2011

AMP-Activated Protein Kinase (AMPK) Activity is Not Required for Neuronal Development But Regulates Axogenesis During Metabolic Stress

Tyisha Williams
Trinity University, twilliam@trinity.edu

J. Courchet
B. Viollet
J. E. Brenman
F. Polleux

Follow this and additional works at: https://digitalcommons.trinity.edu/bio_faculty
Part of the Biology Commons

Repository Citation
AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress

Tyisha Williams¹,¹, Julien Courchet¹,², Benoit Viollet³,d,e, Jay E. Brenman²,⁴, and Franck Polleux²,²

¹Neuroscience Center, ²Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599; ³Doris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037; ⁴Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, 75014 Paris, France; ⁵Centre National de la Recherche Scientifique, UMR8104, 75014 Paris, France; and ⁶Université Paris Descartes, 75014 Paris, France

Mammalian brain connectivity requires the coordinated production and migration of billions of neurons and the formation of axons and dendrites. The LKB1/Par4 kinase is required for axon formation during cortical development in vivo partially through its ability to activate SAD-A/B kinases. LKB1 is a master kinase phosphorylating and activating at least 11 other serine/threonine kinases including the metabolic sensor AMP-activated protein kinase (AMPK), which defines this branch of the kinome. A recent study using a gene-trap allele of the β1 regulatory subunit of AMPK suggested that AMPK catalytic activity is required for proper brain development including neurogenesis and neuronal survival. We used a genetic loss-of-function approach producing AMPKα1α2-null cortical neurons to demonstrate that AMPK catalytic activity is not required for cortical neurogenesis, neuronal migration, polarization, or survival. However, we found that application of metformin or AICAR, potent AMPK activators, inhibit axogenesis and axon growth in an AMPK-dependent manner. We show that inhibition of axon growth mediated by AMPK overactivation requires TSC1/2-mediated inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. Our results demonstrate that AMPK catalytic activity is not required for early neural development in vivo but its overactivation during metabolic stress impairs neuronal polarization in a mTOR-dependent manner.

AMP-activated kinase (AMPK) is a heterotrimeric serine/threonine protein kinase composed of one catalytic subunit (encoded by α1 or α2 genes in mammals) and two regulatory subunits β and γ (encoded by β1 or β2 genes and γ1, γ2, or γ3 genes, respectively) (1–3). AMPK is an important metabolic sensor, activated by various forms of metabolic stress including low ATP:AMP ratios. AMPK has been implicated in a range of cell biological functions including cell polarity, autophagy, apoptosis, and cell migration (2–9). A recent study (10) suggested that the regulatory subunit, AMPKγ1, is critical for normal neurogenesis, neuronal differentiation, and neuronal survival during cortical development. However, to date there is no published evidence reporting the consequence of a genetic loss of function for the catalytic activity of mammalian AMPK in the mammalian nervous system. To assess the role of AMPKα during cortical development, we used transgenic mice that were ubiquitously inactivated for the AMPKα1 gene (AMPKα1−/−) (11) and conditionally inactivated for AMPKα2 (AMPKα2−/−) (12, 13). AMPKα2 was selectively deleted using the Emx1Cre mouse line, which induces recombination only in dorsal telencephalic progenitors giving rise to all pyramidal projection neurons in the cortex, but not in ventral telencephalon-derived cortical GABAergic interneurons, which constitutes ~25% of all cortical neurons (14). Surprisingly, we found no obvious defect of neurogenesis, neuronal migration, axon formation, or neuronal survival in AMPKα1/2-null cortex compared with control mice. On the basis of the profound differences between the phenotypes observed in LKB1-null neurons (15, 16) and the AMPK-null neurons (present study), we conclude that (i) under normal conditions, AMPK is not required for neurogenesis, neuronal differentiation, or neuronal survival in vivo; (ii) LKB1 function does not require AMPK catalytic activity to control neuronal polarization and survival but that (iii) metabolic stress inhibits axon formation during neuronal polarization as well as axon growth in an AMPK- and mammalian target of rapamycin (mTOR)-dependent manner.

