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Abstract 

Using a reactive transport model, I simulated the mobilization and sequestration of geogenic trace metals, 

nickel (Ni2+) and cobalt (Co2+), in a crude-oil-contaminated aquifer. These trace metals can pose threats to 

human and ecological health and are not commonly regulated or measured at oil-spill sites, making it 

important to characterize the geochemical mechanisms that release and attenuate potentially toxic trace 

metals. In the groundwater-contaminant plume, crude-oil is biodegraded coupled to iron (Fe(III)) reduction 

and methanogenesis. Previously collected field data1 showed concentrations of Ni2+, and Co2+ near the 

crude-oil source were elevated in groundwater and depleted from aquifer sediments compared to 

background concentrations. Roughly 80 meters downgradient, in the active Fe(III)-reducing zone, 

groundwater concentrations of Ni2+ and Co2+ decrease, relative to near the crude-oil body, and 

concentrations in sediment increase above background levels. Using a reactive transport model, I show that 

Ni2+ and Co2+ originally sorbed to Fe(III) are released from sediments near the oil body due to microbially 

mediated Fe(III)-reduction to aqueous Fe2+. Biodegradation in the active Fe(III)-reducing zone, dissolves 

Fe2+ and produces bicarbonate, causing groundwater supersaturation with respect to siderite (FeCO3), 

allowing FeCO3 to precipitate. I developed a surface complexation model for Ni2+ and Co2+ on FeCO3, to 

incorporate into our reactive transport model framework. Our modeling results showed that FeCO3 

generates negative surface charge in the pH range measured in the contaminant plume (6.3-7.3), allowing 

FeCO3 to sorb Ni2+ and Co2+ and remove them from groundwater. Our modeling results were consistent 

with field observations. Previous sampling has shown that arsenic (As), which also is mobilized due to 

Fe(III) reduction, does not accumulate in Fe-reducing sediments like Ni2+ and Co2+. The negative surface 

charge on FeCO3 favors sorption of cations (Ni2+ and Co2+) but not the (oxy)anions of As. Our model 

effectively delineated mechanisms that could release and attenuate trace metals at oil-spill sites, which can 

aid in more comprehensive predictions of threats to human and ecological health in aquifers contaminated 

by crude-oil. 



1. Introduction 

1.1 Background 

Geogenic trace elements that originate in the aquifer solids are the most common type of 

groundwater contaminant2. Trace elements can contaminate groundwater through multiple 

mechanisms including reductive dissolution3–5, acid-base-promoted desorption6,7, sulfide 

oxidation8–10, and geothermal activity11,12, among others13. A common mechanism for trace 

element release is reductive dissolution of ferric iron (Fe(III))-containing minerals with trace 

elements sorbed to them. In the presence of organic matter in anoxic groundwater, organic carbon 

can be biodegraded (i.e., oxidized) coupled with the reduction of Fe(III) in the mineral to Fe(II), 

which is soluble in groundwater as the Fe2+ ion14–16. This mechanism has been observed in 

sewage17, landfill18, crude-oil14–16, and petroleum/ethanol19 contaminant plumes, and can occur 

with natural organic matter, resulting in widespread trace element contamination of groundwater, 

that can have implications for both environmental and human health13,20,21.  

Recent studies of a crude-oil-contaminated aquifer undergoing natural attenuation have 

documented numerous secondary water quality impacts, including plumes of various mobilized 

trace elements. For example, arsenic (As)14–16 sorbed to Fe(III)  hydroxides has been mobilized 

into groundwater where biodegradation is coupled with Fe(III)-reduction13,14. Follow-up field 

studies of the crude-oil-contaminated aquifer have found additional trace element plumes of nickel 

(Ni2+), cobalt (Co2+), strontium (Sr2+), barium (Ba2+), and chromium (Cr) 1,19. 

Despite this aquifer being intensively studied over the past 35+ years, the phenomenon of trace 

element mobilization was only discovered in the past several years. While crude-oil chemicals 

pose their own water quality impairments, the mobilization of trace elements introduces additional 

water quality impairments with unique implications for human and environmental health. Some of 



these trace elements are regulated at the national level by the United States Environmental 

Protection Agency (EPA) (e.g., As) or recommended for regulation by the World Health 

Organization (WHO) (e.g., barium (Ba2+) and nickel (Ni2+)) because of their link to adverse health 

outcomes. Toxic outcomes of barium exposure include cardiac and renal failure, and 

gastrointestinal problems20. Toxic outcomes of Ni2+ exposure include possible skin irritation21. 

