + η) (4.26)

and

g(r) =

√
k

π
rnl(kr + η) (4.27)

where η is the phase accumulated in the long-range interaction region, k =
√
E and jl(kr) and nl(kr) are

spherical Bessel functions. Asymptotically, Eq. (4.26) and (4.27) approach,

f(r) −−−→
r→∞

1√
k

sin
(
kr − lπ/2 + η

)
(4.28)

and

g(r) −−−→
r→∞

− 1√
k

cos
(
kr − lπ/2 + η

)
. (4.29)

If the channel is closed, then ψlr(r) must vanish as r →∞ and the solution is proportional to,

χ−(r) ∝ e−κr (4.30)

where κ =
√
|E|.

QDT Parameters

A collection of parameters connect the reference solutions f̂(r) and ĝ(r) of the van der Waals region to

the (physical) asymptotic solutions given by Eqs. (4.28)-(4.30). These parameters are analytical functions

of energy, containing all the sensitive energy dependencies which arise from the passage from the high-

energy short-range region to the low-energy long-range region [43]. We derive the expressions for these

QDT parameters by matching a linear combination of f̂(r) and ĝ(r) to a superposition of f(r) and g(r),

if the channel open at large r, or to a decaying exponential, if the channel is closed asymptotically, at r = rf .

Three of these parameters arise from matching the van der Waals reference functions to the energy-

normalized, scattering solutions f(r) and g(r): A,G and η. The first two of these, A and G, are used to

transform f̂(r) and ĝ(r) into f(r) and g(r),(
f

g

)
=

(
A1/2 0

A−1/2G A−1/2

)(
f̂

ĝ

)
. (4.31)
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The parameter A is given by the expression,

A = −
W
(
f(r), ĝ(r)

)
− tan ηW

(
g(r), ĝ(r)

)
W
(
g(r), f̂(r)

)
+ tan ηW

(
f(r), f̂(r)

)∣∣∣∣
r→rf

(4.32)

where k =
√
E, and it is responsible for the energy-normalization f̂(r) and ĝ(r) [46]. In Vlr, the van der

Waals reference functions accumulate phase, and the parameter G accounts for the difference in this phases

G = −
W
(
g(r), ĝ(r)

)
W
(
g(r), f̂(r)

)∣∣∣∣∣
r→rf

(4.33)

[46]. The parameter η represents the asymptotic phase shift of Eqs. (4.28) and (4.29) from the spherical

Bessel functions jl(kr) and nl(kr) which approach,

jl(r) −−−→
r→∞

sin
(
kr − lπ/2

)
kr

(4.34)

and

nl(r) −−−→
r→∞

−
cos
(
kr − lπ/2

)
kr

. (4.35)

asymptotically. η is calculated by taking the arc tangent of a ratio of Wronskians that involve the large r

limit of f̂ and ĝ,

tan η =
W
(
(kr)jl, f̂(r)

)
W
(
(kr)nl, ĝ(r)

)∣∣∣∣
r→rf

(4.36)

[46].

If the channel is closed, the linear combination of f̂(r) and ĝ(r) which characterizes the solution in the

long-range interaction region must approach Eq. (4.30) as r →∞,

χ−(r) = f̂(r) sin γ + ĝ(r) cos γ
r→∞−−−→∝ e−κr. (4.37)

The parameter γ in Eq. (4.37) is the closed-channel counterpart of η and it determines the supposition

of the reference functions f̂(r) and ĝ(r) that vanishes at very large r. Taking the Wronskians of this

expression with f̂(r) and ĝ(r), we find that

tan γ = −
W
(
e−κr, ĝ(r)

)
W
(
e−κr, f̂(r)

)∣∣∣∣
r→rf

. (4.38)

The parameter γ can then be found by taking the arc tangent of Eq. (4.38).

Low-Energy Forms of QDT Parameters

As E → 0, the QDT parameters approach the following simple forms [46]:

A1/2 → −(āl
√
E)l+1/2 (4.39)
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η → (−1)l+1(āl
√
E)2l+1 +

3πΓ(l − 3/2)

32Γ(l + 7/2)
E2 (4.40)

G → (−1)l+1(āl
√
E)4l+2 − E

(2l + 3)(2l − 1)
(4.41)

γ →

ā0
√
|E| l = 0

E
(2l+3)(2l−1) l > 0

(4.42)

where āl is a generalized, standard scattering length given by,

āl =
( π2−(2l+3/2)

Γ(l/2 + 5/4)Γ(l + 1/2)

)2/(2l+1)
(4.43)

and Γ(x) is the gamma function [42]. For an s-wave collision, with l = 0, these forms become,

A1/2
l=0 → −(ā0

√
E)1/2 (4.44)

ηl=0 → −ā0
√
E (4.45)

Gl=0 →
(

1

3
− ā20

)
E (4.46)

γl=0 → ā0
√
|E| (4.47)

to first order in E, with ā0 = 0.477989.
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Figure 4-5: Curves of the MQDT parameters with respect to the collision energy in van der Waals units.
The solid curves were generated using the full expressions for A, G, η, and γ, while the dashed lines
correspond to the low-energy forms.

