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Abstract

We consider topological conditions under which a locally invertible

map admits a global inverse. Our main theorem states that a local dif-

feomorphism f : M → R
n is bijective if and only if Hn−1(M) = 0 and

the pre-image of every affine hyperplane is non-empty and acyclic. The

proof is based on some geometric constructions involving foliations and

tools from intersection theory. This topological result generalizes in fi-

nite dimensions the classical analytic theorem of Hadamard-Plastock,

including its recent improvement by Nollet-Xavier. The main theorem

also relates to a conjecture of the aforementioned authors, involving

the well known Jacobian Conjecture in algebraic geometry.

1 Introduction

In this paper we are concerned with the problem of finding topological con-

ditions ensuring that a local diffeomorphism is bijective. A classical result

in this direction is the well-known Hadamard-Plastock Theorem (see [4] and

[10]). It states that a Banach space local diffeomorphism f : X → X is

bijective provided

inf
x∈X

‖Df(x)−1‖−1 > 0. (1.1)
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The proof of the Hadamard-Plastock theorem follows from simple argu-

ments involving covering spaces. In recent years new topological and geomet-

ric ideas have been introduced in the subject of global invertibility, pushing

the field in different directions (see, for instance, [5], [6], [7], [8], [11], [14],

[17], and [18]). The emerging picture reveals that global invertibility is also

influenced by more subtle topological phenomena. In [7], Nollet and Xavier

established a substantial improvement to the Hadamard-Plastock theorem

when dim X < ∞. Using degree theory, they showed in [7] that a local dif-

feomorphism f : Rn → Rn is bijective if there exists a complete Riemannian

metric g on Rn such that,

∀ v ∈ Sn−1, inf
x∈Rn

‖Df(x)∗v‖g > 0. (1.2)

Notice that (1.2) is an improvement over (1.1) since

‖Df(x)−1‖−1 = ‖Df(x)∗−1‖−1 = inf
|v|=1

‖Df(x)∗v‖.

Furthermore, it is easy to produce examples that satisfy (1.2) but not (1.1).

Arguments from elementary Morse theory (see [9, p.112]) show that if (1.2)

holds, then the pre-images of affine hyperplanes H must satisfy f−1(H)×R ∼= R
n

(note that Df(x)∗v = ∇〈f(x), v〉). In particular, by the Künneth formula,

f−1(H) is acyclic (recall that a topological space is called acyclic if it has the

homology of a point).

In this paper we show that the above mentioned analytical results are but

a manifestation of a topological phenomenon.

Theorem 1.1. A local diffeomorphism f : Rn → Rn is bijective if and only

if the pre-image of every affine hyperplane is non-empty and acyclic.

In Section 3 we will point out a connection between the above theorem

and the Jacobian Conjecture in algebraic geometry. The non-trivial half of

Theorem 1.1 consists in establishing injectivity and surjectivity. Its proof is

based on some geometric constructions involving foliations, and the compu-

tation of intersection numbers of certain chain complexes. Theorem 1.1 also

allows for an analytic corollary that is stronger than the results in [7], in the

sense that one can choose the metric to suit the unit vector v.
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2 Preliminaries

Given a compact smooth manifold Mn and a finite cover, we would like

to have a systematic way to describe the intersections of the sets in the

cover. Likewise, once a point is given we want to describe exactly all the

sets in the cover that contain the given point. To this end, we will consider

a triangulation of M and view the top dimensional cells as the sets of the

covering. We set our notation as follows. Denote by T (M) a triangulation

on M (whose existence is guaranteed by [16]) and let e(k)j be the jth k-cell

of T (M). The set of indexes of k-cells will be denoted by E(k) ⊂ N. Also,

given a triangulation T (M), let Tk(M) be the k-skeleton of M . Whenever

the context is clear, we will refer to the triangulated space simply as M .

This combinatorial approach allow us to easily address the properties

we mentioned above. For instance, given a simplex e(k)j , the star of e(k)j

describes all the simplexes that contain e(k)j . In our results, we will be

interested in finding all the (k + 1)-simplexes that contain e(k)j . This is

easily accomplished by looking at the vertices of the link of e(k)j , denoted

by Lk (e(k)j).

We now review the basic definitions from intersection theory. We de-

fine in Mn the intersection number (mod 2) between Ap a p-cycle and Bq

a q-cycle, where p + q = n by #(Ap, Bq). We note that when Ap, Bq rep-

resent transverse submanifolds, then #(Ak, Bn−k) represents the number of

geometric intersections mod 2. The property that we highlight is that inter-

section number depends only on the homology class. For details and formal

definitions we refer the reader to [13].

Finally, we can also define linking numbers between cycles. Let Xp and

Y q−1 be two nonintersecting cycles in Rn with p+q = n. For Zp+1 a bounding

chain of Xp, i.e. ∂Zp+1 = Xp, we define the linking number between Xp and

Y q−1 as

Lk(Xp, Y q−1) = #(Zp+1, Y q−1), (2.1)

which is independent of the choice of the bounding chain of Xp.
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3 Injectivity

Let us consider a local diffeomorphism f : M → Rn, where M is a smooth

connected manifold. Our goal is to understand under which topological con-

ditions the map f is injective. There is a conceptual link between injectivity

and connectedness. For instance, it is clear that a locally invertible map is

injective if and only if the pre-image of every 0-dimensional affine subspace

(i.e., a point) is connected (possibly empty). An analogous statement can be

made if one goes one dimension higher and considers lines instead of points,

that is, a locally invertible map is injective if the pre-image of every line is

connected.

In view of these observations, Nollet and Xavier [7] made the following

conjecture.

Conjecture 3.1. A local diffeomorphism f : Rn → Rn is injective if the

pre-images of every affine hyperplane is connected (possibly empty).

At the present time this conjecture remains open and its significance is

better seen in Algebraic Geometry where it would provide a positive answer

for the Jacobian Conjecture (recall that the Jacobian Conjecture states that

a polynomial local biholomorphism F : Cn → Cn is invertible, see [2], [15]).

Indeed, if F : Cn → Cn is a polynomial local biholomorphism, and H ⊂ Cn is

a real hypersurface foliated by complex hyperplanes V , then by a Bertini type

theorem F−1(V ) is connected for a generic V (see [12], Cor. 1 of Theorem 3.7).

