
Trinity University Trinity University

Digital Commons @ Trinity Digital Commons @ Trinity

Mechatronics Final Projects Engineering Science Department

5-2022

Analog & Digital Metronome Analog & Digital Metronome

Andrew Deering
Trinity University, adeerin1@trinity.edu

Paul Kim
Trinity University, pkim1@trinity.edu

Gabriel Ogden
Trinity University, gogden@trinity.edu

Follow this and additional works at: https://digitalcommons.trinity.edu/engine_mechatronics

 Part of the Engineering Commons

Repository Citation Repository Citation
Deering, Andrew; Kim, Paul; and Ogden, Gabriel, "Analog & Digital Metronome" (2022). Mechatronics Final
Projects. 17.
https://digitalcommons.trinity.edu/engine_mechatronics/17

This Report is brought to you for free and open access by the Engineering Science Department at Digital Commons
@ Trinity. It has been accepted for inclusion in Mechatronics Final Projects by an authorized administrator of Digital
Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/engine_mechatronics
https://digitalcommons.trinity.edu/engine
https://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/engine_mechatronics/17?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

TRINITY UNIVERSITY

Analog & Digital Metronome

ENGR-4367

Instructor: Dr. Kevin Nickels
Group: P1

PLEDGED: A. Deering, P. Kim, G. Ogden

5/16/2022

Page 1

Table of Contents
ANALOG & DIGITAL METRONOME ... 0

1 DESIGN SUMMARY .. 1

2 SYSTEM DETAILS ... 3

2.1 SYSTEM DETAILS ... ERROR! BOOKMARK NOT DEFINED.
2.2 OUTPUT DISPLAY ... 6
2.3 AUDIO OUTPUT DEVICE ... 7
2.4 MANUAL USER INPUT – PAUL .. 7
2.5 ACTUATORS, MECHANISMS, AND HARDWARE – PAUL ... 7
2.6 AUTOMATIC SENSOR .. 7
2.7 LOGIC, PROCESSING, AND CONTROL .. ERROR! BOOKMARK NOT DEFINED.

3 DESIGN EVALUATION .. 8

4 PARTIAL PARTS LIST.. 9

5 LESSONS LEARNED ... 9

6 REFERENCES ... 11

A APPENDIX ... 1

A.1 WIRING SCHEMATIC ... 1

A.2 PICBASIC PRO CODE .. 2

A.2.1 MASTER PIC .. 2

A.2.2 SERVO PIC ... 5

1 Design Summary

The metronome is a tabletop device designed to keep a consistent rhythm for musicians

to follow. This specific metronome combines the visuals of a traditional analog metronome with

the ease of use and functionality of its digital counterpart. Like a conventional digital

metronome, the user can control the beats per minute (BPM) using the control knob on the front

of the device and read the current BPM value on the front mounted display. The user can observe

Page 2

each beat with any combination of the three separate outputs from the device. Firstly, a buzzer is

used to generate a brief but loud audio tone at each beat. There is also an LED indicator mounted

to the front panel of the device which flashes along with the set BPM. Finally, a silver arm near

the back of the metronome oscillates back and forth in sync with the BPM mimicking traditional

analog metronomes. The entire device is powered by an internal battery which can be turned on

and off using a front panel mounted switch.

Figure 1: Guts of the device

Page 3

2 System Details

Figure 2: System functional diagram

2.1 Logic, Processing, and Control

The information processing and system control is executed by two PIC16F88

microcontrollers setup in a primary/secondary configuration as shown in Fig. 2. The primary

(master) PIC handles the overall system flow shown in Fig. 3 and directly controls the display,

audio, and user input systems of the metronome. The secondary (servo) PIC controls the actuator

and sensor systems. Figure 4 shows a detailed depiction of the program logic for each PIC as

well as the communication between them.