Arsenic has been linked to multiple types of cancer 20–22. Cobalt (Co2+) is not currently regulated 

by the EPA but is under consideration through the EPA Contaminant Candidate List due to 

possible public health concerns related to its presence in public water supply23.The negative health 

effects associated with these trace elements warrant more studies on the behavior of these geogenic 

elements in groundwater once mobilized. 

This study uses a reactive transport model to elucidate mechanisms of trace element mobilization 

and sequestration in a crude-oil-contaminated aquifer near Bemidji, Minnesota. Natural 

attenuation, primarily driven by biodegradation, has altered the geochemistry of this aquifer24 and 

introduced geogenic Ni2+ and Co2+ into groundwater of the contaminant plume. The goal in 

modeling the fate and transport of Ni2+ and Co2+ is to explore the related geochemical processes 

that can alter aquifer geochemistry. Changes to aquifer geochemistry can have adverse effects on 

environmental and human health making it pertinent to better understand mechanisms that are able 

to alter water quality.  

1.2 Study Site 

The aquifer at the Bemidji crude-oil contaminant site is a glacial outwash aquifer located within 

the Pleistocene Bagley Outwash Plain which consists primarily of a pitted sand and gravel 

outwash25. The aquifer is unconfined; the contaminated portion of the aquifer consists of 

moderately calcareous silty sand overlying clayey till with interbedded discontinuous silt layers 



interbedded with sand25. The sand fraction of sediment is approximately 60% quartz, 5% 

carbonates, 30% feldspars, and 5% heavy minerals; the silt fraction has a higher abundance of 

carbonate when compared to the bulk sediment25. Groundwater velocities were determined to 

range from 0.15 to 0.5 meters per day using the point dilution method for Darcy velocity 25. 

In 1979 a crude oil pipeline ruptured, releasing 10,700 barrels of oil onto the land surface near 

Bemidji, Minnesota. Of the total oil spilled, ~2600 barrels percolated through the unsaturated zone 

and accumulated on the water table 26. The oil body sitting on the water table acts as a source of 

dissolved organic carbon as the soluble and partially soluble crude-oil constituents from the oil 

body dissolve into groundwater to form a hydrocarbon contaminant plume. The plume stimulates 

microbial activity, that result in depleted dissolved oxygen due to aerobic respiration. This creates 

anoxic conditions, in which hydrocarbon biodegradation is then coupled to anaerobic terminal 

electron accepting processes (TEAPs)14. Fe(III)-reduction and methanogenesis are the primary 

TEAPS that facilitate biodegradation in the crude-oil plume14. The various TEAPs seen in the 

aquifer result in four distinct geochemical zones: the methanogenic zone near the crude-oil body, 

the anoxic Fe-reducing zone, the suboxic transition zone at the leading edge of the contaminant 

plume and on the plume fringes, and the uncontaminated, oxic background waters (Figure 1B)14. 

Since 1983, the Bemidji oil spill site has been a national research site through the U.S. Geological 

Survey (USGS) Toxic Substances Hydrology Program to study long-term natural attenuation of 

oil spills. Since then, decades of research have focused on this crude-oil contaminated aquifer to 

study the hydrogeology and biogeochemical processes which affect the aquifer. See Essaid et al.27 

for a summary of previous work24,25,27–29. 

Previous field studies have shown that groundwater in the crude-oil plume has elevated 

concentrations of Ni2+, Co2+, and As, among other trace elements. Each element has its own 



individual “plume”, the spatial extents of which is controlled by unique biogeochemical processes 

in the aquifer1,14. For example, an As plume extends from the oil body to roughly 130 m 

downgradient from well 421, this well is the reference datum demarcating the approximate center 

of the crude-oil body floating on the water table. Around 130 m, As is attenuated by sorbing to Fe-

hydroxides in sediment, effectively remediating the As plume.  Plumes of Ni2+ and Co2+, in 

contrast, are attenuated by accumulating in sediment closer to the oil body, around 40 m 

downgradient from well 421. The difference in attenuation patterns between As and Co2+/Ni2+ 

suggest that transport of these different trace elements is controlled by different geochemical 

processes.  