From this one can easily check that F−1(H) is connected and hence one would

establish the Jacobian Conjecture.

The result below establishes a weaker version of the Nollet-Xavier con-

jecture, where connectedness is replaced by acyclicity.

Theorem 3.2. A local diffeomorphism f : Rn → Rn is injective if the pre-

image of every affine hyperplane is either empty or acyclic.

In fact, we observe that we may weaken the hypotheses of Theorem 3.2

to obtain the following stronger result. We say that an affine hyperplane

H ⊂ Rn is parallel to a line ℓ in Rn provided that ℓ ∩ H = ∅ or ℓ ⊂ H .
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Theorem 3.3. For n ≥ 3, let f : M → Rn be a local diffeomorphism where

M is a (necessarily non-compact) connected manifold with Hn−1(M) = 0. If

there exists a line ℓ in Rn such that the pre-image of every affine hyperplane

parallel to ℓ is either empty or acyclic, then f is injective.

The proof of Theorem 3.3 is based on geometric constructions of chain

complexes, the computation of the intersection number between these ob-

jects, and the maximal lift of lines. Since the computation of intersection

numbers is done with objects belonging to the domain of f , we need to re-

quire the extra assumption on the homology of M . Observe that the cases in

Theorem 3.3 when n = 1, 2 are trivially true without any extra assumptions

on M .

We stress that in our arguments we will only require the existence of

local lifts. In fact, by Hadamard-Plastock Theorem [10], if all lines ad-

mit global lifts the map is already bijective. We refer to a local lift of a

line ℓ = {tw|w ∈ Rn, t ∈ R} with respect to f as a path α : (−ε, ε) → M ,

ε > 0 such that f (α(t)) = tw. Observe that by the Inverse function the-

orem, if f is a diffeomorphism a local lift of a line always exists in the

above sense. We say that α : (−δ, δ) → M is the maximal lift of ℓ if

δ = sup{ε|α admits a local lift for ε > 0}. Furthermore, ℓ has a global lift if

its maximal lift satisfies δ = ∞. Finally, what is important for us is the fact

that the maximal lift of a line is properly embedded in the domain. In our

notation, α is properly embedded if it leaves every compact set of M as |t|

increases to δ.

3.1 Beginning of the proof of Theorem 3.3

Assume that there is a point p in the image of f with at least two distinct

points q0 and q1 in its pre-image. Since translations do not change any of the

hypotheses, we assume for simplicity that p = 0. Our goal is to construct a

(n− 1)-cycle Γn−1 so that the intersection number of Γn−1 with the maximal

lift of the line ℓ passing through the origin will necessarily be zero, as the

maximal lift is properly embedded. A simple argument will then show that

f must have a critical point along the lift, thus establishing the desired

contradiction.
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First, we give an outline of the proof. Consider ε > 0 so that the ball

V = B(0; ε) ⊂ f(M) has diffeomorphic pre-images U0 and U1 around q0 and

q1, respectively. Next, let Y be the (n − 1)-equatorial disk of V determined

by ℓ, that is, the intersection of the orthogonal hyperplane to ℓ and V . The

cycle Γn−1 we seek will be constructed to resemble a topological cylinder that

connects the induced equatorial disks of U0 to U1, denoted by X0 and X1,

respectively. We construct Γn−1 as follows. Take a hyperplane parallel to ℓ

which intersects ∂V tangentially at v and is denoted by Hv. As we change

the hyperplane Hv by moving it around ∂V , the pre-images ui ∈ ∂Ui of v,

for i = 0, 1, can be continuously connected by paths in f−1(Hv), at least for

nearby hyperplanes. In this way we construct small lateral pieces of Γn−1.

One then tries to put together all those local data. In so doing, one

is forced to consider the situation where, for a fixed hyperplane Hv, there

are multiply-defined paths joining the same pre-images of points in f−1(Hv).

Whenever this occurs, the topological hypotheses that f−1(Hv) is acyclic will

be used to fill in the gaps. See Fig. 3.1 for a depiction of this process when

n = 3.

 

p

q0q0q0

q1q1
u1u1

u0u0∂X0

∂X1

Hv

f−1(Hv)

ℓ

W n−1

v∂Y

Figure 3.1: Construction of paths connecting ∂X0 to ∂X1 by the revolution

of affine hyperplanes.

6



In order to determine how the lateral pieces will fit together and how

such gaps should be filled, we consider a combinatorial decomposition of

∂Y in terms of a triangulation. Here we observe that ∂Y ∼= Sn−2, so such

triangulation always exist. The process of putting together the pieces of

Γn−1 will be done in steps according to the dimension of the carrier of each

point. More precisely, first we consider a point and the (n − 2)-cells it may

possibly belong and construct chain complexes that correspond to the lateral

pieces indicated above. Next, points that belong to the lower dimensional

skeleton of ∂Y will be consider more than once in the initial step. Hence, in

the following step we consider the (n − 3)-skeleton of ∂Y and determine the

bounding chains according to the higher dimensional cells that contain it.

We repeat this process until we consider the 0-skeleton of ∂Y . The existence

and properties of Γn−1 are established in the following lemma.

Lemma 3.4. There exists a geometric (singular) chain complex Γn−1 ∈

Sn−1(M) that may be represented as Γn−1 = X0 + W n−1 + X1 such that

W n−1 is a chain complex with ∂W = ∂X0 + ∂X1 and for all q ∈ supp W n−1

(in its image in M), there exists v ∈ ∂Y so that q ∈ f−1(Hv).

The proof of Lemma 3.4 follows the outline above where we will construct

all the singular chain complexes of W n−1 and the attaching maps. This

argument uses ideas from combinatorial topology and we postpone it until

next section. We proceed to establish Theorem 3.3, but first we remark that

we are interested in the existence of a geometric intersection (i.e., number

of points in the set theoretical intersection) between Γn−1 and the maximal

lift of ℓ. Therefore we consider intersection numbers and homology with Z2

coefficients, thus avoiding heavier notational concerns regarding orientation

and leaving the proof simpler and more geometric.