4.3.4 Bound State Calculation

If Ethresh < Ecollision, then the channel wavefunction must asymptotically go to zero and be of the form

Eq. (4.37) in the van der Waals region. However, ψlr(r) is also given by Eq. (4.15). Matching these two

expressions for the solution in the long-range region,

f̂(r)−Ksrĝ(r) = f̂(r) + cot γĝ(r) (4.48)

we find that energies satisfying

Ksr + cot γ = 0 (4.49)

are bound states of the channel. Eq. (4.49) is evaluated a particular value of magnetic field B.
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channel.

4.4 Multi-Channel QDT

The QDT procedure outlined in the previous section can be generalized for multichannel problems to

predict the number, position, and widths of Fano-Feshbach resonances with respect to the magnitude of an

applied magnetic field B. To illustrate how this is done, we will consider an elastic, s-wave 7Li2 collision

in which the atoms enter and exit in the lowest lying channel with MF = 2. The total Hamiltonian for

this N -coupled channels problem is,

H =
d2

dr2
I + V (r) (4.50)

where I is the N × N identity matrix and V (r) the total potential which is given by Eq. (4.2). The

wavefunction is expanded in the basis of scattering channels Φi(Ω) that correspond to the internal states

of the well-separated particles,

ψ(r,Ω) = r−1
N∑
i=1

Φi(Ω)ψi(r). (4.51)

Here, Ω represents all the internal degrees of freedom and Φi(Ω) are the eigenstates of Eq. (4.4) [46]. The

index i labels the scattering channels and N is the total number of channels. For our current calculation,

N = 5. The wavefunction satisfies a set of coupled radial Schrodinger equations,

N∑
j=1

[
− d2

dr2
δij + Vij(r)

]
ψj(r) = Eiψi, (4.52)
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where δij is the Kronecker delta function, Ei = E − Ethreshi is the asymptotic kinetic energy in the ith

channel, Ethreshi is the threshold energy of the ith channel, and E is the energy [46]. Just as in the previous

section, Eq. (4.52) is cast in van der Waals units β for lengths and Eβ for energies. We set the energy of

the system at a constant just above the threshold of the lowest channel Ethresh1 :

E = Ethresh1 + ∆E, (4.53)

where ∆E = 10−15 Hartree is the collision energy, and the external magnetic field is allowed to vary. This

means that only the lowest channel is open system; the other four are energetically inaccessible at large r.

The matrix Ψ(r), with elements Ψij(r) = ψji (r) represents the set of physical scattering solutions [46].

Here i runs from 1 to N and j from 1 to NP , where NP is the number of asymptotically open channels.

Hence, for our 7Li2 problem, Ψ(r) has dimensions of 5× 1. Each element of Ψ(r) must vanish at r = 0,

Ψij(0) = 0, (4.54)

and asymptotically must approach,

Ψij(r) −−−→
r→∞

∝ e−ikirδij − eikirSphysij (4.55)

in each open channel i, or

Ψij(r) −−−→
r→∞

0 (4.56)

in each closed channel i [46]. In Eq. (4.55), ki =
√
Ei is the asymptotic wavenumber in the ith channel

and Sphys is the physical scattering matrix, which contains on the information necessary to compute the

scattering observables, such as the total elastic cross section σel, and the resonance behavior [46]. In

the following sections, we will demonstrate how Sphys is tabulated using QDT and compare this method

to a full-closed coupling (FCC) calculation using a log-derivative propagator which solves the scattering

problem exactly [26]. Appendix 6.1 outlines the algorithm behind this latter numerical method.