 



Figure 1. A) Map of the Bemidji contaminated aquifer along the center-line transect (A-A’) of the 

oil plume adapted from Jones1. The map shows wells and sediment core locations where field data 

were collected and reported elsewhere1,15,16,30, the rupture site, the pipelines, the leading edge of 

the plume, and crude oil floating on the water table. The inset shows the location of the spill within 

Minnesota. B) Conceptual diagram of geochemical zones in the aquifer, adapted from Cozzarelli 

et al.14. Zone 1 is methanogenic, zone 2 is Fe-reducing, zone 3 is sub-oxic, and zone 4 is oxic. 

 

2. Methods 

In this study, I expand upon a reactive transport model previously developed by Ng et al.29 which 

took a comprehensive approach to modeling the processes occurring in the Bemidji aquifer known 

at the time of its development. The model incorporates biodegradation of organics coupled to 

multiple TEAPs24,31–35,direct outgassing of CH4 and CO2, dissolution of CO2, and sorption of 

reduced Fe2+ 29. Later, the model was expanded upon to include new information about As cycling 

in the aquifer15. Now, I further expand upon this robust model to reflect new data about trace 

element cation cycling in the aquifer initially described by Jones1. The model now includes an 

expanded surface complexation model to describe Ni2+ and Co2+ sorption and desorption with 

respect to two sorbent phases, siderite (FeCO3) and the Fe(III) hydroxide Fe(OH)3, in an attempt 

to simulate the geochemical mechanism(s) responsible for mobilization and attenuation of 

geogenic trace elements in the contaminant plume. The model used PHT3D36, which combines 

geochemical reactions from PHREEQC-237, groundwater flow from MODFLOW-200538, and 

solute transport from MT3DMS39 (Figure 2).  

 

 



2.1 Model domain and hydrogeologic parameters 

A conceptual diagram of the model is shown in Figure 2. The original hydrogeologic parameters 

and model domain from the Ng et al.29 model were used in this model. The simulation began with 

the oil-spill occurring in August 1979 and covered 15,000 days (through September 2020) (Figure 

2). The model analysis domain depicts a two-dimensional cross-section of the groundwater plume, 

with each cell in the computational grid having dimensions of 4.3 m horizontally by 0.47 m 

vertically. The domain extends horizontally from 45 m upgradient to 215 m downgradient from 

the center of the oil body and vertically from 417 to 424 m above mean sea level. The 

computational grid extends to 475 m downgradient from the oil body and an elevation of 410 m to 

avoid boundary effects during model simulations. The upper boundary of the model domain is the 

water table.  

 

 



Figure 2. Model Conceptual Diagram. The top left blue box illustrates the components of the 

initial groundwater flow model (MODFLOW-2005). The top right green box illustrates 

components of the initial geochemical conditions (PHREEQC-2). The bottom grey box illustrates 

the simulation steps performed by PHT3D that incorporate both geochemical reactions performed 

by PHREEQC-2, groundwater transport performed by MODFLOW-2005, and solute transport 

performed by MT3DMS. 

 

 A porosity of 0.38 was chosen based on grain size analyses reported in Dillard et al.40 and 

assigned homogeneously to the model due to the low variability (± 0.04) amongst the 269 samples. 

Hydraulic conductivity (K) in the aquifer was determined based on 58 slug tests performed in 

different wells in the aquifer. Slug test results showed that K ranged from 10-3 to 10 m/d with a 

median of 6.3 m/d 41. K was applied heterogeneously to the model with geometric (5.1 m/d) and 

arithmetic (6.3 m/d) means based on geostatistical interpolations of the grain size analyses from 

sediment collected from the study site40 and then inflated for a closer match to the homogeneous 

6.1 m/d determined by Essaid et al.32 (Figure 2).Longitudinal (1 m) and transverse (0.04 m) 

dispersivities based on a field tracer test, were applied uniformly to the model domain32. To 

produce the observed average hydraulic gradient (0.0035), a steady state flow field was imposed 

by applying a constant head boundary of 424 m above sea level at the left boundary with a constant 

recharge rate of 4.88x10-4 m/d (Figure 2) as determined by inverse modeling32. Partial oil 

saturation is achieved through a relative water permeability while the oil phase is modeled as 

stationary in time. 