Assuming Γn−1 is constructed as in Lemma 3.4, we compute the intersec-

tion number of Γn−1 and the maximal lift of ℓ starting at q0 which we denote

by γ. We claim that γ must intersect Γn−1 in another point besides q0 and

we will show that it is q1. First, we see that γ is properly embedded in M .

Indeed, if we decompose γ as γ−∧ γ+ as the maximal lift of ℓ in the negative

and positive direction, respectively, starting at q0. It is then clear that γ−

and γ+ are not entirely contained in any compact subset of M , otherwise the

lift would not be maximal.
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Now, the fact that Γn−1 ∈ Sn−1(M), i.e., a cycle and Hn−1(M) = 0

implies that there exists a bounding singular chain Σn, with ∂Σn = Γn−1 and

a compact set K so that Σn ⊂ K. Thus Γn−1 is a representative of the trivial

element in Hn−1(M, M − K). We also have that γ ∈ H1(M, M − K) and

from the fact that intersection numbers depend only on the homology class,

we have

#(Γn−1, γ) = 0. (3.1)

Indeed, Hn−1(M, M − K) = Hn−1(M/M − K) and since Σn ⊂ K, we have

Γn−1 ∼ 0 in Hn−1(M/M − K) as well.

From Lemma 3.4 and by definition of intersection numbers, we can write

(3.1) as:

0 = #(Γn−1, γ)

= #(X0, γ) + #(W n−1, γ) + #(X1, γ)

= 1 + 0 + #(X1, γ),

(3.2)

where the first term is 1 since f is a local diffeomorphism and the images of

γ and Xi are orthogonal and the second term is zero since γ ∩ W n−1 = ∅.

Therefore, it must be that #(X1, γ) = 1. In particular, γ ∩ X1 6= ∅ and by

the choice of ε, it must be that γ ∩X1 = {q1}. For a geometric depiction see

Fig. 3.2.

Finally let α ⊂ f−1(ℓ) be the path segment from q0 to q1. The image of

α is a loop in ℓ that has a point p̂ ∈ ℓ ∩ f(M) that is furthest from p. Now

it is clear that f fails to be locally invertible at the corresponding pre-image

of p̂, giving us the desired contradiction. Therefore f must be injective. �

3.2 Reassemblage of Hyperplanes and a Chain Com-

plex Construction

We now establish Lemma 3.4, needed to complete the proof of Theorem 3.3.

While outlining the construction of Γn−1 earlier, we encountered a key prob-

lem which simply put is attributed to the lack of uniqueness on the choice of

the path used to connect the pre-images of a point in ∂Y . In our construction

this is reflected as follows: although each path may be defined continuously

within a neighborhood of a fixed point, as we consider the intersection of
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p

q0

q1

U0

U1

ℓ

Γn−1

V

f−1(ℓ)

Figure 3.2: Construction of a closed chain complex Γn−1 by revolving affine

hyperplanes.

two neighborhoods there will possibly be two choices of paths. We claim

that whenever ambiguity occurs, we may use the hypotheses of acyclicity of

the pre-images of hyperplanes to define chain complexes to circumvent this

problem.

We do this by considering a triangulation of ∂Y with sufficiently small

mesh to be determined during the proof. Heuristically, we view a neigh-

borhood of a generic point as the top dimensional cell containing it and

the triangulation will provide a way to keep track of the intersection of the

multiple neighborhoods. Let e(k)j be the cells of such triangulation, where

k = 0, . . . , n − 2 denotes the dimension of each cell and j ∈ E(k) ⊂ N is

the indexing set of the k-cells. From the initial choice of ε > 0, we may also

define an induced triangulation via the local diffeomorphism on ∂X0 and ∂X1

with cells e(k)0
j and e(k)1

j , respectively.

We construct W n−1 in n − 1 steps which we enumerate from 0 to n − 2.

In step k we consider points in the (n − 2 − k)-skeleton of ∂Y , denoted by

∂Y(n−2−k), and show that the possibly multiply defined chains are obtained

by looking at all the higher dimensional cells containing such points and that

9



these chains give rise to a cycle. Then by using the acyclicity hypotheses,

we have that such cycle can be realized as the boundary of another chain

complex which will be the building blocks of W n−1.

Step 0: The initial process is analogous to what has been outlined before,

but to establish our notation we provide the formal argument. Given the

initial triangulation of ∂Y , take v ∈ e(n − 2)ℓ and let ui be the pre-image of

v in ∂Xi for i = 0, 1. From the connectedness hypotheses of f−1(Hv), there

is a path W 1
ℓ (v) ⊂ f−1(Hv) joining u0 to u1, that is, W 1

ℓ (v) is a 1-chain with

∂W 1
ℓ (v) = u0 + u1.

Next, we can continuously modify W 1
ℓ (v) for all points in a neighborhood

of v ∈ ∂Y . This follows because W 1
ℓ (v) is compact and f is a local diffeo-

morphism. By repeating this construction for every point in ∂Y , we obtain a

cover of ∂Y from which we extract a finite subcover as ∂Y is compact. Then

take finitely many barycentric subdivisions of ∂Y until its mesh is smaller

than the minimum diameter of the subcover.

Finally we redo the assignment of W 1
ℓ (v) for each v ∈ e(n− 2)ℓ using the

newly obtained triangulation. This has the property that for each (n−2)-cell

we may define a (n − 1)-chain complex denoted by W 1
ℓ × e(n − 2)ℓ from the

continuous family of paths for each ℓ ∈ E(n − 3).

Step 1: In this next step, we consider points in the (n − 3)-skeleton of

∂Y as these are the points which we possibly assigned two different 1-chain

complexes in the previous step. For v ∈ e(n − 3)ℓ, we may identify all the

(n−2)-cells that contain e(n−3)ℓ by looking at the vertices of Lk(e(n−3)ℓ).

In this case, we have precisely two points as e(n − 3)ℓ belongs to exactly

two top dimensional cells say, e(n − 2)1 and e(n − 2)2. From the previous

step, we constructed two possibly distinct chain complexes W 1
1 (v) and W 1

2 (v)

contained f−1(Hv) joining u0 to u1. If it is the case they are already the same,

we are done. Otherwise, consider the 1-chain U1
ℓ (v) = W 1

1 (v) + W 1
2 (v). We

claim U1
ℓ (v) is a cycle. Indeed, ∂U1

ℓ (v) = ∂W 1
1 (v) + ∂W 1

2 (v) = u0 + u1 +

u0 + u1 = 0, since we are using Z2-coefficients. From the hypotheses that

f−1(Hv) is acyclic, we have that U1
ℓ (v) is the boundary of a 2-chain denoted

by W 2
ℓ (v).