Results

Genetic Loss-of-Function Approach Deleting AMPKα1α2 Catalytic Subunits in Cortical Neurons. We first documented the pattern of expression of AMPKα1 [Mouse Genome Informatics (MGI): Prkaa1] and AMPKα2 (MGI: Prkaa2) during cortical development using RT-PCR (Fig. S1A) and found that both genes are expressed throughout embryonic and postnatal development and in the adult cortex. Interestingly, whereas mRNA expression levels of AMPKα1 seem rather constant at all stages examined, levels of AMPKα2 seem more tightly regulated developmentally with low levels at embryonic day (E)15.5 and peak levels during the first week of postnatal development. We confirmed these results at the protein level using an antibody that recognizes both AMPKα1 and α2 (Fig. S1B). Interestingly, the level of AMPKα1 expression measured by detection of phosphoThr172-AMPK is high from E15.5 to postnatal day 1 (P1) but decreases significantly during postnatal development until adulthood (Fig. S1B). Several well-characterized substrates of AMPK such as ACC and GABA_A receptor 2 display drastically different temporal patterns of phosphorylation. ACC phosphorylation is high from E15 to P7 but low after P15 and in adult cortex, whereas GABA_A R2 phosphorylation on Ser836, which is entirely mediated by AMPK (Fig. S1F), is almost undetectable from E15 to P1. However, GABA_A R2 phosphorylation increases progressively from P7 to adulthood, nicely correlating with synaptogenesis in the cortex. Finally, to circumvent the mixed nature of cell types encountered in the cortex at different stages (neurons, astrocytes, oligodendrocytes, etc.) we placed E18 cortical progenitors in culture conditions that strongly enrich for postmitotic pyramidal neurons with very limited astrocytes and oligodendrocytes. This analysis confirms that AMPK is expressed and activated rather constantly during early neuronal differentiation in vitro but its level of activation decreases sharply after 5 d in vitro (div) (Fig. S1C), mimicking observations at early postnatal stages in vivo (after P1; Fig. S1B). Taken together, the expression data show that AMPK is expressed in cortical neurons throughout development and in adulthood, but that its activation and ability to phosphorylate downstream targets is tightly regulated temporally.

Author contributions: T.W., J.C., J.E.B., and F.P. designed research; T.W. and J.C. performed research; T.W., J.C., and B.V. contributed new reagents/analytic tools; T.W., J.C., J.E.B., and F.P. analyzed data; and T.W., J.C., J.E.B., and F.P. wrote the paper.

The authors declare no conflict of interest.

This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

1TW. and J.C. contributed equally to this work.

2To whom correspondence may be addressed. E-mail: polleux@scripps.edu or brenman@med.unc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1013660108/-/DCSupplemental.
We generated a cortex-specific genetic ablation of AMPK catalytic activity by crossing a constitutive AMPKα1 knockout mouse with a mouse carrying an AMPKα2 conditional allele. Recombination of the AMPKα2 allele specifically in cortical progenitors giving rise to all pyramidal neurons was achieved by crossing with an Emx1Cre mouse (14). We next validated that our genetic approach by harvesting cortical lysates from P3 Emx1Cre+/−, AMPKα1−/−α2Fl+ mice (hereafter referred to as AMPKα-double conditional knockout, DcKO). Western blot analysis shows that total AMPKα (1 + 2) protein expression level is reduced by 70% compared with control littersmates (Emx1Cre+/−; AMPKα1+−α2Fl+ or Emx1Cre+/−; AMPKα1−/−α2Fl+, n = 3) (Fig. S1D). To evaluate protein levels without contribution from astrocytes, cortical interneurons, and blood vessels, we dissociated cultures of E15 dorsal telencephalic progenitors for 4 div. In these conditions, more than 90% of cells in culture are postmitotic glutamatergic pyramidal neurons and the cultures are almost completely devoid of radial glial progenitors or astrocytes when cultured in serum-free conditions (17, 18). Under these culture conditions, we have enriched for postmitotic pyramidal cortical neurons where Emx1Cre should efficiently induce Cre-recombination and our Western blot analysis reveals a complete loss of AMPKα protein expression in the AMPKα-DcKO compared with control mice (Fig. S1E). To confirm the in vivo ablation of the catalytic activity of AMPK, we used phospho-specific antibodies detecting two previously characterized AMPK protein substrates: serine 783 of the GABAB receptor 2 (19) and retinoblastoma (Rb) protein on serines 807 and 811 (10). Phosphorylation of both of these proteins is abolished in the P3 cortex of AMPKα-DcKO compared with control mice (Fig. S1 F and G). These results demonstrate that our genetic approach generates a complete loss of AMPK catalytic activity in cortical pyramidal neurons in vivo.