While there are several communication protocols that could be used to link the PICs such

as serial, I2C, or SPI, even a slight delay could desynchronize the PICs due to the time-

sensitivity of the metronome. Instead, the metronome inter-PIC communication system utilizes

three direct, one-way digital connections for immediate information transfer. ‘Handshake’ and

‘Reset’ are directed from the master PIC to the servo PIC, while ‘Zero’ is directed from servo to

master. The PICs are synchronized with a short (~20 milliseconds) procedure during the

Page 4

metronome setup, after which they can send bits back and forth without introducing any time

delays or interrupting the system flow.

The master PIC runs on a timer interrupt system which increments a variable (ticks)

every 16.384 milliseconds. This timing variable is compared dynamically to the desired BPM

based on the time between beats (milliseconds), which is calculated with Eq. 1. When the time

elapsed in the program reaches the time between beats, the LED and buzzer are turned on to

indicate a quarter note at the current BPM. At this point, the master PIC also sets the

‘Handshake’ line high to communicate the quarter note with the servo PIC. The LED, buzzer,

and handshake line are left high for a brief period to give the user time to process the various

outputs. The LED, buzzer, and handshake line are then turned off until the time between beats is

reached again, restarting the loop. If the BPM dial is adjusted at any point, the system will set the

Reset line high to pause the servo PIC and wait until the BPM value is no longer changing before

turning off Reset and executing the main loop with the new BPM parameters.

The servo PIC uses the hardware pulse-width-modulation (HPWM) integrated into the

PIC to control the servo. Standard PWM could also have been used to send signals to the servo

motor, however any implementation using PICBASIC Pro involves a time delay which could

desynchronize the PICs. To generate the 20ms period PWM signal required by servo motors, the

8MHz internal oscillator was stepped down to 125kHz. When the handshake line is set high, the

servo PIC switches the servo position setpoint by changing the HPWM duty cycle, thus

oscillating the metronome arm at the desired BPM. The full PICBASIC Pro programs for the

master and servo PICs can be found in sections A.2.1 and A.2.2, respectively.

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑀𝑀𝑝𝑝 𝑏𝑏𝑀𝑀𝑏𝑏𝑏𝑏 =
60000
𝐵𝐵𝐵𝐵𝑀𝑀

 (1)

Page 5

Figure 3: Metronome system flow chart

Page 6

Figure 4: Software Flowchart depicting the program logic for the master PIC, the servo

PIC, and the communication between them.

2.2 Output Display

The BPM is displayed using a liquid crystal display (LCD), which is connected to the

master PIC. In the initialization phase, the LCD will display that the servo motor is calibrating.

Once the motor is done calibrating, the LCD will display the current BPM value in decimal form

and update accordingly when the BPM dial is turned. The LED is used to visually represent the

BPM by blinking on each beat. Changing the BPM will increase or decrease the time between

each blink.

Page 7

2.3 Audio Output Device

The metronome audio output consists of a buzzer that will emit a brief tone at each beat,

like the LED. The buzzer is driven by a pull-up MOSFET to generate loud tones, which can be

seen in Fig. A-1.

2.4 Manual User Input

Two manual user inputs are used in this project: a switch and a potentiometer. A switch is

used to turn the device on and off by connecting and disconnecting the battery from the rest of

the circuit. A potentiometer is used as a dial to control the BPM based on the variable resistance.

Both manual inputs are connected to the master PIC.

2.5 Actuators, Mechanisms, and Hardware

The metronome uses a servo motor as an actuator to swing an arm in time with the set

BPM. The motor shaft position is determined by the duty cycle of the PWM signal from the

master PIC. The arm rotates 45 degrees from vertical on either side for an overall 90 degree

range of motion.

Servo motors require significant current to operate, so a 12-volt battery was selected as the

metronome power source. A 5V voltage regulator steps down the batter supply voltage to the

operating conditions of the main circuit.