Now, using the fact that f is a local diffeomorphism and W 2
ℓ (v) is com-

pact, we can continuously define W 2
ℓ (u) for all u in a neighborhood of v in
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∂Y(n−3). Note that in this step we are only considering points in the (n− 3)-

skeleton. Therefore we obtain a cover of ∂Y(n−3) which by compactness we

extract a finite subcover. Next, we iterate finitely many barycentric subdivi-

sions of the triangulation on ∂Y until its mesh is smaller than the minimum

diameter of the subcover. We then redo the construction of the chain com-

plexes up to this point in step 0 and 1 using the new triangulation. We

do this so the 2-chain complex defined above can be continuously assigned

for each point within a (n − 3)-cell and we obtain a (n − 1)-cell denoted by

W 2
ℓ × e(n − 3)ℓ for each ℓ ∈ E(n − 3).

Step k: For a generic step k (1 < k ≤ n − 2), we consider points in

the (n − 2 − k)-skeleton of ∂Y . For v ∈ e(n − 2 − k)ℓ, we look at the

(n − 1 − k)-cells that contain e(n − 2 − k)ℓ. This is the case because in

the previous step k − 1, we have defined k-chains W k
i (v) over v these cells

that v belong, for some i. A systematic way to consider these cells is to

look at the vertices of Lk(e(n − 2 − k)ℓ). Let us assume that those are

e(n − 1 − k)1, e(n − 1 − k)2, . . . , e(n − 1 − k)j . We now define Uk
ℓ (v) =

W k
1 (v) + · · ·+ W k

j (v) ⊂ f−1(Hv) and we claim that Uk
ℓ (v) is a cycle. Indeed,

∂Uk
ℓ (v) = ∂

(
j∑

i=1

W k
i (v)

)
=

j∑

i=1

∂W k
i (v)

=

j∑

i=1

Uk−1
i (v) =

∑

ℓ′

W k−1
ℓ′ (v)

(3.3)

where the chains Uk−1
i (v) were constructed in the previous step in a similar

manner and ℓ′ corresponds to the index of all (n − k)-cells that contains v.

The chain Uk−1
i (v) is formed by looking at all the (n−k)-cells that contain

e(n−1−k)i and hence will contain e(n−2−k)ℓ. Therefore, these (n−k)-cells

can also be determined by looking at the edges of Lk(e(n−2−k)ℓ). Observe

that for a fixed i, as we look at the chains of type W k−1
ℓ′ (v) that comprise

Uk−1
i (v) we can alternatively look at the collection of edges in Lk(e(n−2−k)ℓ)

that make up Uk−1
i (v) and the chains W k−1

ℓ′ (v) will be the vertices of such

edges. However, because each edge contains exactly two vertices, as we do

this for all i each term in the last summation in (3.3) appears twice. Since

our computation uses Z2 coefficients, we have (3.3) is zero establishing that

Uk
ℓ (v) is a cycle.
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Again, from the hypotheses that f−1(Hv) is acyclic, we find a bounding

(k + 1)-chain W k+1
ℓ (v) ⊂ f−1(Hv) of Uk

ℓ (v), that is, ∂W k+1
ℓ (v) = Uk

ℓ (v).

Next, an analogous argument as in step 1 is used to find a neighborhood of

v in ∂Y(n−2−k) where the assignment of W k+1
ℓ (v) is continuous for all points

within it. This follows from the local diffeomorphism of f and compactness

if W k+1
ℓ (v). This induces a cover of ∂Y(n−2−k) and by compactness we extract

a finite subcover. Finally, we take finitely many barycentric subdivisions of

∂Y until the mesh is smaller than the minimum diameter of the subcover.

Using the new triangulation, we repeat the assignment of the chain com-

plexes in each of the previous steps 0 through k. In particular, this defines

W k+1
ℓ (v) for all points in e(n − 2 − k)ℓ and by the modification argument

indicated above, we obtain a (n− 1)-chain denoted by W k+1
ℓ × e(n− 2− k)ℓ

for each ℓ ∈ E(n − 2 − k).

Once we have completed all the n− 1 steps, we put together the singular

complexes constructed from the (n − 1)-chains in each step by means of

their attaching maps along their common boundary which will be explicitly

computed. In order to finish the proof, we show that ∂W n−1 = ∂X0 + ∂X1

and thus once we attach X0 and X1 to the boundary we will have the cycle

Γn−1 we seek.

We consider the decomposition of W n−1 from the (n − 1)-chains in each

step, that is,

W n−1 =

n−2∑

k=0

∑

ℓ∈E(n−2−k)

W k+1
ℓ × e(n − 2 − k)ℓ. (3.4)

For simplicity, let Sk =
∑

ℓ∈E(n−2−k)

W k+1
ℓ × e(n − 2 − k)ℓ, then ∂W n−1 =

12



n−2∑

k=0

∂Sk. We now analyze each term separately. For k = 0;

∂S0 =



∂
∑

ℓ∈E(n−2)

W 1
ℓ × e(n − 2)ℓ





=
∑

ℓ∈E(n−2)

∂W 1
ℓ × e(n − 2)ℓ +

∑

ℓ∈E(n−2)

W 1
ℓ × ∂e(n − 2)ℓ

=
∑

ℓ∈E(n−2)

(e(0)0
ℓ + e(0)1

ℓ) × e(n − 2)ℓ +
∑

ℓ∈E(n−2)

∑

jn−3

W 1
ℓ × e(n − 3)jn−3

= ∂X0 + ∂X1 +
∑

ℓ∈E(n−2)

∑

jn−3

W 1
ℓ × e(n − 3)jn−3

,

where jn−3 denotes the index of all (n− 3)-cells that belong to the boundary

of e(n − 2)ℓ. In general, for 0 < k < n − 2;