AMPK Catalytic Activity Is Not Required for Proper Cortical Development in Vivo. AMPKα-DcKO mice are viable at birth and several individuals survived until adulthood. This allowed us to examine several aspects of cortical development at early postnatal stages. At P3, analysis of the expression of layer-specific markers such as CTIP2 (layer 5 marker), Cux1 (layer 2−4 marker) and Tbr1 (layer 6a marker) revealed no difference in layer formation between the AMPKα-DcKO (Fig. 1A−H) compared with control littersmates (Fig. 1A−H). This strongly argues that AMPKα is not required for proper neurogenesis and neuronal migration in vivo. Loss of function of LKB1 (a major activator of AMPK through its ability to phosphorylate T172) and loss of function of AMPKβ1 were both reported to lead to significant levels of neuronal apoptosis in vivo (10, 15). In contrast, we found that neuronal apoptosis, as measured by the number of activated caspase 3-positive cells, is low in AMPKα-DcKO (Fig. 1I−L) and not different from control littersmates (Fig. 1 I−L). Finally, axon-specific (Taul) and dendrite-specific (MAP2) marker analysis revealed no difference between the AMPKα-DcKO (Fig. 1M−P) and control littersmates (Fig. 1 M−P), suggesting no gross abnormalities in neuronal polarization and axon−dendrite growth. This contrasts with the phenotype observed in LKB1 cKO as well as in two other effectors of LKB1, namely SAD-A/B kinase DKO mice, where cortical pyramidal neurons do not form axons (15, 20).

To directly visualize neuronal morphology and axon−dendrite polarization, we used two alternative approaches. First, we performed ex utero cortical electroporation (EUCE) on AMPKα1−/−; AMPKα2Fl+ embryos at E15 using plasmids expressing EGFP (Fig. 2 A and A′) or Cre recombinase-internal ribosome entry site (IRES)-EGFP (Fig. 2 B and B′) to simultaneously visualize neuronal morphology and achieve Cre-mediated recombination of AMPKα2. Following organotypic slice culture for 5 d ex vivo (DEV), this technique allows monitoring of both neuronal migration and axon formation of cortical progenitors from the ventricular zone (VZ) to their final position in the cortical plate (CP) (15, 18). Because the progenitors electroporated at E15 give rise primarily to callosally projecting pyramidal neurons destined to layer 2−3, most axons emerging from GFP-expressing

![Fig. 1. AMPKα is not required for cortical neuron development in vivo.](image_url)
of glucose uptake, AICAR, would affect neuronal polarization. As expected, we show that metformin and AICAR (Fig. S5) robustly activate AMPK in neurons by measuring the levels of active phosphorylated AMPKα and the phosphorylation of its downstream targets ACC and GABA_2B R2 after treatment. Interestingly, treatments of E15 cortical neurons for 4 div with either metformin or AICAR showed a dose-dependent effect on neuronal polarization leading to over 85% of neurons without a Tau1 positive axon (Fig. S3 E–L and Fig. S4 C, D, F, and G). Importantly, because >95% of cells electroporated by EUCE are radial glial progenitors (18), these results confirm that generic steps of neuronal differentiation are not affected by these treatments because over 90% of the cells express panneuronal markers including Tau1 and MAP2 (Figs. S3 and S4). However, in the presence of metformin or AICAR, these neurons fail to polarize properly. Specifically, neurons fail to form a single Tau1-positive (MAP2-negative) axon, but instead have multiple short neurites aberrantly labeled by both Tau1 and MAP2 (Fig. S3). These results demonstrate that axon formation is highly sensitive to metabolic stress. We next tested whether these effects are mediated through AMPK activation during neuronal polarization.