4.4.1 Elastic Scattering Calculation

In the multichannel generalization of QDT, the long-range parameters A,G, η, and γ, as well as the short

range reaction amplitude Ksr which encapsulates the physics at small r, become matrices. The short-range

reaction matrix Ksr is given by,

Ksr =
(
Y ĝ − ĝ′

)−1(
Y f̂ − f̂ ′

)
. (4.57)

Here Y = Ψ−1Ψ′ is the log-derivative of the wavefunction Ψ(r) at r = rm and f̂ , ĝ, f̂ ′, and ĝ′ are diagonal

matrices with elements:

f̂ij = f̂i(rm)δij = αi(rm) sin

(∫ rm

rx

αi(r)
−2dr + φ

)
δij , (4.58)

41



ĝij = ĝi(rm)δij = αi(rm)− cos

(∫ rm

rx

αi(r)
−2dr + φ

)
δij , (4.59)

f̂ ′ij = f̂ ′i(rm)δij , (4.60)

and

ĝ′ij = ĝ′i(rm)δij , (4.61)

where αi(r) is the Milne phase amplitude function for the ith channel defined by,

αi(r)
′′ + ki(r)

2α(r) =
1

αi(r)3
(4.62)

where ki =
√
Ei − VLR is the local wavenumber in each channel and VLR(r) is the long-range potential

given by Eq. (4.1). The boundary conditions for Eq. (4.62) are,

αi(rx) = ki(rx)−1/2 (4.63)

and

αi(rx)′ =
d

dr

(
ki(r)

−1/2)
r=rx

. (4.64)

The separation distances rm and rx need to be chosen so that all the channels are open, Vλ(rm) ≈ VLR(rm),

and VLR(rx) needs to be deep enough that the potential is slowing varying with respect to the wavelength

λi = 2π/ki in each channel. For our 7Li2, rm = 30 a0 and rx = 7 a0. Moreover, because we require that all

of the channels are open at the matching radius rm, Ksr, Y , f̂ , ĝ, f̂ ′, and ĝ′ are N×N matrices. Eq. (4.57)

is the exact expression for the short-range reaction matrix. However, since the interaction at small r is

dominated by the deep potential wells of the Born-Oppenheimer potentials, Ksr is largely independent of

energy and field. This means that Ksr does not need to be calculated at each value of field or energy and

is well approximated by its form at E = B = 0. The value of Ksr at r = rm can also be estimated from

the singlet and triplet quantum defects, µλ, calculated at zero energy using Eq. (4.11).

Energy-Independent Frame Transformation

At short separation distances, i.e., r . 30 a0, the interaction between the alkali atoms is dominated by

the deep wells of the singlet V0(r) and triplet V1(r) molecular ground state potentials. Therefore, to a

good approximation, any hyperfine or Zeeman interactions can be neglected and the atomic system can be

described by a set of uncoupled equations,(
− d2

dr2
+ V0(r) + E

)
ψ0(r) = 0 (4.65)(

− d2

dr2
+ V1(r) + E

)
ψ1(r) = 0. (4.66)

To find the solutions ψ0(r) and ψ1(r), we numerically integrate Eqs. (4.65) and (4.66) out to rm at energy

E = 0. Then we match each solution to a linear combination of f̂(r) and ĝ(r) at rm to determine the singlet

and triplet quantum defects µλ at zero energy using Eq. (4.11). However, at large r, the total electronic
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spin S is no longer a good quantum number and the interaction between the particles is no longer diagonal

in the molecular basis |λ〉 = |S MS I MI〉. Thus, we use the frame-transformation formula,

Ksr
i,i′ =

∑
λ

〈i|λ〉 tan (πµλ)
〈
λ
∣∣i′〉 (4.67)

to approximate the short-range reaction matrix Ksr in terms of the basis |i〉 in which the system is

diagonal at large r [8]. In absence of an external magnetic field, this basis is the hyperfine basis,

|i〉 = |{f1 m1 f2 m2}〉. However, if there is an applied field, then the interaction at large r includes a

contribution from Zeeman effects, which are not diagonal in the hyperfine basis. Rather, to find the

asymptotic dissociation channels, we diagonalize Eq. (4.4), then we rotate the short-range reaction matrix

obtained from Eq. (4.67) into this new basis.

Long-Range Parameters

The long range parameters, A,G, and η, are NP ×NP diagonal matrices, with elements,

Aij = Aiδij , (4.68)

Gij = Giδij , (4.69)

and

ηij = ηiδij , (4.70)

where the terms Ai,Gi, and ηi are the QDT parameters of the ith open channel and calculated from

Eqs. (4.32), (4.33), and (4.36). The parameter γ is an NQ×NQ matrix, where NQ is the number of closed

channels, with elements

γij = γiδij , (4.71)

tabulated from Eq. (4.38). In practice, we do not calculate Ai,Gi, ηi, and γi at every value field and energy

for each relevant collision channel. Rather, we construct the QDT parameters as functions of energy by

evaluating Eqs. (4.32), (4.33), (4.36), and (4.36) on a cubic energy grid and interpolating the resulting

data.