∂Sk = ∂




∑

ℓ∈E(n−2−k)

W k+1
ℓ × e(n − 2 − k)ℓ





=
∑

ℓ∈E(n−2−k)

∂W k+1
ℓ × e(n − 2 − k)ℓ +

∑

ℓ∈E(n−2−k)

W k+1
ℓ × ∂e(n − 2 − k)ℓ

=
∑

ℓ∈E(n−2−k)

∑

jn−1−k

W k
jn−1−k

× e(n − 1 − k)ℓ +

+
∑

ℓ∈E(n−2−k)

∑

jn−3−k

W k+1
ℓ × e(n − 3 − k)jn−3−k

,

where jn−1−k denotes the index of all (n− 1− k)-cells that contain e(n− 2−

k)ℓ and jn−3−k denotes the index of all (n − 3 − k)-cells that belong to the

boundary of e(n − 3 − k)ℓ. Finally, for k = n − 2;

∂Sn−2 = ∂



∑

ℓ∈E(0)

W n−1
ℓ × e(0)ℓ




=
∑

ℓ∈E(0)

∂W n−1
ℓ × e(0)ℓ +

∑

ℓ∈E(0)

W n−1
ℓ × ∂e(0)ℓ

=
∑

ℓ∈E(0)

∑

j1

W n−2
j1

× e(0)ℓ + 0,
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where j1 denotes the index of all 1-cells that contain e(0)ℓ in its boundary.

Observe that the second summation term of ∂Sk is the same as the first

summation term of Sk+1 as we count each chain twice. Since we are using

Z2-coefficients, (3.4) simplifies to ∂W n−1 = ∂X0 + ∂X1.

Finally, from the construction of W n−1 we see that for each q ∈ supp W n−1,

q ∈ f−1(Hv) for some v ∈ ∂Y . This concludes the proof of Lemma 3.4. �

4 Surjectivity

In this section we consider the question of when a local diffeomorphism

f : M → R
n is surjective, based on the topology of the pre-images of hyper-

planes. The trivial example of an inclusion map of the region between two

planes satisfies Theorem 3.3 but it is not surjective. This indicates that fur-

ther assumptions must be added. On the other hand, we are able to eliminate

the homological assumption on the domain.

Theorem 4.1. Let f : M → Rn be a local diffeomorphism where M is a

connected manifold. If the pre-image of every affine hyperplane is non-empty

and acyclic, then f is surjective.

The proof is based on geometric constructions involving foliation the-

ory and the computation of linking numbers between certain singular chain

complexes in the range Rn. We remark that since the computation of linking

numbers will occur in Rn, it is not necessary to make any further assumptions

on the homology groups of M . This is unlike the situation in Theorem 3.3,

where we assumed Hn−1(M) = 0.

Combining Theorem 4.1 and Theorem 3.3, we obtain the following char-

acterization of Rn, for n ≥ 2.

Theorem 4.2. A smooth connected manifold M is diffeomorphic to Rn if

and only if Hn−1(M) = 0 and there exists a local diffeomorphism f : M → Rn

such that the pre-image of every affine hyperplane is non-empty and acyclic.

14



4.1 Proof of Theorem 4.1

We establish surjectivity by showing that for each R > 0 the ball of radius

R is fully contained in f(M), that is, B(0; R) ⊂ f(M). Since translations do

not change any of our hypotheses, let us assume that 0 ∈ f(M) and single

out o ∈ f−1(0) ⊂ M .

Next, from the local diffeomorphism assumption, there exists ε > 0

such that B(0; ε) ⊂ f(M) and f−1(B(0; ε)) has a diffeomorphic component

W n−1(ε) which contains o ∈ M . Observe that for R ≤ ε, we trivially have

B(0; R) ⊂ f(M), so we restrict ourselves to the case R > ε.

We argue that we can find a way to expand B(0; ε) within the image

of f so that it will contain a ball of radius any R. To this end, we shall

choose directions for this expansion as follows. For v ∈ Sn−1, let Hv be

the canonical codimension one foliation of Rn by hyperplanes orthogonal to

v. Since the leaf space of Hv is homeomorphic to R, we parameterize the

leaves of Hv by Hv(t) where t is the distance of the hyperplane Hv(t) to

the origin. Because Hv(t) = H−v(−t), we will only consider t ≥ 0. Let

Nv = f ∗Hv be the pullback foliation of M which, by definition, has the

connected components of f−1 (Hv(t)) as leaves. Since our hypotheses states

that the pre-images of hyperplanes are non-empty and connected, the leaf

space of Nv is homeomorphic to R and we then write Nv(t) = f−1 (Hv(t)).

Next, we claim that for each v ∈ Sn−1, we may find a global transversal γv to

the foliation Nv that may be used to expand the image of f . More precisely,

we have the following result.

Lemma 4.3. For each u ∈ W n−1(ε) with f(u) = εv, v ∈ Sn−1, there exists

a smooth path γv : [0,∞) → M with γv ⋔ Nv such that f
(
γv(t)

)
∈ Hv(t) for

t ∈ [0, R].

The proof follows directly from transverse modification arguments in fo-

liation theory (see [1]) and the fact that the leaves of Nv are non-empty and

connected.

As we proceed with the proof of Theorem 4.1, let us fix a canonical

identification of Sn−1 to ∂B(0; ε) and W n−1(ε). By applying Lemma 4.3,

we obtain directions γv from which to expand W n−1(ε) up to γv ∩ Nv(R).

Then for a fixed v, we can locally modify γv so that we can carry an entire
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neighborhood of v in W n−1(ε) along γv using the compactness of γv

(
[0, R]

)
.

Repeating this process for each v ∈ W n−1(ε), we obtain a cover of W n−1(ε).

However, because there is no canonical choice for γv, points belonging to

the intersection of two neighborhoods may have multiply defined paths. Our

approach will be similar to the one in section 3. The key difference here

is that we also need to control how each neighborhood is pushed along the

global transversal γv.

Intuitively, we will push the cells of W n−1(ε) along γv and possibly create

broken pieces at each instant t. Using the hypotheses that Nv(t) is acyclic

and f is a diffeomorphism we will define bounding chains filling the gaps in

each leaf. Furthermore, we will argue that these chain complexes constructed

for s, t will be homologous, hence we say that they are homologous relative

to t. This process is depicted in Fig. 4.1 and it is stated precisely in the

lemma below.