Axonal Effects of AICAR, but Not Metformin, Require AMPK. Recent studies have reported that some of the effects of metformin are AMPK independent (23). We therefore tested whether the effects of AICAR and metformin on axon specification and elongation were mediated through AMPK by exposing either control or AMPKα-DcKO cortical neurons to AICAR or metformin in vitro (Fig. 3). Both metformin (Fig. 3 E–H and M) and AICAR (Fig. 3 I–L and N) treatments significantly reduced the proportion of cortical neurons successfully polarizing compared with control (Fig. 3 A–D, M, and N). Surprisingly, the effects of metformin were only partially mediated by AMPK activation because AMPKα-deficient cortical neurons still show a significantly higher proportion of neurons without Tau1-positive axon compared with control (Fig. 3 E–H and M). This is in sharp contrast with AMPKα-deficient cortical neurons exposed to AICAR, which show similar proportion of neurons correctly polarized with a single axon compared with controls (Fig. 3 I–L and N).

Interestingly, when we quantified the effects of metformin and AICAR on the axon length for neurons that successfully polarized, the dependence on AMPK was even more divergent (Fig. 3O). We found that axon length of AMPKα-DcKO cortical neurons treated with metformin were not significantly longer than wild-type neurons treated with metformin. Conversely, AMPKα-deficient cortical neurons treated with AICAR exhibited axon length significantly longer than wild-type neurons treated with AICAR yet indistinguishable from vehicle-treated WT neurons cultured in the same conditions. Overall, these results demonstrate that unlike AICAR, which mediates its effects on axon specification and outgrowth almost exclusively through AMPK activation, metformin mediates some of its effects on neuronal polarization and extension in an AMPK-independent manner consistent with metformin AMPK-independent effects documented by others in nonneuronal cell types (24, 25).

AMPK Overactivation Inhibits Axon Formation Through Inhibition of the mTOR Pathway. We next determined the molecular mechanisms underlying the inhibition of axon formation mediated by AMPK overactivation. Several downstream effectors have been shown to mediate the effect of AMPK on cell polarity in different organisms ranging from actomyosin effectors such as the activating phosphorylation of myosin light chain (MLC) (26) to the mTOR pathway (27, 28). Interestingly, both MLC phosphorylation/myosin-II activity (29) and TSC1/2-dependent mTOR inactivation (30) have been implicated in neuronal polarization and axon formation. Pharmacological treatment with metformin and AICAR did not increase the level of MLC phosphorylation on Ser19 in cortical neurons. We therefore focused on testing the function of the mTOR kinase pathway, which is a key regulator of protein synthesis through the mTORC1 complex. AMPK has been shown to directly phosphorylate TSC2 (27), an essential

catalytic activity by incubating cortical neurons in vitro with compound C, a nonselective but potent AMPK inhibitor (Fig. S4 B and E). Qualitative and quantitative assessments demonstrate that compound C does not affect cortical neuron differentiation (Fig. S4 B and E) compared with control neurons exposed to vehicle only (DMSO; Fig. S4 A and E). Overall, our genetic and pharmacological approaches demonstrate that AMPK catalytic activity is not required for proper neurogenesis, neuronal migration, polarization, or survival in vivo or in vitro.

Metabolic Stress Impairs Axogenesis in Cortical Neurons. AMPK is an important metabolic sensor required to maintain epithelial cell polarity during metabolic stress such as nutrient deprivation and lowering of the ATP:AMP ratio (6, 9). We wanted to test whether various forms of metabolic stress known to activate AMPK, including exposure to the mitochondrial inhibitor metformin—the drug most prescribed to treat type 2 diabetes—or the stimulator
component of the tuberin/hamartin complex that also contains the protein TSC1. Activation of the TSC1/TSC2 complex by AMPK enhances its inhibitory GAP activity toward Rheb GTPase, an activator of mTOR. AMPK also exerts a second brake on the mTOR pathway by phosphorylating raptor, a phosphorylation that inhibits the activity of the complex and thereby inhibits protein synthesis. Treatment of cortical neurons in vitro with metformin (Fig. S6) and AICAR (Fig. 4 A and B) significantly increased the phosphorylation of AMPK (phospho-Thr172) and raptor (phospho-Ser792), whereas mTOR (phospho-Ser2448) and p70S6K (phospho-Ser371) phosphorylation was decreased. Both treatments also resulted in the disappearance of a slow migrating band corresponding to the hypophosphorylated form of protein 4E-BP1 (arrow in Fig. 4 A) with increases in a faster migrating, hypophosphorylated band. These results are compatible with previous studies and demonstrate that in cortical neurons, AMPK activation inhibits the mTOR pathway. Because TSC1/2 regulates neuronal polarization by inhibiting axon formation (30), we tested whether AMPK overactivation inhibits axon formation through excessive TSC1/2-mediated inhibition of mTOR. To do this, we performed independent TSC1 and TSC2 knockdown in the presence of AICAR. We confirmed that knockdown of TSC2 leads to a significant increase in neurons bearing multiple axons (Fig. 4 C–F) as previously published (30). Most interestingly, knockdown of TSC1 and TSC2 completely rescued the effect of AICAR treatment on axon formation (Fig. 4 C–E’ and F) and axon growth (Fig. 4G). These results strongly argue that AMPK overactivation inhibits axon specification and axon growth by activating TSC1/2 and thereby inhibiting mTOR.

