
Trinity University Trinity University

Digital Commons @ Trinity Digital Commons @ Trinity

Mechatronics Final Projects Engineering Science Department

5-2024

Rock-Paper-Scissors Robot Rock-Paper-Scissors Robot

Cora Lewis
Trinity University

Zachary Moyer
Trinity University

Aakriti Acharya
Trinity University

Reece Colson
Trinity University

Follow this and additional works at: https://digitalcommons.trinity.edu/engine_mechatronics

 Part of the Engineering Commons

Repository Citation Repository Citation
Lewis, Cora; Moyer, Zachary; Acharya, Aakriti; and Colson, Reece, "Rock-Paper-Scissors Robot" (2024).
Mechatronics Final Projects. 20.
https://digitalcommons.trinity.edu/engine_mechatronics/20

This Report is brought to you for free and open access by the Engineering Science Department at Digital Commons
@ Trinity. It has been accepted for inclusion in Mechatronics Final Projects by an authorized administrator of Digital
Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/engine_mechatronics
https://digitalcommons.trinity.edu/engine
https://digitalcommons.trinity.edu/engine_mechatronics?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/engine_mechatronics/20?utm_source=digitalcommons.trinity.edu%2Fengine_mechatronics%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Rock-Paper-Scissors Robot Final Report
__

ENGR-4367
Instructor: Dr. Kevin Nickles

Project Group 3: Cora Lewis, Zachary Moyer, Aakriti Acharya, and Reece
Colson
Pledged

April, 30th 2024

Table of Contents

0 Table of Contents...1

1 Design Summary..2

2 System Details...2

2.1 Robotic Hand...2

2.2 PIC System...3

2.3 Arduino System..5

3 Design Evaluation..10

3.1 Output Display Device...10

3.2 Audio Output Device..10

3.3 Manual Data Input...10

3.4 Automatic Sensor..10

3.5 Actuators, Mechanisms, and Hardware...10

3.6 Logic, Processing, and Control...11

4 Bill of Materials..12

5 Lessons Learned...12

A Appendix...15

1

1 Design Summary

​​The design incorporates a sophisticated Rock Paper Scissors (RPS) playing interface,

amalgamating robotics, audio control, gesture recognition, and display functionalities. At its

core, the system employs a robotic hand mechanism featuring pulleys and fishing wire to

simulate finger movements. This mechanism is orchestrated by servo motors through a PIC

system, which receives commands from the Arduino. The Arduino serves as the central

processor and begins a round when the player hits the reset button. It triggers an audio prompt at

the onset of each round using an Icstation Recordable Sound Module, prompting the player to

make their move. The Arduino then selects the RPS move based on the player's gesture captured

via flex sensors integrated into their glove. These sensors, acting as variable resistors, detect

finger movements and interface with the Arduino through a voltage divider circuit and ADC.

The system operates in two modes: easy and hard. In easy mode, the move selection is random,

while in hard mode, a rational agent determines the optimal move. Once both the player and the

robotic hand have made their moves, the Arduino determines the winner and updates the scores

on an LCD connected via I2C communication. This comprehensive integration of hardware

components and intelligent algorithms offers an engaging and interactive RPS gaming

experience, combining physical interaction with digital feedback seamlessly.

2

2 System Details

2.1 Robotic Hand

The robotic hand consists of a series of pulleys with two lines of fishing wire threaded

through each finger. When the top line is pulled, the tension in the wire extends the finger, as

shown in Figure # in the appendix. Similarly, when the inverse bottom line is pulled, the finger

contracts due to the tension, as shown in Figure Y in the appendix. These two lines are attached

to opposite ends of a servo mount, which allows a servo to open and close the fingers by

spinning in different directions. The full-hand system is illustrated in Figure 1.

Figure 1: PLA moveable robotic hand

3

2.2 PIC System

The PIC system primarily serves to control two continuous rotation servo motors. These

servo motors operate with an internal clock set at 50Hz. To generate the required pulse width

modulation signal, we employed a 4 MHz internal oscillator, coupled with some testing that

determined approximately 5% and 12% duty cycles as optimal for achieving the desired rotation

speed and distance for the servos.

In essence, the PIC system activates upon receiving a start signal from the Arduino,

followed by a command specifying the Rock Paper Scissors (RPS) move to be executed. Using

this information, it directs the two servos to move in the appropriate directions. This process is

outlined in the program flowchart shown in Figure 2. One servo governs the pointer and middle

fingers, while the other manages the ring finger and pinky.