 

 



2.2 Geochemical formulation 

Modeled aqueous inorganic species include inorganic C, CH4, dissolved oxygen (DO), Mn, Fe, 

Ca, Cl, Na, H, inert N, As(III), As(V), Co, and Ni. Pyrolusite (MnO2), amorphous ferric hydroxide 

(Fe(OH)3), rhodochrosite (MnCO3), and siderite (FeCO3) are allowed to precipitate because they 

act as mineral sinks for elevated Fe2+ and Mn2+ in groundwater due to biodegradation. Calcite is 

included due to its role in carbonate chemistry. Species sorbed via cation exchange (HX, FeX2 and 

MnX2) and surface complexes for Co2+, Ni2+, As(V) (arsenate), As(III) (arsenite), and HCO3
- are 

included in the model. Dissolved gas phases (CO2, CH4, O2, and inert N2) are used to simulate 

outgassing. For equilibrium reactions, with the exception of Fe(OH)3 and FeCO3, logK values from 

the default PHREEQC database were used. Values of equilibrium constants for Fe(OH)3 and 

FeCO3 dissolution and cation exchange were calibrated by Ng et al.29. 

Organic carbon degradation is modeled for four oil constituents: BEX (benzene, ethylbenzene, 

and xylenes, all modeled as one component), toluene, long- and short-chain n-alkanes, and oil 

constituents contributing to non-volatile dissolved organic carbon (NVDOC) (Figure 2). The 

degradation processes were determined based on dissolution pathways, biodegradation pathways, 

and oil loss pathways described in detail by Ng et al.28. Briefly, the dissolution and biodegradation 

rate parameters were calibrated based on field data from 197928,29,32,42–45, 1987 ±224,25,42, 1993 

±228,45,46, and 2008 ±228,42,43,47–52. Unique dissolution rates and first-order biodegradation rates 

under different TEAPs were assigned to each constituent. BEX is assumed to follow a 

multicomponent dissolution rate while n-alkane oxidation has kinetic rates set explicitly for 

methanogenic biodegradation. 

A partial equilibrium approach53 was used for the geochemical model. This approach assumes 

that the organic carbon oxidation step is the rate-limiting step, and the associated reduction step 



proceeds as an equilibrium reaction. This is accomplished using PHT3D by irreversibly breaking 

down an organic molecule at a specific rate into its constitutive elements and valence states. The 

reactions and first-order rate constants for the oxidation of the four organic constituents are 

reported in Table 1. 

 

Table 1. Kinetic biodegradation reactions and first-order rate coefficients 

Kinetic reactions First-order rate coefficient (s-1) 

BEX  

C6H6 → 6C(-1) + 6H(+1) 1.00 x 10-8 

Toluene  

C7H8 → 7C(-1) + 8H(+1) 3.50 x 10-9 

NVDOC  

C19H24O6 → 19C(-1) + 24H(+1) + 6O(-2) 1.47 x 10-8 

short chain n-alkanes  

C11H25 → 11C(-1) + 25H(+1) 7.60 x 10-10 

long chain n-alkanes  

C15H32 → 15C(-1) + 32H(+1) 1.10 x 10-9 

 

 

The constitutive elements are then reintroduced into the equilibrium model, where C(-1) is then 

converted to the inorganic carbon form (i.e., HCO3
-) via the most thermodynamically favorable 

TEAP based on the model chemistry (Table 2). Note that coefficients a, b, and c in Table 2 are 

determined by the kinetic oxidation of hydrocarbons (Table 1), and the consequent stoichiometry 

is then necessarily dependent upon coefficients a, b, and c for a given reaction. Reactions proceed 

sequentially from aerobic respiration to manganese reduction, followed by iron reduction and 

methanogenesis. Note that if a hydrocarbon undergoing oxidation does not contain oxygen (e.g., 

C6H6), coefficient c in Table 2 reactions would be zero, removing it from the reaction. 