2.6 Automatic Sensor

The servo motor used to move the metronome arm has a built-in potentiometer attached to

the motor shaft which changes resistance based on the shaft angular position. The integrated

control system for the servo uses this position measurement as feedback to achieve closed-loop

control of the servo position. The analog potentiometer signal is accessible through the PCB

underneath the servo base plate and is used to measure the angle of the metronome arm.

Page 8

3 Design Evaluation

 The LCD used to display the BPM and calibrating stage functioned reliably. However,

we initially planned to use I2C communication to decrease the number of pins so only one

microcontroller could be used. After considerable amount of research, implementing I2C

communication for an LCD with a PIC was found to be difficult. Instead, serial communication

was used between two PICs. An example of using the LCD with serial communication is given

in the textbook. The LED did not take much research to implement but the LED worked without

failure. The use of LED with the PIC was practiced during lab.

 The buzzer initially worked at the correct BPM, but the sound was too quiet to hear well.

Therefore, a MOSFET was used as a pull-up resistor to drive the buzzer at a constant five volts.

This method was not discussed in class or lab and effortless research had to be done to create a

functioning circuit.

 The system used a switch and potentiometer for manual user input. The switch was used

to turn the system on and off by connecting and disconnecting the battery to the rest of the

circuit. Implementing the switch did not take much effort since the switch was set in series in

between the battery and the voltage regulator. The potentiometer also did not take much effort to

use as the potentiometer had pins that connected to voltage input, ground, and adjust. The adjust

was set to the pin to control the BPM and another potentiometer was used to control the contrast

of the LCD. However, both manual user inputs worked as intended.

The potentiometer used to measure the angular position of the servo shaft functioned

reliably. Potentiometer sensors were covered in the textbook but not in lab activities and figuring

out how to access the right node from the servo PCB required some research. However,

implementing the analog voltage across the pot did not require extensive effort.

 The actuator and hardware systems functioned reliably. The servo motor oscillated in

sync with the rest of the metronome, and the power supply powered the system effectively. The

manufactured parts of the device were completely laser cut from ¼” plywood. This was chosen

because it was inexpensive, easy to iterate, and more than sturdy enough to be suitable for a

metronome housing. The parts were designed to fit together simply like puzzle pieces and some

glue and a coating of protective spray paint was used to aid in holding it together and increasing

Page 9

the durability and look of the product. Some effort was expended to create a clean aesthetic for

final iteration of the hardware, though minimal research was required.

The logic and control systems for the metronome functioned reliably as designed. Timer

interrupts were discussed in the textbook but not in any labs and required significant research to

implement successfully. The frequency difference between the servo HPWM and the timer-

interrupt system is the main reason for using two PICs for the control architecture. Consolidating

to one PIC is possible but would have reduced the response time of our metronome to user input

for a slight $0.50 cost reduction. Overall, the software development required significant research

and effort but not enough to warrant the full 20-point rating.

4 Partial Parts List

Table 1:
Reference

Number

Qty Model Number Part Name Price

(individual)

Price

(total)

Vendor

1 1 S148 Servo Motor $15.99 $15.99 Futaba

2 2 PIC16F88 PIC $0.50 $1.00 Digi-key

3 1 1739 Buzzer $0.95 $0.95 Digi-key

4 1 IRFBC40 MOSFET $2.26 $2.26 Mouser

5 Lessons Learned

Time Expectations

If there was one constant throughout this design implementation process and implementation

it was that everything can and will go wrong. Our time spent on the project was roughly five

times what we expected. Whether it was having to wait a day to receive a part, getting stuck on

code implementation, or just faulty hardware, there was always a delay. The entire process

would have been much smoother if work, even small amounts, were started much earlier. This

would help in gaining a better understanding on the true difficulty of certain project aspects that

may be underestimated.