Figure 2: PIC Program Flowchart

4

2.3 Arduino System

2.3.1 Audio Control

The Arduino system acts as the main processor of the system. When the player initiates

the round, the Arduino starts an audio file on an Icstation Recordable Sound Module which plays

Dr. Nickels saying “Rock Paper Scissors” and signals to the player to toss whatever move they

choose to toss once the audio ends. The module comes with three surface-mounted resistors

which determine what inputs to the input pin will cause the audio to play [1]. To integrate this

speaker into the circuit the op-amp buffer circuit illustrated in Figure 3 is utilized to sink current.

Figure 3: ICstation speaker with integrated MP3 file support and input buffer

2.3.2 Move Calculation

While the audio file is playing, the Arduino selects the rock-paper-scissors move to

execute and then transmits it to the PIC with three output pins. The first two wires transmit the

moves and the third triggers the PIC to play the move. An input switch, known as the hard mode

5

switch, selects the algorithm for picking the next move. This switch toggles between easy and

hard modes.

In easy mode, the random function is invoked on numbers ranging from 0 to 2, with each

number corresponding to a particular RPS move. In hard mode, a rule-based rational agent picks

the next move based on the previous moves thrown. If the robot won the previous move, then it

selects the same move. If the robot lost, then it picks the move that would have won the previous

round.

2.3.3 Flex Sensors

After the audio file concludes, the Arduino interprets the player's gestures by analyzing

input from two flex sensors integrated into the player's glove, as illustrated in Figure 4. These

flex sensors function as variable resistors, with their resistance fluctuating between 20kΩ and

50kΩ in response to bends and stretches. By incorporating them into a voltage divider circuit, a

microcontroller can gauge the degree of finger bending using an analog-to-digital converter

(ADC). Additionally, buffer op-amp circuits shown in Figure5 interface between the voltage

dividers and the Arduino to reduce the error from the source impedance of the flex sensors.

Figure 4: Detailed drawing of the player glove and its sensors

6

Figure 5: Dual flex sensor voltage dividers with input buffers for signal processing

2.3.3 LCD Display

After both the robotic hand and the player have made their moves, the Arduino proceeds

to determine the winner and showcases the score on the LCD Display, which is linked via I2C.

Whenever a winner is identified, their score is incremented by one and presented on the display,

as depicted in Figure 6. Additionally, the full Arduino program flowchart is detailed in Figure 7.

Figure 6: LCD display

7

Figure 7: Arduino Program Flowchart

8

3 Design Evaluation

3.1 Output Display Device

The output display device that the system utilizes is a liquid crystal display (LCD) which

the Arduino microcontroller communicates with using I2C and displays the current score of the

player and the system. Once the system determines the winner of each round, either the player or

the system itself, the system increases the score of the winner and then updates their

corresponding score onto the LCD for the player to see. The display meets all requirements and

has never malfunctioned, 10/10.

3.2 Audio Output Device

The system initially worked using the Icstation Recordable Sound Module, however, the

module was burnt out while transferring to a solder board. There is a recording of the system

working together on a solderless breadboard with this component, but the final demonstration

ended up utilizing a Dfrobot Speaker V2.0. This speaker is a digital buzzer, so instead of playing

an audio file, the speaker was programmed to play four frequencies with pauses to symbolize the

“rock, paper, scissors, shoot!” audio. This reliably achieved the intended purpose of telling the

player when to throw their move. An unfortunate side effect, however, was that the delay on the

speaker output occasionally caused the PIC not to receive the move from the Arduino which was

not the case with the original sound module. Considering the reliability and the research that was

applied to find a speaker that could play an mp3 file as well as the subsequent modifications

made to the device, we think that a score of 5/10 is reasonable for this section.

9

3.3 Manual Data Input

The manual data input to the system consists of a difficulty switch that tells the system to

play in either hard mode or easy mode and a ready button which the player presses to indicate

they are ready to start a round against the system. Additionally, there is a power switch that turns

on the device. These inputs all functioned correctly and reliably, but based on the little research

required to implement them, a score of 8/10 is suitable for this section.

3.4 Automatic Flex Sensor

The reliability of the flex sensors can be measured by how often the system reads the

correct move. Individuals with large hands are able to make more substantial bends in the sensor.