Calculating the Physical S-Matrix

After calculating the short-range reaction matrix Ksr and constructing the QDT parameter matrices, we

can compute the physical scattering matrix Sphys, scattering length a, and elastic cross section σel in a

few easy steps. First, we partition Ksr into blocks based on which channels are asymptotically open and

closed:

Ksr =

(
Ksr
PP Ksr

PQ

Ksr
QP Ksr

QQ

)
. (4.72)
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Then, we use the closed channel parameter γ to transform the N ×N short-range reaction matrix into an

NP ×NP matrix using the formula,

K̃ = Ksr
PP −Ksr

PQ(Ksr
QQ + cot γ)−1Ksr

QP . (4.73)

[46]. This transformation is necessary because at large r, some of the collision channels are closed, and

therefore, are not available as scattering channels for the system. However, K̃ is not the physical reaction

matrix because it is not properly normalized with respect to energy. We normalize K̃ using the expression,

K = A1/2(K̃−1 + G)−1A1/2 (4.74)

[46]. Finally, Sphys is determined from K and the long-range parameter η:

Sphys = eiη
I + iK

I − iK
eiη. (4.75)

[46], and the scattering length for our 7Li2 is tabulated from,

a = − 1√
E

( tan η11 +K11

1− tan η11K11

)
(4.76)

where K11 and η11 the elements of K and η for the lowest interaction channel (these are the only elements

of reaction matrix and η-matrix since this is the only open channel). At low energies, the QDT parameters

approach the forms given in Eq. (4.44)-(4.46) and the scattering length is well-approximated by,

a −−−→
E→0

ā0(1− K̃11) (4.77)

where K̃11 is the element of K̃ for the lowest interaction channel (again for our current calculation, this

is the only element of K̃ since there is only one open channel) and ā0 is determined from Eq. (4.43) with

l = 0. Note, that we do not use the low-energy form of γ to approximate cot γ in Eq. (4.73), since for each

closed channel we evaluate γ at the asymptotic kinetic energies Ei = E − Ethreshi the channels. The total

elastic cross section σel is then tabulated using the following expression,

σel ≈ 8πa2 (4.78)

since the atoms are identical. Figure 4-7 shows σel plotted versus the magnetic field B for our 7Li2 collision.

The sharp peak near ∼ 743 Gauss, indicates a Fano-Feshbach resonance, or that closed channel bound state

crosses the energy threshold of the lowest channel at ∼ 743 Gauss, leading the formation of an unstable

lithium dimer. The elastic cross section also has zeros at about 130 and 560 Gauss. These features indicate

there is zero probability that the atoms will collide at these two fields.
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Figure 4-7: Elastic cross section for 7Li2 in which the atoms enter and exit in the channel labeled (1, 1) in
Figure 3-4. The black curve is from our frame transformation (FT) calculation and the red curve is from
the FCC calculation.

Figure 4-7 also illustrates the success of our FT method at predicating the number, position, and widths

of Fano-Feshbach resonances in an ultracold alkali collision. The FT calculation, indicated by the black

curve in Figure 4-7, is able to almost exactly reproduce the resonance position of the FCC calculation,

which is shown in red. However, the FT calculation is less accurate when it comes to the zeros of σel, in

particular the zero near 130 Gauss. Table 4.1 summarizes the results from the FT and FCC calculations,

as well as lists experimental values for the position of the resonance features.

FT FCC Ref.[28]

Resonance position 743.7(4) 743.6(7) 737.69(2)

First zero 123.5(6) 129.6(2)

Second zero 557.1(8) 553.9(3) 543.64(19)

Table 4.1: Elastic collision data for 7Li2.

4.5 Success of QDT with a Frame Transformation

Given the relative success of our FT calculation for 7Li2, we applied the method to other ultracold alkali

systems to test its accuracy and reliability in predicting resonance features. In all of these calculations, we

only consider elastic s-wave collisions between identical particles in which there is only one asymptotically

open dissociation channel and four closed channels which contribute to the short-range physics. The results

of these collisions are summarized in Figures 4-8, 4-9, 4-11, and 4-13, for 6Li2,
23Na2,

39K2, and 87Rb2,

respectively. Overall, we found that accuracy of the frame transformation calculation depends on the
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hyperfine/Zeeman splitting of the collisions channels. Recall that when we use Eq. (4.67) to approximate