0

W n−1(ε)

W n−1(R)

γv

W n−1(t)

Figure 4.1: A local assemblage of chain complexes based on the triangulation

of a sphere.

Lemma 4.4. For each R > 0, there exists a family of geometric (singular)

chain complexes W n−1(t) that are homologous in M\ {o} for t ∈ (0, R] such
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that:

i) For t ∈ (0, ε], W n−1(t) = f−1
(
∂B(0; t)

)
.

ii) If q ∈ supp W n−1(t), then q ∈ Nv(t) for some v ∈ Sn−1.

The proof of Lemma 4.4 uses combinatorial topology and foliation theory

to explicitly construct such cycles. Since the process is lengthy and rather

technical, we postpone it and continue with the proof of Theorem 4.1.

Our strategy to show that B(0; R) ⊂ f(M) is by contradiction. Sup-

pose there is p /∈ f(M). We compute the linking number between p and

f
(
W n−1(t)

)
= Zn−1(t) in two ways, yielding different values. This argument

is similar to standard reasoning in degree theory and is geometric in nature.

As before, we work with Z2-coefficients.

Notice that since f is continuous, we have that Zn−1(t) is a family of

homologous cycles in Rn\ {0}. Then for t ∈ (0, ε], Zn−1(t) = ∂B(0; t) and

we have that the origin is contained in the inside of Zn−1(ε), more precisely,

the linking number between the origin and Zn−1(ε) is equal to 1.

From (ii) of Lemma 4.4, we have that 0 /∈ Zn−1(t) for each t ∈ (0, R] and

as mentioned above, Zn−1(t) ∼ Zn−1(R) in Rn\ {0}. Therefore as intersec-

tion numbers, thus linking numbers are invariant under the same homology

class, we have

Lk(Zn−1(t), 0) = 1 for each ε < t ≤ R, (4.1)

where we consider the 0-normal cycle formed by the origin and a suitable

point in the complement of a compact set containing Zn−1(t).

We claim that p is inside Zn−1(R), that is, Lk(Zn−1(R), p) = 1. Indeed,

consider the segment Y 1 from 0 to p. We have that Y 1 ∩ Zn−1(R) = ∅,

otherwise it would imply p ∈ f(M). By definition,

#(Zn−1(R) × Y 1) = #(Y 1 × Zn−1(R)) = 0. (4.2)

Computing the linking number between the cycle Zn−1(R) and ∂Y 1 using

the fact that ∂Y 1 is a normal 0-cycle, we have,

0 = #(Y 1 × Zn−1(R)) = Lk(∂Y 1, Zn−1(R)) = Lk(Zn−1(R), ∂Y 1)

= Lk(Zn−1(R), 0 − p) = Lk(Zn−1(R), 0) − Lk(Zn−1(R), p).
(4.3)
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Combining (4.3) and Lk(Zn−1(R), 0) = 1 we obtain

Lk(Zn−1(R), p) = 1. (4.4)

Observe that Zn−1(ε) = ∂B(0; ε), hence Lk(Zn−1(ε), p) = 0. Finally, from

the assumption that p /∈ f(M), we have Zn−1(R) ∼ Zn−1(ε) in Rn −{p} and

again by the invariance of linking numbers on the homology class we obtain,

Lk(Zn−1(R), p) = Lk(Zn−1(ε), p) = 0. (4.5)

This is a contradiction, therefore it must be the case that p ∈ f(M) and

hence f is surjective. �

4.2 The Construction of a Family of Homologous Cy-

cles

We now complete the proof of Theorem 4.1 by establishing the technical

proof of Lemma 4.4. We employ a similar technique as in section 3, that is,

we use triangulations as a tool to keep track of intersections in the coverings.

For simplicity, let W n−1(ε) = W and consider a triangulation of W with cells

e(k)ℓ; k = 0, . . . , n− 1 and ℓ ∈ E(k) ⊂ N where E(k) is the set of indexes of

all the k-cells in W .

The idea of the construction of W n−1(t) is in essence geometric, and can

be outlined as follows. Consider a triangulation with sufficiently small mesh.

For each top dimensional cell of W , we push it along a global transversal

γv emanating from one of its points up to the level R and use the local

modification of γv for points within the cell to push these points. The key

issue is that a point v belonging to the boundary of a top dimensional cell

may be pushed along multiple choices of γv, one for each top dimensional

cell it belongs to. Hence the W n−1(t) may not be well defined; geometrically,

this will create broken pieces at each level. However, by considering the

collections of cells that contain v, via the link of v, we will show that for

each t, the multiply defined chain complexes form a cycle in the pre-image

of Hv(t). Thus by acyclicity, we can fill these gaps with bounding chains.

Furthermore, the process will be done so it is homologous relative to t, that

is, as we consider different chain complexes for each t. Now, as we begin to
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formally describe W n−1(t), we will do so in steps enumerated from 0 to n−1,

outlined below.

Step 0: For each point v ∈ W , suppose v ∈ e(n − 1)ℓ for some ℓ ∈ E(n − 1).

From Lemma 4.3 we obtain a global transversal γv to the foliation Nv. We

then define the following 0-chains, that is, points where γv intersect the

leaves of Nv; Let W 0
ℓ (v, t) = γv(t) ∈ Nv(t) for t ∈ [ε, R]. By compactness

of γv

(
[0, R]

)
and the fact that f is a local diffeomorphism, there is a neigh-

borhood Vv ⊂ M of γv

(
[0, R]

)
such that we can continuously modify γv to

obtain a global transversal γv′ for all v′ in a neighborhood Ov ⊂ W of v, as

depicted in Fig 4.2.

γv

v

Ov

o

Figure 4.2: Local modification of global transversals.

Then, by the compactness of W , we obtain a finite subcover of W from

{Ov}. Now with such subcover, we iterate finitely many barycentric subdi-

visions of W until its mesh is smaller than the minimum diameter of the

subcover. In this process, we obtain a new triangulation of W with the prop-

erty that, for each v ∈ e(n−1)ℓ, we may continuously define γv for all points

in e(n − 1)ℓ. In fact, we define, for each t ∈ [ε, R] and ℓ ∈ E(n − 1), a

(n− 1)-chain denoted by W 0
ℓ (t)× e(n− 1)ℓ which is topologically equivalent

to W 0
ℓ (v, t) × e(n − 1)ℓ and varies continuously on t.