The system has accurately detected all moves thrown by men over a sample of three individuals

and over fifty moves. However, some women tend to have difficulty throwing scissors because

the bottom sensor is not bent enough to produce a noticeable difference. Since there is not a

feasible way to increase the accuracy of the sensor and it works reliably for most individuals, this

section should have a 9/10.

3.5 Actuators, Mechanisms and Hardware

The robotic hand and servo motors worked together to actualize the digital

rock-paper-scissors move as a 3D gesture. The hand started in a “rock” position with all fingers

closed and would open fingers from there, using the servo motors, to mimic the human hand

signs. It would then return to the “rock” position to signal the end of the round.

Although the different moves were distinguishable, there were a couple of issues with the

servos. Our group was most familiar with continuous servos, so we chose to use those to operate

the fingers. We later realized that continuous servos do not hold a position after being stopped,

10

which meant that the robotic fingers would immediately relax after a move was played. This

made differentiating between scissors and rock more difficult if the player did not see the robot

moving. By the time we realized this, we decided that we may not finish in time if we chose to

change to positional servos since they would require completely different mounting to the stage

and hand as well as a different program for the PIC.

Although the servo choice could have been better, a lot of time and effort was put into

designing the robotic hand and getting it to work with the servo. In the end, the hand operated

fundamentally as expected and required extensive independent research, so we think that a score

of 8.5/10 for this section is reasonable.

3.6 Logic, Processing, and Control

To operate the servos, we came across a PIC that could output two PWM signals (CCP1

and CCP2). While we managed to rotate the servos quickly and accurately in the end, grasping

the hardware PWM logic and code posed quite a challenge. However, our success in

implementing a reliable PWM system also meant a significant improvement in our group's

understanding of PWM.

Initially, we had planned to control the speaker with the PIC as well, but that turned out

to be extremely difficult with little success. Consequently, we decided to move the speaker to the

Arduino. Additionally, dealing with the PIC pins that received signals from the Arduino proved

to be extremely challenging, as they often failed to read the signals properly. These two factors

led us to rate the PIC component 6/10 in terms of performance.

On the other hand, the Arduino seamlessly handled each task with minimal debugging

required. Once we shifted the speaker to the Arduino, we were able to achieve a proper response

11

from the speaker in less than an hour. Furthermore, the Arduino posed no issues with the LCD

display or the flex sensors. Therefore, we give the Arduino component a perfect score of 10/10.

4 Bill of Materials

Table1. List and cost of all materials in the system
Part/Component Price ($) Source

Flex Sensor x2 25.66 Spectraflex

Mark Forge Carbon Black Filament 20.99 Makerspace

Bamboo Black PLA Filament 5.23 Makerspace

Tower Pro Micro Servo Motor x2 3.99 Makerspace

SunFounder IIC I2C TWI 1602 Serial LCD 9.99 Makerspace

Arduino Uno 30.00 Makerspace

PIC 16F886 8.80 Makerspace

Permanently open Push Button 0.90 Makerspace

2-way Switch 0.50 Makerspace

MDF 1'x2' Sheet 30.00 Makerspace

LM741 op amp x3 2.61 Makerspace

5 Lessons Learned

5.1 Parts Selection

A significant lesson learned was the necessity of conducting thorough research on

components. In this project's context, it became evident that more extensive research should have

preceded the selection of motors to control the hand. Despite opting for continuous servo motors

based on familiarity, the challenge arose in utilizing the PIC to transmit PWM signals. These

signals were not only required to direct the motors accurately but also to achieve specific

12

distances and speeds, which proved to be quite challenging. Consequently, the process of coding

and fine-tuning the motors spanned nearly two weeks.

5.2 Modular Design Management

While a modular design approach was adopted overall, it was not executed efficiently.

The intention behind identifying modules was to simplify the understanding and operation of

sensors like flex sensors and actuators such as motors. The idea was that by starting with simple

functionalities, the group could gradually build towards more complex tasks with ease. However,

this approach did not yield the expected results. When attempting to integrate all components

into the project simultaneously, debugging became challenging, leading to the eventual

segmentation of the code into modules.

Moreover, the deficiency in proper modular design resurfaced when transitioning the

project to a solder board. Instead of assembling the board incrementally, we attempted to

complete it in one go, resulting in numerous shorts and issues that were nearly impossible to

debug.

5.3 Take advantage of debugging and testing methods

In Design 5, we were introduced to microcontroller programming for the first time.