Ksr, we assume the hyperfine and Zeeman effects are so small compared to the depths of the X1Σ+
g and

a3Σ+
u potentials that they can be neglected in the short-range region. This allows us to approximate the

system by Eqs. (4.65) and (4.66) at small r and the short-range physics by the singlet and triplet quantum

defects. In particular, we assume that the size of the hyperfine/Zeeman splitting of the collision channels

at the matching radius rm is negligible. However, in some alkali collisions, this assumption doesn’t hold

because the collision channels have already begun to shift and separate significantly by rm and into the

long-range region. This means that we need to include hyperfine and Zeeman effects in our calculation

of Ksr for these alkali systems. Figures 3-1, 4-10, 4-12 and 4-14 show the splitting of the asymptotic

dissociation channels for collisions of 6Li, 23Na, 39K, and 87Rb atoms versus magnetic field B. Notice that

in the 39K2 and 6Li2 collisions, the size of the hyperfine/Zeeman splitting is comparable to that seen in

the previous 7Li2 problem and the FT approximation is able to reproduce the positions of Fano-Feshbach

resonances to within 10 Gauss. Similarly in the 23Na2 collision, where the hyperfine/Zeeman splitting

is about twice as large as that seen in Figure 3-2, the FT method comes within 11 Gauss of the FCC

calculation for the position of the Fano-Feshbach resonance. However, in the case of 87Rb2, the frame

transformation calculation fails to accurately produce the positions and widths of the four experimentally

known resonances. Moreover, as Figure 4-14 illustrates, the hyperfine/Zeeman splitting in this systems is

an order of magnitude larger than in the 7Li2 collision.

0 200 400 600 800 1000
1

1000

106

109

1012

1015

Magnetic Field [G]

E
la
st
ic
C
ro
ss
S
ec
ti
on

[a
0
2
]

Figure 4-8: Elastic cross section for 6Li2 in which the atoms enter and exit in the channel labeled (1, 2) in
Figure 3-3. The black curve is from our FT calculation and the red curve is from the FCC calculation. Just
as in the 6Li2 collision, the FT method is able to reproduce the resonance features of the FCC calculation.
There are two Feshbach resonances, a narrow one at ∼ 543 Gauss and a wide one at ∼ 828 Gauss, and one
zero at ∼ 526 Gauss.
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Figure 4-9: Elastic cross section for 23Na2 in which the atoms enter and exit in the channel labeled (1, 1)
in Figure 4-10). The black curve is from our FT calculation and the red curve is from the FCC calculation.
There are two resonances; a narrow feature at about 860 Gauss and a wider one at ∼ 910 Gauss. Notice
here, the FT calculation is not able to reproduce the resonance features as well had in the either of the
lithium collisions. The difference in the narrow resonance is about 11 Gauss, with the FT calculation
returning a value of 862.5(0) Gauss and the FCC calculation, 851.2(5) Gauss. For the wider resonance,
the FT method returns a value of 916.5(0), about 11 Gauss from the FCC value of 905.0(7) Gauss.
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Figure 4-10: Zeeman/hyperfine splitting for 23Na2 with MF = 2. The labels on the curves correspond to
the following symmetrized hyperfine kets at zero field: (1, 1) = |{1 1 1 1}〉, (1, 7) = |{1 1 2 1}〉, (2, 8) =
|{1 0 2 2}〉, (6, 8) = |{2 0 2 2}〉, (7, 7) = |{2 1 2 1}〉. Note that the splitting here is twice as large as in
Figure 3-4.
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Figure 4-11: Elastic cross section for 39K2 in which the atoms enter and exit in the channel labeled (1, 1) in
Figure 4-12. The black curve is from our QDT calculation and the red curve is from the FCC calculation.
There are four resonances, at about 25, 405, 750, and 755 Gauss and one zero at approximately 340 Gauss.
Just as was observed in the 23Na2 collision, the QDT method does not reproduce the resonance features
of the FCC calculation as well as it had for the lithium collisions. In particular, there is about a 24
Gauss difference between the location of the zero; the FT calculation results in a value of 360.0(6) Gauss,
while the FCC calculation returns 336.2(1) Gauss. However, the FT method is able to reproduce the first
resonance almost exactly, resulting in a value of 24.9(5) Gauss which is only about 0.60 Gauss larger than
the FCC value of 24.3(0) Gauss. For the other three Fano-Feshbach resonances, the FT calculation gives
values which are about 10 Gauss higher than the corresponding FCC numbers: 411.7(5) Gauss (FT) and
403.0(9) Gauss (FCC); 753.1(3) Gauss (FT) and 744.0(8) Gauss (FCC); 760.2(4) Gauss (FT) and 752.0(2)
Gauss (FCC).
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Figure 4-12: Zeeman/hyperfine splitting for 39K2 with MF = 2. The labels on the curves correspond to
the following symmetrized hyperfine kets at zero field: (1, 1) = |{1 1 1 1}〉, (1, 7) = |{1 1 2 1}〉, (2, 8) =
|{1 0 2 2}〉, (6, 8) = |{2 0 2 2}〉, (7, 7) = |{2 1 2 1}〉. Here the splitting of the channels is comparable to
that seen in Figure 3-4.