Step 1: Consider points v in the (n−2)-skeleton of W . Suppose v ∈ e(n−2)ℓ
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for some ℓ ∈ E(n−2). Then v belongs to the intersection of two (n−1)-cells

that can be determined by looking at the vertices in Lk (e(n − 2)ℓ). Without

loss of generality let v ∈ e(n − 1)1 ∩ e(n − 1)2. Then for each t ∈ [ε, R], we

have defined in the previous step the points W 0
1 (v, t), W 0

2 (v, t) ∈ Nv(t) along

path emanating from each top dimensional cell. Now we can join such points

by a path W 1
ℓ (v, t) lying in Nv(t) as it is acyclic.

Once we construct W 1
ℓ (v, t), we claim that it can be locally modified for

all points in a neighborhood of (v, t) in W(n−2) × [ε, R]. Indeed, for each

v ∈ W(n−2) and t ∈ [ε, R], the path W 1
ℓ (v, t) is compact and hence we may

find a neighborhood U(v, t) ⊂ M of W 1
ℓ (v, t) such that the (local) gradient

flow of the height function fv : M → Rn given by fv(x) = 〈f(x), v〉 can be

used to continuously define W 1
ℓ (v, t) for nearby t. Also, the fact that f is a

local diffeomorphism continuously defines W 1
ℓ (v, t) for all nearby v in W(n−2).

The process above provides a cover {U(v, t)} of W(n−2) × [ε, R]. By com-

pactness, we may find a finite subcover which induces a cover of W . Indeed,

in step 0 each top dimensional cell is pushed diffeomorphically along the

global transversal γv. We can now iterate finitely many barycentric subdivi-

sions of W so its mesh is smaller than the minimum diameter of the subcover

above restricted to W . Next, we repeat all the constructions up to this point

using the new triangulation. Observer that this guarantees that each cell

e(n − 2)ℓ is contained in a member of the finite subcover.

Now let us consider a partition of [ε, R] induced by this subcover, that

is, we have ε = t0 < t1 < · · · < tN = R for some N ∈ N. From the

choice of subdivision we can continuously modify W 1
ℓ (v, t) for t ∈ (ti, ti+1)

and v ∈ e(n − 2)ℓ by the argument above. The key problem is that for the

endpoint we may possibly have two chains defined, each coming from the

adjacent intervals. However, the fact that each leaf of Nv is acyclic yields a

similar construction as the transverse modification method (see [1]) to ensure

that whenever ambiguity occurs, the choice will be homologous relative to t.

The details are as follows; For each i = i, . . . , N−1, let the two choices for

a bounding chain W 1
ℓ (v, ti) be W 1

ℓ (v, ti)
− and W 1

ℓ (v, ti)
+, where W 1

ℓ (v, ti)
−

is the chain defined continuously from W 1
ℓ (v, t), t ∈ (ti−1, ti) and the second

one, W 1
ℓ (v, ti)

+, is the chain defined continuously from W 1
ℓ (v, t), t ∈ (ti, ti+1).

By default, we agree to always choose W 1
ℓ (v, ti)

+. This will not be ambiguous
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because we can choose either chain complex. Indeed, W 1
ℓ (v, ti)

− ∼ W 1
ℓ (v, ti)

+

since from construction they have the same boundary and, by acyclicity of

Nv(ti), there is a bounding chain contained in Nv(ti). Finally, we must con-

sider a new neighborhood Ũ(v, ti) of such bounding chain where the restric-

tion of f is a diffeomorphism. Doing so for every v ∈ W(n−2) and i = 1, . . . , N

we obtain a new cover of W by adding the collection of sets Ũ(v, ti) to the

finite subcover considered up to this point. This is done to ensure that

the process will always yield chains homologous relative to t. Then iterate

finitely many barycentric subdivisions of W to obtain a triangulation with

mesh sufficiently small to define chains W 1
ℓ (v, t) continuously for all points

v ∈ e(n − 2)ℓ for each ℓ and by construction these chains are homologous

relative to t with continuously varying bounding chains.

This adaptation of the transverse modification argument produces for

each t ∈ [ε, R] and ℓ ∈ E(n − 2), a (n − 1)-chain complex denoted by

W 1
ℓ (t) × e(n − 2)ℓ which is topologically equivalent to W 1

ℓ (v, t) × e(n − 2)ℓ,

v ∈ e(n − 2)ℓ, and is homologous relative to t. This concludes step 1.

Now we give the general procedure for 1 < k ≤ n − 1.

Step k: Consider points in the (n − 1 − k)-skeleton of W . Suppose v ∈

e(n − 1− k)ℓ for some ℓ ∈ E(n − 1− k). We are interested in identifying all

the (n− k)-cells that contain e(n− 1− k)ℓ in its boundary, i.e., that contain

v. This can be accomplished by looking at the vertices of Lk(e(n − 1 − k)ℓ).

for simplicity, suppose that those are e(n − k)1, e(n − k)2, . . . , e(n − k)m for

some m ∈ N. For each t ∈ [ε, R], consider the (k − 1)-chain;

W k−1
1 (v, t) + · · ·+ W k−1

m (v, t), (4.6)

where the chains W k−1
j (v, t) were constructed in Step k − 1. We claim that

the (k − 1)-chain in (4.6) is a cycle. Indeed,

∂

(
m∑

j=1

W k−1
j (v, t)

)
=

m∑

j=1

∂W k−1
j (v, t) =

m∑

j=1

(
∑

ℓ′

W k−2
ℓ′ (v, t)

)
, (4.7)

where ℓ′ corresponds to the index of all (n − k + 1)-cells in W that contain

e(n− 1− k)ℓ. Now the argument is completely analogous to the one given in

the injectivity case, i.e, it follows from the observation that an edge contains
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exactly two vertices. Since Nv(t) is acyclic, there exists a k-chain W k
ℓ (v, t)

that bounds
m∑

j=1

W k−1
j (v, t).