However, debugging tools like LEDs, multimeters, and oscilloscopes were seldom utilized.

Instead, the primary approach involved rewriting the code and adjusting minor details in the

hope of resolving issues. However, this method proved inadequate for Mechatronics. Debugging

servos, switches, and various other components necessitated the use of all available lab devices

and debugging methods.

13

6 References

[1] “Amazon.com: ICSTATION Recordable Sound Module, button control sound chip 8m MP3 WAV

Music Voice Player Programmable Board with speaker for DIY Birthday music box greeting card

mother’s day : Electronics,” Amazon,

https://www.amazon.com/Icstation-Recordable-Button-Music-Board/dp/B01M35VHY5 (accessed May 1,

2024).

14

A Appendix

Figure A1. Full Circuit Schematic

Figure A2. Extended finger - top wire pulled

15

Figure A3. Contracted finger - bottom wire pulled

16

B Appendix - Arduino code

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x20, 16, 2);

int flex1 = A0; // first flex sensor
int flex2 = A1; // first flex sensor
int RST = 7; //limit switch on glove
int hardMode = 4; //hardmode switch
int speaker=9;

int PIC_STRT = 13;
int PIC_MV1 = 12;
int PIC_MV2 = 11;
int scR;
int scH;
bool whoWon; //true when the robot wins
int lastRobo = 3;
int lastPlaya;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
pinMode(flex1, INPUT);
pinMode(flex2, INPUT);
pinMode(hardMode, INPUT_PULLUP);
pinMode(RST, INPUT_PULLUP);

pinMode(PIC_STRT, OUTPUT);
pinMode(PIC_MV1, OUTPUT);
pinMode(PIC_MV2, OUTPUT);

digitalWrite(PIC_STRT,LOW);
digitalWrite(PIC_MV1,LOW);
digitalWrite(PIC_MV2,LOW);
digitalWrite(speaker,HIGH);

scR =0;
scH = 0; //set human and robot scores

lcd.init();

17

lcd.backlight();
dispScore();
}

void loop() {
// put your main code here, to run repeatedly:
while(digitalRead(RST)){
delay(250);
}
//digitalWrite(speaker,LOW);
Serial.println("speaker start");
tone(speaker, 200, 500);
delay(200);
tone(speaker, 200, 500);
delay(200);
tone(speaker, 200, 500);
delay(200);
tone(speaker, 300, 600);
int robot_mv = sendMove(PIC_MV1,PIC_MV2, hardMode); //send the robot move to the PIC
delay(200);
digitalWrite(PIC_STRT,HIGH); //starts the PIc subroutine
Serial.print("speaker stop");
//noTone(speaker);
delay(500);
getWinner(robot_mv, getPlayerMV()); //read player move, determine winner, and update score
delay(250);
dispScore(); //display new score
digitalWrite(PIC_STRT,LOW);
digitalWrite(PIC_MV1,LOW);
digitalWrite(PIC_MV2,LOW);
delay(200);

}

bool readFlex(int flex){
int val = analogRead(flex); //read flex sensor
Serial.println(val);
if (val <220){ return true;}
else{ return false; }
}

void dispScore(){
lcd.setCursor(0,0);
lcd.print("H");

18

lcd.print("u");
lcd.print("m");
lcd.print("a");
lcd.print("n");
lcd.print(":");
lcd.setCursor(7,0);
lcd.print(scH);
lcd.setCursor(0,1);
lcd.print("R");
lcd.print("o");
lcd.print("b");
lcd.print("o");
lcd.print("t");
lcd.print(":");
lcd.setCursor(7,1);
lcd.print(scR);
}

int pickMove(int hard){
//bool isHard = digitalRead(hard);
if(digitalRead(hard) == HIGH){
if (lastRobo == 3){
lastRobo = random(3);
return lastRobo;
} else if (lastRobo != 3 && whoWon == true){
return lastRobo;
} else{
if (lastPlaya == lastRobo){
lastRobo = random(3);
return lastRobo;
} else if (lastPlaya == 0 && lastRobo == 1){
lastRobo = 2;
return lastRobo;
}else if (lastPlaya == 1 && lastRobo == 2){
lastRobo = 0;
return lastRobo;
} else if (lastPlaya == 2 && lastRobo == 0){
lastRobo = 1;
return lastRobo; }
}
} else if (digitalRead(hard) == LOW){
lastRobo = random(3);
return lastRobo;
}