Discussion

Our results demonstrate unequivocally that AMPK catalytic activity is not required for proper cortical neurogenesis, radial migration, cortical layer formation, and axon–dendrite formation in vivo and in vitro. Neuronal survival in the developing cortex is also not affected by the genetic removal of all AMPKα. Our results are in conflict with a prior study, which suggested that AMPK is required for embryonic cortical development including neurogenesis, neuronal survival, and differentiation (10). To date, the large body of work suggests a dogma whereby the neurogenesis, neuronal survival, and differentiation (10). To date, the large body of work suggests a dogma whereby the neurogenesis, neuronal survival, and differentiation (10)....
functions of AMPKα despite the current dogma. Future investigation of the proteins that AMPKβ1 binds to and regulates might resolve this discrepancy. However, a second group (31), which recently globally disrupted AMPKβ1 by conventional loss-of-function gene targeting, failed to find neuronal development phenotypes and obtained viable and fertile AMPKβ1-knockout mice. Currently, AMPKα is largely thought to mediate AMPK catalytic activity and therefore our genetic loss-of-function data likely reflect the role of AMPK activity in the developing nervous system. Our results also reveal different phenotypes from LKB1 loss-of-function mutants in the same neurons, which require LKB1 for neuronal polarization and survival in vivo (15, 16). In other model organisms, including Drosophila, LKB1 neural phenotypes are always significantly more severe than AMPKα phenotypes (32), which could be due to the fact that LKB1 is upstream of AMPK and at least 11 other kinases (33, 34). Our results are consistent with such studies and we speculate that during mammalian embryonic brain development AMPKα activity is present but not essential for proper neural development; however, its hyperactivation has profound consequences on early neural development. This is largely compatible with data from other multicellular organisms like Caenorhabditis elegans where AMPKα is not required for normal development, but only for surviving energetic stress paradigms (35). Our results are also consistent with genetically null AMPKα Drosophila mutants that specify neurons in the embryo and adult properly, which extend axons and dendrites (6, 33).

The mTOR-dependent pathway has previously been involved in neuronal polarization, when TSC1/2 inhibits axon specification by repressing SAD-A/B kinases protein synthesis (29). Importantly, our study shows that the inhibitory effects on axon formation and growth via AMPK overactivation require TSC1 and -2. Knockdown of TSC1 and TSC2 results in full rescue of axon formation and axon growth during AICAR-induced AMPK activation (Fig. S7A).

We have previously shown that, unlike in other cell types (2), LKB1 is not the major AMPK-activating kinase in neurons because there is no significant change in T172 phosphorylation in LKB1-deficient neurons in vivo (15). Ca2+-calmodulin–dependent kinase β (CAMKKβ) has previously been shown to phosphorylate T172 on AMPK in neurons and might therefore be the relevant upstream activator of AMPK in neurons (36) (Fig. S7A).