Figure 4-13: Elastic cross section for 87Rb2 in which the atoms enter and exit in the channel labeled (1, 1)
in Figure 4-14. The black curve is from our FT calculation and the red curve is from the FCC calculation.
There are four resonances in this collision: (1) 406.23 Gauss with width 0.4 mG, 685.43 Gauss with width
17 mG, 911.74 Gauss with width 1.3 mG, and 1007.34 Gauss with width 170 mG [36]. The FCC calculation
is able to reproduce these resonance features, but the FT calculation is not, giving values of 462.1(2) Gauss,
781.9(8) Gauss, 1054.2(2) Gauss, and 1090.1(6) Gauss.
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Figure 4-14: Zeeman/hyperfine splitting for 87Rb2 with MF = 2. The labels on the curves correspond to
the following symmetrized hyperfine kets at zero field: (1, 1) = |{1 1 1 1}〉, (1, 7) = |{1 1 2 1}〉, (2, 8) =
|{1 0 2 2}〉, (6, 8) = |{2 0 2 2}〉, (7, 7) = |{2 1 2 1}〉. Notice that the splitting here is an order of magnitude
larger than that seen in Figure 3-4.
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Chapter 5

Conclusion

Here we have outlined a numerical method for predicting the resonance features in ultracold alkali collisions

based on multichannel quantum defect theory with the addition of a frame transformation to approximate

Ksr. We have found that the success of our FT calculation depends on the size of the hyperfine and

Zeeman splitting of the collision channels in the area where the short- and long-range regions overlap. In

systems where this effect is small, such as in the 7Li2 or 39K2 problems from the previous chapter, the FT

method is able to reproduce the resonance features to within 10 Gauss. However, it fails in problems where

this is not the case. Rather in such systems, like the 87Rb2 collision in Chapter 4, it is necessary to include

hyperfine and Zeeman terms in the short-range region and thus, in the calculation for the short-range

reaction matrix. One could do this by first performing a full coupled channels calculation using the log-

derivative propagator to find the log-derivative of wavefunction Y at the matching radius rm and employing

Eq. (4.57) to compute Ksr. The elastic cross section would then be tabulated from Eq. (4.72)-(4.76). Refs.

[46] and [8] have used a similar procedure for collisions of rubidium and potassium atoms and found that

it agreed with FCC calculations. Another solution for systems with large hyperfine/Zeeman splitting may

be to employ another transformation—a rotation of the van der Waals reference solutions f̂(r) and ĝ(r)

like that suggested in ref. [20]. Also, it should be noted that here we have only considered elastic s-wave

collisions. It would be interesting to see how well our current FT method is able to reproduce the resonance

features of systems with that include higher partial waves or dipolar interactions between the atoms which

couple channels with different values of total orbital angular momentum.
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Chapter 6

Appendix

6.1 Log-Derivative Propagator

This appendix illustrates the algorithm behind Johnson’s multichannel log-derivative propagator which

was used to perform a full coupled-channels (FCC) calculation for the elastic cross section in our ultracold

alkali collisions [26] [27]. This method solves the matrix Riccati equation

y′(x) + V(x) + y2(x) = 0, (6.1)

where

V(x) =
2µ

~2
[
EI−V(x)− E

]
. (6.2)

for the logarithmic derivative of the wave function defined as,

y(x) = Ψ′(x)Ψ(x)−1. (6.3)

Here E is the total energy, µ is the reduced mass, V(x) is the symmetric potential matrix, including the

angular momentum term, I is the identity matrix, and E is a diagonal matrix with elements Eij = Ethreshi δij .

The wavefunction Ψ(x) is a square matrix whose columns correspond to the linearly independent solutions

of the one-dimensional matrix Schrodinger equation,[
d2

dx2
+ V(x)

]
Ψ(x) = 0 (6.4)

with boundary conditions,

Ψ(0) = 0 (6.5)

and

Ψ′(0) = I (6.6)

Eqs. (6.5) and (6.6) imply that the initial log-derivative matrix y0 = y(0) has infinite elements along the

diagonal and y(x) is a symmetric matrix. In practice, the infinite elements of y(0) are set to finite but
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very large numbers, such as 1020; thus, we initially set

y0 = 1020I. (6.7)

To numerically integrate Eq. (6.1) we employ the following algorithm:

yn = (I + hyn−1)
−1yn−1 −

h

3
wnun (6.8)

where n indexes the integration points, h is the spacing between integration points, and

un =

V(xn), n = 0, 2, 4, ..., N[
I + (h2/6)V(xn)

]−1V(xn), n = 1, 3, 5, ..., N − 1.
(6.9)

The weights, wn, are given by,

wn =


1, n = 0, N

4, n = 1, 3, 5, ..., N − 1

2, n = 2, 4, 6, ..., N − 2.