I2C with PIC

Page 10

We initially decided to use an I2C backpack for our LCD display to reduce wire clutter and

pin consumption based on experience from previous projects. There are several I2C LCD

libraries that make interfacing and communicating with I2C components very simple for

Arduinos. Even after over 30 hours of research and troubleshooting with PICBASIC Pro, we

only managed to power the LCD. The documentation for I2C communication in the PICBASIC

Pro manual is not helpful, and the example programs we found on various support resources

were not easy to translate. If I2C communication is necessary, avoid PICBASIC Pro and use an

Arduino to interface the component.

Debug systems

The I2C LCD was the first system we tried to implement, as LCDs make excellent

debugging tools when a serial monitor is unavailable. However, we did not think to incorporate a

standard LCD to debug the I2C communication which made troubleshooting tedious and

ultimately ineffective. Even if an LCD isn’t part of the project design, incorporating one (or a

serial monitor) early into project development can increase debug efficiency and subsequently

save a lot of time.

Breadboard reliability

Up until the very end of the process, breadboards were being used for all of the circuit

wiring. This was great for testing different configurations and components, but when the project

was coming to a close, the heavy reliability on the breadboards led to a lot of issues. Shorts

between heavily used pins and loose connections were the stem of many problems that used

hours of time debugging just to find out it was a bad connection. This was eventually resolved

with the use of soldered connections on a project board.

Time Synchronization

Synchronizing program timing to real time is crucial for a metronome. The PICBASIC Pro

delay function is helpful for asynchronous timing functionality but cannot be used to keep time

in parallel with the rest of the program. The first iterations of our metronome used the pause

command to implement the time between beats and would quickly diverge from the correct

BPM. Timer interrupts required a significant initial time investment to implement successfully

but were very helpful and likely saved us a great deal of time trying to tune a pause-based timing

system.

Page 11

Part selection

Overall, the parts selected were appropriate in achieving the goals of the project. The dual

pic system, while more difficult than controllers such as an Arduino (especially for LCD

display), was sufficient in handling the logic of the system while costing a fraction of the other

options. The servo is the only part where spending a little more could have gone a long way. The

servo implemented was cheap and had plastic gears which caused it to be loud. A more

expensive servo would limit the noise from the servo movement and greatly better the user

experience.

6 References

[1] CLOCKX18. (n.d.), ME Labs. Accessed: May 16, 2022. [Online]. Available:

https://melabs.com/samples/LABX18-16F88/CLOCKX18.htm

[2] HPWM_servo. (n.d), K. Nickels. Accessed: Date May 16, 2022. [Online]. Available:

https://tlearn.trinity.edu/pluginfile.php/861101/mod_resource/content/3/hpwm_servo.pbp

https://melabs.com/samples/LABX18-16F88/CLOCKX18.htm
https://tlearn.trinity.edu/pluginfile.php/861101/mod_resource/content/3/hpwm_servo.pbp

Page B-1

A Appendix

A.1 Wiring Schematic

Figure A-1: Detailed wiring schematic, showing the connections for input and output

devices.

Page B-2

A.2 PICBASIC Pro Code

The master PIC timer interrupt system is based on a clock program from ME Labs [1], and the

servo PIC HPWM borrows from Dr. Nickel’s demo [2].