Our results show that axogenesis and axon growth can be impaired during times of severe energetic stress, which potently activates AMPK (1, 2, 6) (Fig. S7B). We were able to show in vitro that cultured cortical neurons treated with AICAR or metformin lead to aberrant neuronal polarization. Future investigations

![Fig. 4. AMPK activation impairs axon formation through the TSC/mTOR pathway. (A) Western blot analysis after in vitro culture of E18.5 mouse cortical neurons cultured for 1 d, then treated with AICAR (1 mM) for 3 d in vitro. Treatments increased the phosphorylation of AMPK (phospho-Thr172) and raptor (phospho-Ser792), whereas mTOR (phospho-Ser2448) and p70S6K (phospho-Ser371) phosphorylation were decreased. Treatment also resulted in the disappearance of a slow migrating band corresponding to 4E-BP1 (arrow). (B) Quantification of phospho-AMPK, phospho-raptor, phospho-mTOR, and phospho-70S6K signal normalized to total amount of corresponding proteins compared with control condition (DMSO vehicle only). Error bars represent SEM (n = 5). (C–E) Morphology of cortical neurons electroporated with control vector (C), or short-hairpin (sh)RNA targeting TSC1 (D), or TSC2 (E) and cultured in vitro for 4 d exposed to control vehicle only (DMSO) or the AMPK activator AICAR (1 mM). Arrowheads point to single axons. (Scale bar, 100 μm.) (F) Neuronal polarity was quantified by determining the percentage of neurons with single axon, multiple axons, or no axon for five independent experiments (n = 500 neurons for each treatment) for neurons shown in C–E. Statistical analyses were performed using Fisher’s exact test. (G) Quantification of axon length for neurons shown in C–E. Box plots are as in Fig. 3. Statistical analysis was performed using one-way ANOVA.

Williams et al. PNAS | April 5, 2011 | vol. 108 | no. 14 | 5853
should determine whether metabolic stress, environmental insults, or other pathological situations known to activate AMPK, could impact brain development through its ability to modulate axon formation, axon growth, and maybe other aspects of neuronal differentiation. Our results have important implications in the context of neurodegeneration especially in light of recent results suggesting that in Drosophila, neurodegeneration induced by Par1 (MARK)-mediated Tau-hyperphosphorylation can be significantly suppressed by reducing LKB1 expression (37, 38). Future experiments should further explore the relationship between metabolic stress, AMPK activation, and axon formation, growth, or maintenance in the context of neurodegeneration.

Materials and Methods

Animals. Mice were used according to protocols approved by the Institutional Animal Care and Use Committee at the University of North Carolina-Chapel Hill, The Scripps Research Institute, and in accordance with National Institutes of Health guidelines. Time-pregnant females were maintained in a 12 h light/dark cycle and obtained by overnight breeding with males of the same strain. Noon following breeding is considered as E0.5.

Antibodies. See Table S1.

Con structs and Reagents. All cDNAs were subcloned into a pCIg2 vector (18), which contains a (cDNA)-IREs-EGFP under the control of a CMV-enhancer/subfamily: Metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821-855.

RT and PCR. mRNA from mouse cortex were obtained by RNA extraction and purification using Nucleosip RNA II kit (Macherey Nagel). RNA was treated with DNase I during the purification procedure to prevent contamination of the samples with genomic DNA, as recommended by the manufacturer. cDNA conversion was performed with Qiagen Omniscript kit using 1 μg mRNA as template and oligo(dT) primers (Invitrogen). Fragments specific to AMPKα1, α2, and GAPDH were obtained using the following primers: PRKAA1_F 5′-GCTTTGACTCACC-CATTAT-3′ and PRKAA1_R 5′-TGTGACGGACGCTGAGG-3′; PRKAA2_F 5′-GGCCCTCAGTCCCTCATTAG-3′ and PRKAA2_R 5′-CAGCTTGTCTGGAACTCAAACAAA-3′, and GAPDH_F 5′-AAGCTGATGGTGGAGGAAG-3′ and GAPDH_R 5′-CCCTG-TTGCTGACCCGTAT-3′. Thirty cycles of PCR were performed using Taq DNA polymerase (Qiagen) at the hybridization temperature of 57.5 °C.

Western Blotting. Western blotting was described as previously described (18). See SI Materials and Methods for details.

Ex Utero Electropropagation and Organotypic Slice Culture. EUCe was performed as described previously (18) (SI Materials and Methods).

ACKNOWLEDGMENTS. We thank the members of the J.E.B. and F.P. laboratories for helpful comments. This work was supported by National Institutes of Health grants (R01MH073155 to J.E.B. and T.W., and R01AG031524 to F.P. and J.C.), University Funds for J.E.B., and a postdoctoral fellowship from the Fondation pour la Recherche Médicale and the Philippe Foundation (to J.C.).