We now argue that the chain W k
ℓ (v, t) may be continuously modified with

respect to v and within the same homology class relative to t. This is similar

to the construction as in step 1, except that we repeat it for each interval

of the partition obtained in step k − 1, so we omit the details. Finally, for

each t ∈ [ε, R] and ℓ ∈ E(n − 1 − k), we obtain a (n − 1)-chain denoted by

W k
ℓ (t)× e(n− 1− k)ℓ which for v ∈ e(n− 1− k)ℓ, is topologically equivalent

to W k
ℓ (v, t) × e(n − 1 − k)ℓ, and is homologous relative to the parameter t.

Remark 4.1. In the last step n− 1, we consider the 0-skeleton of W which is

discrete, hence no further subdivisions are necessary.

Once all n steps are completed, for each t ∈ [ε, R], we put together all

the constructed chain complexes via the obvious attaching maps based on

the intersection of the cells in W as indicated by their construction in each

step. This defines W n−1(t) as follows;

W n−1(t) =

n−1∑

k=0

∑

ℓ∈E(n−1−k)

W k
ℓ (t) × e(n − 1 − k)ℓ.

We observe that W n−1(t) ∼ W n−1(s) in M\ {o} for t, s ∈ [ε, R]. In-

deed, by construction if t, s ∈ (ti−1, ti) for i = 1, . . . , N , we can use the local

gradient flow of the corresponding height functions to continuously mod-

ify the chain W n−1(t) to W n−1(s), each chain W n−1−k
ℓ (t) × e(k)ℓ at a time.

Otherwise, the only problem is at the end points ti, where again by con-

struction, the chains of W n−1(ti) are homologous in N(ti) =
{
p ∈ M |p ∈

Nv(ti) for some v ∈ Sn−1
}
, thus ensuring that W n−1(t) are homologous in

M\ {o}.

It now remains to show that W n−1(t) is a cycle in M . The computation

below is quite similar to the one done in section 3. For simplicity, let Sk(t) =
∑

ℓ∈E(n−1−k)

W k
ℓ (t) × e(n − 1 − k)ℓ, so that ∂W n−1(t) =

n−1∑

k=0

∂Sk(t).
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Considering each term separately, we have for k = 0;

∂S0(t) = ∂




∑

ℓ∈E(n−1)

W 0
ℓ (t) × e(n − 1)ℓ




=
∑

ℓ∈E(n−1)

∂W 0
ℓ (t) × e(n − 1)ℓ +

∑

ℓ∈E(n−1)

W 0
ℓ (t) × ∂e(n − 1)ℓ

= 0 +
∑

ℓ∈E(n−1)

∑

jn−2

W 0
ℓ × e(n − 2)jn−2

,

where jn−2 denotes the index of all (n− 2)-cells that belong to the boundary

of e(n − 1)ℓ. In general, for 1 < k < n − 1;

∂Sk(t) = ∂




∑

ℓ∈E(n−1−k)

W k
ℓ (t) × e(n − 1 − k)ℓ




=
∑

ℓ∈E(n−1−k)

∂W k
ℓ (t) × e(n − 1 − k)ℓ +

+
∑

ℓ∈E(n−1−k)

W k
ℓ (t) × ∂e(n − 1 − k)ℓ

=
∑

ℓ∈E(n−1−k)

∑

jn−k

W k−1
jn−k

(t) × e(n − 1 − k)ℓ +

+
∑

ℓ∈E(n−1−k)

∑

jn−2−k

W k
ℓ (t) × e(n − 2 − k)jn−2−k

,

where jn−k denotes the index of all (n − k)-cells that contain e(n−1−k)ℓ and

jn−2−k denotes the index of all (n − 2 − k)-cells that belong to the boundary

of e(n − 1 − k)ℓ. Finally, for k = n − 1,

∂Sn−1(t) = ∂



∑

ℓ∈E(0)

W n−1
ℓ (t) × e(0)ℓ




=
∑

ℓ∈E(0)

∂W n−1
ℓ (t) × e(0)ℓ +

∑

ℓ∈E(0)

W n−1
ℓ (t) × ∂e(0)ℓ

=
∑

ℓ∈E(0)

∑

j1

W n−2
j1

(t) × e(0)ℓ + 0,
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where j1 denotes the index of all 1-cells that contain e(0)ℓ in its boundary.

As we sum the terms in W n−1(t), we see that the second summation term

appearing in ∂Sk(t) coincided with the first summation in ∂Sk+1(t). Indeed,

these terms count the same objects twice, and hence we obtain zero (recall

that we are working with Z2 coefficients). Therefore W n−1(t) is a cycle and

this finishes the proof of Lemma 4.4. �

5 Final Remarks

Having obtained independent results on injectivity and surjectivity, we note

that our main result follows from Theorem 3.3 and Theorem 4.1. Recall,

Theorem 1.1. A local diffeomorphism f : Rn → Rn is bijective if and only

if the pre-image of every affine hyperplane is non-empty and acyclic.

We also have the following analytic condition that establishes whether

a local diffeomorphism is bijective. Given a complete Riemannian metric g

on Rn and a smooth function h : Rn → R, the gradient of h relative to g,

denoted by ∇gh, satisfies gx(∇
gh, w) = dhx(w) for all w ∈ R

n. Our analytic

result is the following.

Corollary 5.1. A local diffeomorphism f : Rn → Rn is bijective if for each

v ∈ Sn−1, there exists a complete metric gv on Rn such that,

inf
x∈Rn

|∇gvfv(x)|gv
> 0. (5.0)

It is easy to see that such condition implies that the pre-images of hy-

perplanes are acyclic, hence the result follows. We compare this result with

the work in [7] where we can now choose the metric to suit the unit vector.

Finally, We can also state an analytical result implying only injectivity.

Corollary 5.2. A local diffeomorphism f : Rn → Rn is injective provided

there exists w ∈ Sn−1 with the property that for each unit vector v perpen-

dicular to w, there exists a complete Riemannian metric gv on Rn such that,

inf
x∈Rn

‖Df(x)∗v‖gv
> 0. (5.0)

Observe that in our injectivity results we did not need topological hy-

potheses on the pre-image of every hyperplanes, hence the result holds.
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