19

}

int sendMove(int pin1,int pin2, int hardMode){
int move = pickMove(hardMode);
switch(move){
case 0: //rock
digitalWrite(pin1, HIGH);
digitalWrite(pin2, LOW);
Serial.println("rock");break;
case 1: //scissors
digitalWrite(pin1, LOW);
digitalWrite(pin2, HIGH);
Serial.println("scissors");break;
case 2: //paper
digitalWrite(pin1, HIGH);
digitalWrite(pin2, HIGH);
Serial.println("paper");break;
default: //rock
digitalWrite(pin1, HIGH);
digitalWrite(pin2, LOW); break;

}
return move;
}

int getPlayerMV(){
bool f1 = readFlex(flex1);
bool f2 = readFlex(flex2);
if(f1 && f2){
lastPlaya = 0;
return 0; } //rock
else if(!f1 && !f2){
lastPlaya = 2;
return 2; } //paper
else if(!f1 && f2){
lastPlaya = 1;
return 1;} //scissors
else{ return 0;
lastPlaya = 0;} //default is rock
}

void getWinner(int r,int h){
if(r == h){return;} // tie
switch(r){

20

case 0: //robot throws rock
if(h == 1){
scR = scR +1;
whoWon = true;} //human throws scissors and loses
else{scH = scH +1;
whoWon = false;};break; //human throws paper and wins
case 1: //robot throws scissors
if(h == 2){scR = scR +1;
whoWon = true;} //human throws paper and loses
else{scH = scH +1;
whoWon = false;};break; //human throws rock and wins
case 2: //robot throws paper
if(h == 0){scR = scR +1;
whoWon = true;} //human throws rock and loses
else{scH = scH +1;
whoWon = false;};break; //human throws scissors and wins
}
}

21

C Appendix - PIC code

#CONFIG
__config _CONFIG1, _INTRC_OSC_NOCLKOUT & _WDT_ON & _MCLRE_ON &

_LVP_OFF & _CP_OFF
#endconfig
define OSC 4
OSCCON = %00010010

ansel = 0

duty var word
duty2 var word
strt var PORTA.1
mv1 var PORTA.2
mv2 var PORTA.3

'rec_mv_1 VAR PORTB.6
'rec_mv_2 var PORTB.5
'rec_mv_3 var PORTB.4

TRISC.1 = 0
TRISC.2 = 0
TRISB = 0
TRISA = 1

CCP1CON = %00001100
CCP2CON = %00001100
T2CON = %00000110

PR2 = 155

duty = 1
duty2 = 1

'low rec_mv_1
'low rec_mv_2
'low rec_mv_3
pause 180

mainloop:
high PORTB.3

22

WHILE(!STRT)
PAUSE 1

WEND

low PORTB.3

if (mv1 and !mv2) then
gosub ClosePap
pause 60

elseif (!mv1 and mv2) then
gosub Scissors
pause 60
gosub CloseSic

elseif (mv1 and mv2) then
gosub Paper
pause 60
goSub ClosePap

endif

pause 80

goto mainloop

Scissors:

duty = 1
duty2 = 25
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2
CCP2CON.4 = duty2.0
CCP2CON.5 = duty2.1
CCPR2L = duty2 >> 2
pause 10
duty = 0
duty2 = 0
CCP2CON.4 = duty2.0
CCP2CON.5 = duty2.1
CCPR2L = duty2 >> 2
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2

23

return

Paper:

duty = 1
duty2 = 1
CCP2CON.4 = duty2.0
CCP2CON.5 = duty2.1
CCPR2L = duty2 >> 2
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2
pause 10
duty = 0
duty2 = 0
CCP2CON.4 = duty2.0
CCP2CON.5 = duty2.1
CCPR2L = duty2 >> 2
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2

return

ClosePap:

duty = 25
duty2 = 25
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2
CCP2CON.4 = duty2.0
CCP2CON.5 = duty2.1
CCPR2L = duty2 >> 2
pause 10
duty = 0
duty2 = 0
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2
CCP2CON.4 = duty2.0
CCP2CON.5 = duty2.1
CCPR2L = duty2 >> 2

return

24

CloseSic:
duty = 25
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2
pause 10
duty = 0
CCP1CON.4 = duty.0
CCP1CON.5 = duty.1
CCPR1L = duty >> 2

return

25

	Rock-Paper-Scissors Robot
	Repository Citation

	Mechatronics Final Report