(6.10)

It should be noted that only the log-derivative matrix at the final integration point, y(xN ) = yN , is a good

approximation to the actual value of y(x). We save one multiplication per step by solving for the quantity

zn = hyn,

zn =
(
I + zn−1

)−1
zn−1 −

h2

3
wnun (6.11)

and recover log-derivative matrix at the final integration point yN with

yN = h−1zN . (6.12)

From Eq. (6.12), we construct the K-matrix at the final integration point xN with,

K = −
(
yNN(xN )−N′(xN )

)−1 − (yNJ(xN )− J′(xN )
)

(6.13)

where J(xN ) and N(xN ) are diagonal matrices whose elements are made up of Riccati-Bessel functions

[42]

J(xN )ij = k
1/2
i jli(kix)δij

N(xN )ij = k
1/2
i nli(kix)δij

(6.14)

for open channels, and modified spherical Bessel functions of the first and third kinds [42]

J(xN )ij = (kix)1/2Ili+1/2(kix)δij

N(xN )ij = (kix)1/2Kli+1/2(kix)δij
(6.15)
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if the channel closed, where ki is the channel wavenumber. Because the K-matrix contains elements from

open (P ) as well as closed (Q), in order to calculate the physical S-matrix, we partition Eq. (6.13) into

blocks based on which channels are open or closed.

K =

(
KPP KPQ

KQP KQQ

)
(6.16)

The S-matrix is then calculated from the open-open submatrix KPP ,

S = (I + iKPP )−1(I− iKPP ). (6.17)

55



Bibliography

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of

bose-einstein condensation in a dilute atomic vapor. Science, 269:198–201, 1995.

[2] E. Arimondo, M. Inguscio, and P. Violino. Experimental determinations of the hyperfine structure in

the alkali atoms. Rev. of Mod. Phys., 49:31–75, 1977.

[3] D. R. Bates and A. Damgaard. The calculation of the absolute strengths of spectral lines. Phil. Trans.

R. Soc. A, 242, 1949.

[4] N. Bohr. The spectra of helium and hydrogen. Nature, 92:231–232, 1913.

[5] N. Bohr. On the quantum theory of radiation and the structure of the atom. Phil. Mag., 30:394–415,

1915.

[6] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of bose-einstein condensation

in an atomic gas with attractive interactions. Phys. Rev. Letts., 75:1687–1690, 1995.

[7] A. Burgess and M. J. Seaton. A general formula for the calculation of atomic photoionization cross

sections. Mon. Not. R. Astron. Soc., 120, 1960.

[8] J. P. Burke. Theoretical Investigation of Cold Alkali Atom Collisions. Ph.D. thesis, University of

Colorado at Boulder, 1999.

[9] J. P. Burke, C. H. Greene, and J. L. Bohn. Multichannel cold collisions: Simple dependences on

energy and magnetic field. Phys. Rev. Lett., 81, 1998.

[10] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga. Feshbach resonances in ultracold gases. Rev.

Mod. Phys., 82:1225–1284, 2010.

[11] J. F. E Croft, A. O. G. Wallis, J. M. Hutson, and P. S. Julienne. Multichannel quantum defect theory

for cold molecular collisions. Phys. Rev. A, 84:042703, 2011.

[12] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and

W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Letts., 75:3969–3973,

1995.

[13] B. DeMarco, J. L. Bohn, J. P. Burke, M. Holland, and D. S. Jin. Measurement of p-wave threshold

law using evaporatively cooled fermionic atoms. Phys. Rev. Lett., 82:4208–4211, 1999.

56



[14] S. Falke, H. Knockel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat. Potassium ground-state

scattering parameters and born-oppenheimer potentials from molecular spectroscopy. Phys. Rev. A,

78:012503, 2008.

[15] U. Fano. Quantum defect theory for l uncoupling in h2 as an example of channel-interaction treatment.

Phys. Rev. A, 2:353, 1970.

[16] U. Fano. Unified treatment of perturbed series, continuous spectra and collisions. J. Opt. Soc., 65:

979, 1975.

[17] U. Fano and A. R. P. Rau. Atomic Collisions and Spectra. Academic Press, 1986.