A.2.1 Master PIC

'**

'* Name : metronome_master_PIC.BAS *

'* Author : Andrew Deering *

'* Date : 5/4/2022 *

'* Version : 1.9 *

'* Notes : Program to control the Master PIC for the *

'* : analog/digital metronome *

'* : Timer interrupt based on MElabs 'CLOCKX18.pbp' *

'**

;----[16F88 Hardware Configuration]---

#CONFIG

 __CONFIG _CONFIG1, _INTRC_IO & _PWRTE_ON & _MCLR_OFF & _LVP_OFF &

_WDT_OFF

#ENDCONFIG

;----[Oscillator Setup]---

define OSC 8 '8MHz internal oscillator

OSCCON.4 = 1

OSCCON.5 = 1

OSCCON.6 = 1

;----[Initialize Hardware]--

ANSEL = 0 'turn off all A/D converters

ANSEL.6 = 1 'turn on RB7 analog input

Page B-3

TRISB.6 = 0 'set handshake pin to output

' Pin assignments

led var PORTA.6 'LED connected to pin RA6

hand_shake var PORTB.6 'Handshake output to servo PIC

reset var portb.0 'Reset output to servo PIC

zero var portb.2 'Zero input from servo PIC

buzzer var portb.1 'Buzzer connected to pin RB1

;----[Variables]--

pot_value var BYTE 'Analog POT value measure from BPM dial

BPM var byte 'Metronome BPM variable

SPB var word 'seconds per beat: 60000/BPM

ticks var word 'timing variable (16.384 milliseconds per tick)

;----[Program Start]--

low reset 'Resetting the communication lines to the servo PIC

low hand_shake

pause 500 ' Wait 500ms for LCD to start

LCDout $FE, 1 'clear lcd

LCDout $FE, $80, "Calibrating..."

pause 500 'wait for servo to reach reset position

do while (zero == 0) 'wait for servo PIC to send zero signal

loop

'send signal to sync program location with servo PIC

high hand_shake

pause 20

low hand_shake

Page B-4

do while (zero == 1) 'wait for time sync signal from servo PIC

loop

adcin 6, pot_value 'reading BPM dial on port RB7/AN6

BPM = pot_value 'storing measured BPM

spb = 60000/bpm 'caluclating the associated milliseconds per beat

'printing BPM value to LCD

LCDout $FE, 1

LCDout $FE, $80, "BPM: "

LCDout $FE, $c0, dec BPM

' Set TMR0 to interrupt every 16.384 milliseconds

OPTION_REG = %01010110 ' Set TMR0 configuration and enable PORTB pullups

INTCON = %10100000 ' Enable TMR0 interrupts

On Interrupt Goto tickint

ticks = 0 'reseting tick Count

;----[Main Program Loop]--

main:

 while (1) 'loop forever

 if (pot_value > 2+BPM) or (pot_value < BPM-2) then 'if dial changed

 low hand_shake

 adcin 6, pot_value 'remeasure dial BPM

 BPM = pot_value

 spb = 60000/BPm

 else 'normal metronome functionality

 adcin 6, pot_value 'measure dial value to compare to BPM variable

Page B-5

 endif

 wend

end

;----[Interrupt handlers]--

' Interrupt routine to handle each timer tick

Disable ' Disable interrupts during interrupt handler

tickint: ' 61 ticks per second (16.384ms per tick)

 If ticks*163 < 200 Then 'extending the pulse time into the start of the next cycle

 high led

 high buzzer

 high hand_shake

 elseif ticks*163 < spb*10 then 'time between beats: low pulse

 low led

 low buzzer

 low hand_shake

 else 'ticks*163 = SPB: start high pulse

 high led

 high buzzer

 high hand_shake

 ticks = 0 'reset tick Count

 endif

 ticks = ticks + 1 ' increment tick counter between intrrupts

 intcon.2 = 0 'reset interrupt flag

resume main 'resume interrupts

A.2.2 Servo PIC

'**

'* Name : metronome_servo_PIC.BAS *

'* Author : Andrew Deering *

Page B-6

'* Date : 5/4/2022 *

'* Version : 1.3 *

'* Notes : Program to control the servo PIC for *

'* : the analog/digital metronome *

'* : Hardware PWM based on Dr. Nickels 'HPWM_servo.pbp'*

'**

;----[16F88 Hardware Configuration]---

#CONFIG

 __CONFIG _CONFIG1, _INTRC_IO & _PWRTE_ON & _MCLR_OFF & _LVP_OFF

#ENDCONFIG

;----[Oscillator Setup]---

DEFINE OSC 8 'stepping down 8 MHz internal clock to 125 kHz

OSCCON = %00010010 ' 125kHz

'pause command = seconds * 16

'pauseus = ms * 16

;----[Initialize Hardware]--

ansel = 0 ' Turn off the analog to digital converters.