[18] H. Friedrich. Scattering Theory. Springer, 2013.

[19] M. Gailitis. Some features of the threshold behavior of the cross sections for excitation of hydrogen

by electrons due to the existence of a linear stark effect in hydrogen. Sov. Phys. JETP, 17:1107–1110,

1963.

[20] C. H. Greene and S. Watanabe. Atomic polarizability in negative-ion photodetachment. Phys. Rev.

A, 22:158–169, 1980.

[21] C. H. Greene, U. Fano, and G. Strinati. General form of the quantum-defect theory. Phys. Rev. A,

19:1485–1509, 1979.

[22] C. H. Greene, A. R. P. Rau, and U. Fano. General form of the quantum-defect theory ii. Phys. Rev.

A, 26:2441–2459, 1982.

[23] D. Griffiths. Introduction to Quantum Mechanics. Cambridge University Press, 2017.

[24] D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. Proc. Camb. Phil.

Soc., 24, 1928.

[25] W. Heisenberg. Uber quantentheoretische umdeutung kinematischer und mechanischer beziehungen.

Z. Phys., 33:879–893, 1925.

[26] B. R. Johnson. The multichannel log-derivative method for scattering calculations. J. Comput. Phys.,

13:445–449, 1973.

[27] B. R. Johnson. The renormalized numerov method applied to calculating bound states of the coupled-

channel schroedinger equation. J. Chem. Phys., 69:4678–4688, 1978.

[28] P. S. Julienne and J. M. Hutson. Contrasting the wide feshbach resonance in 6li and 7li. Phys. Rev.

A, 89:052715, 2014.

[29] Ch. Jungen. Quantum defect theory for molecules. In J. S. Briggs, H. Kleinpoppen, and H. O. Lutz,

editors, Fundamental Processes of Atomic Dynamics, pages 79–103. Springer US, 1988.

[30] W. Ketterle and N. J. van Druten. Evaporative cooling of trapped atoms. Adv. At., Mol., Opt. Phys.,

37:181–236, 1997.

57



[31] S. Knoop, T. Schuster, R. Scelle, A. Trautmann, J. Appmeier, M. K. Oberthaler, E. Tiesinga, and

E. Tiemann. Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium.

Phys. Rev. A, 83:042704, 2011.

[32] H. J. Korsch and H. Laurent. Milne’s differential equation and numerical solutions of the schrodinger

equation. J. Phys. B. Atom. Mol. Phys., 14, 1981.

[33] H. Kragh. Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure 1913-1925.

Oxford Scholarship Online, 2012.

[34] L. D. Landau and E. M. Lifschitz. Quantum Mechanics Nonrelativistic Theory. Pergamon Press, 1977.

[35] H. Margenau. Van der waals forces. Reviews of Modern Physics, 11:1–35, 1939.

[36] A. Marte, T. Volz, J. Schuster, S. Durr, G. Rempe, E. G. M. van Kempen, and B. J. Vehaar. Feshbach

resonances in rubidium 87: Precision measurement and analysis. Phys. Rev. Lett., 89:283202, 2002.

[37] W. I. McAlexander. Collisional Interactions in an Ultracold Lithium Gas. Ph.D. thesis, Rice Univer-

sity, August 2000.

[38] H. J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Springer, 1999.

[39] F. H. Mies. A multichannel quantum defect theory analysis of diatomic predissociation and inelastic

atomic scattering. J. Chem. Phys., 80, 1984.

[40] F. H. Mies and M. Raoult. Analysi of threshold effects in ultracold atomic collision. Phys. Rev. A,

62:012708, 2000.

[41] W. E. Milne. The numerical determination of characteristic numbers. Phys. Rev., 35:863–867, 1930.

[42] F. W. J. Oliver, D. W. Lozier, R. F. Boisevert, and C. W. Clark. NIST Handbook of Mathematical

Functions. Cambridge University Press, 2010.

[43] A. R. P. Rau. Relationships between the parameters of quantum-defect theory. Phys. Rev. A., 38,

1988.

[44] R. J. Le Roy and N. S. Dattani. A dpf data analysis yields accurate analytic potentials for li2 (a3σ+u )

and li2 (13σ+g ) that incorporate 3-state mixing near the 13σ+g state asymptote. J. Mol. Spectrosc.,

268:199–210, 2011.

[45] R. J. Le Roy, N. S. Dattani, J. A. Coxon, A. J. Ross, P. Crozet, and C. Linton. Accurate analytic

potentials for li2 (x1σ+g ) and li2 (a1σ+u ) from 2 to 90 å, and the radiative lifetime of li(2p). J. Chem.
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