ansel.2 = 1 'turn on porta2 ADC for the servo potentiometer

TRISB.0 = 0 ' Set PORTB.0 (CCP1) to output

TRISA.1 = 1 'set handshake line to input

CCP1CON = %00001100 ' Set CCP1 to PWM

T2CON = %00000101 ' Turn on Timer2, Prescale=4

;----[Pin Assignments]--

hand_shake var PORTA.1 'Handshake input from master PIC

reset var portb.2 'Reset input from master PIC

zero var porta.0 'Zero output to master PIC

Page B-7

;----[Variables]--

duty VAR byte ' Duty cycle value (CCPR1L:CCP1CON<5:4>)

 ' Period = 20ms

 ' 0.5 ms = 16 = -180 deg

 ' 0.75 ms = 24 = -135 deg

 ' 1.0 ms = 32 = -90 deg

 ' 1.0 ms = 40 = -45 deg

 ' 1.5 ms = 48 = 0 deg

 ' 1.75 ms = 56 = 45 deg

 ' 2.0 ms = 64 = 90 deg

 ' 2.25 ms = 72 = 135 deg

 ' 2.5 ms = 80 = 180 deg

setPos var byte 'servo position setpoint

rightPos var byte 'servo position limit (right)

leftPos var byte 'servo position limit (left)

pulse var byte 'variable to determine wheteher to move the servo

position var byte 'variable to store the encoder value

leftpot var byte 'servo encoder value at leftpos

;----[Program Start]--

' Use formula to determine PR2 value for a 50Hz signal,

' 125kHz clock, and prescale=4. (125e3/(4*4*50))-1=155

PR2 = 155 ' Set PR2 to get 50Hz out

leftpos = 40 '-45 deg

rightpos = 56 '45 deg

setpos = leftpos

gosub setduty 'move servo to leftpos

pause 8 'wait 500 ms to stabilize

Page B-8

gosub readposition 'finding the left position encoder value

leftpot = position 'storing left position encoder value

pulse = 0

high zero 'telling master pic that servo is in position

'waiting for the main loop signal from master pic

do while (hand_shake == 0)

loop

do while (hand_shake == 1)

loop

low zero 'sending master pic time sync

setPos = leftpos 'set position left because main will switch position

;----[Main Program Loop]--

main:

 while (1)

 if reset == 0 then 'dial has not changed

 if hand_shake == 1 and pulse == 0 then 'and servo is not in position

 gosub switchpos 'switch position

 gosub setduty

 pulse = 1

 low zero

 elseif hand_shake == 0 then 'pulse ended

 pulse = 0

 low zero

 endif

 else 'dial changed

 setpos = leftpos 'move servo to the left

 gosub setduty

 endif

 wend

Page B-9

end

;----[Subroutines]--

setduty: 'subroutin to set the duty cycle for the HPWM

 duty = setpos

 CCP1CON.4 = duty.0 ' Store duty to registers as

 CCP1CON.5 = duty.1 ' a 10-bit word

 CCPR1L = DUTY >> 2

return

switchPos: 'switching the servo position setpoint

 if (setPos == leftPos) then

 setpos = rightpos

 else

 setPos = leftPos

 endif

return

readposition: 'reads the servo position potentiometer

 adcin 2, position

RETURN

	Analog & Digital Metronome
	Repository Citation

	Analog & Digital Metronome
	1 Design Summary
	2 System Details
	2.1 Logic, Processing, and Control
	2.2 Output Display
	2.3 Audio Output Device
	2.4 Manual User Input
	2.5 Actuators, Mechanisms, and Hardware
	2.6 Automatic Sensor

	3 Design Evaluation
	4 Partial Parts List
	5 Lessons Learned
	6 References
	A Appendix
	A.1 Wiring Schematic
	A.2 PICBASIC Pro Code
	A.2.1 Master PIC
	A.2.2 Servo PIC