 

 



Table 2. Thermodynamic redox reaction stoichiometry  

 

Aerobic respiration 

aC(-1) + bH(+1) + cO(-2) + 1.25aO2 + 0.5(a-c)H2O → aHCO3
- + (b-2a)H+  

Manganese reduction 

aC(-1) + bH(+1) + cO(-2) + 2.5aMnO2 + (5a+2c-b)H+ → aHCO3
- + (2a+c)H2O  

Iron reduction 

aC(-1) + bH(+1) + cO(-2) + 5aFe(OH)3 + (5a+2c-b)H+ → aHCO3
- + (12a+c)H2O  

Methanogenesis 

aC(-1) + bH(+1) + cO(-2) + (3d-c)H+ → dHCO3
- + (b+d-2c-4a)H2O  

 
 

Surface complexation on Fe(OH)3 was modeled using the generalized two-layer model and 

database described in Dzombak and Morel54. The two-layer model defines “Type 1” and “Type 2” 

sites, also referred to as strong and weak sites, respectively. Fe(OH)3 strong sites are defined in the 

PHREEQC database as Hfo_s, where “s” identifies strong sites that correspond to a small subset 

of surface sites with high affinity for cation sorption. Type 2 sites defined in the PHREEQC 

database as Hfo_w, where “w” identifies weak sites which correspond to the total reactive sites 

available for sorption of protons, cations, and anions to Fe(OH)3 as determined by observed 

sorption maxima54. Initial simulations accounted for Co2+ sorption reactions to both strong and 

weak sites, and strong sites were more favored to the point where weak sites did not make a 

significant impact comparatively. Ni2+ sorption reactions were modeled only to strong sites as 

Dzombak and Morel54 did not report a logK for a weak site sorption reaction and strong site 

sorption tends to be more favorable for cations. Arsenic (as oxyanions) and HCO3
- sorption 

reactions were modeled using only weak sites, as strong sites are cation-specific. Fe(OH)3 sorption 

constants where based on values from Dzombak and Morel54 and then calibrated within the model. 



The specific surface area (600 m2/g) and surface site density for Hfo_s (0.006 mol/mol Fe) (Table 

3) were taken from the Dzombak and Morel54 database. 

Sorption onto FeCO3 was modeled using a one-site surface complexation model similar to that 

explained by Tahervand and Jalali55. Binding sites were described by surface complexation 

reactions combined with surface characteristics such as specific surface area and site density.  

Guo56 found a range of values for the surface area (6.8 – 8.5 m2/g) of a sample comprised of 

96% FeCO3. Because the FeCO3 precipitated in the aquifer is likely highly amorphous, I used the 

value on the high end of the range from Guo56 (8.5 m2/g) 56 and doubled it in the model to a value 

of 17 m2/ g of FeCO3 (Table 3) to better approximate the high ratio of surface area to volume of 

amorphous FeCO3. The site density reported by Van Cappellen et al.57 of 18 µmol sites/m2 surface 

area FeCO3
57 combined with the assumption that carbonate surface sites (>CO3) make up half of 

the sites and result in a surface site density of 9 µmol >CO3 sites/m2 surface area FeCO3. To 

achieve similar concentrations and patterns of Ni2+ and Co2+ sorbed to FeCO3 and to reflect the 

amorphous nature of FeCO3, the surface site density was doubled to 18 µmol >CO3 sites/m2 surface 

area FeCO3 (Table 3). 

Current research of carbonate surface complexation has been done in a limited capacity using 

laboratory experiments and has mainly focused on homogeneous systems (e.g., Mn sorbed to 

MnCO3, Fe sorbed to FeCO3). The exception to this is calcite (CaCO3), which has been studied in 

greater detail. Sorption of various cations including Ba2+, Sr2+, Cd2+, Mn2+, Zn2+, Co2+, and Ni2+ to 

calcite is described by Zachara et al.58. To my knowledge, logK values for sorption of Co2+ and 

Ni2+ to siderite do not exist in the literature. Therefore, I assumed that logK values for sorption to 

calcite would serve as reasonable initial estimates given the similar mineralogy between calcite 

and siderite. Thus, logK values for Co2+ and Ni2+ sorption to calcite from Zachara et al.58 were put 



into the model as proxies and then calibrated in the model based on field data from Jones1 to better 

reflect sorption parameters onto FeCO3.  

Modeled output Ni2+ and Co2+ concentrations were constrained by new and archival groundwater 

and sediment chemistry data compiled by Jones1, while also honoring previously documented 

patterns of DO, pH, Fe, NVDOC, and BEX constrained by groundwater and sediment chemistry 

data collected in 1987, 1993, and 200828. DO, pH, and Fe were further constrained by 2011-2015 

data14,15,16. 

 

Table 3. Sorption Parameters and Reactions 

Site Density Parameters Site density  Ref. 

 Fe(OH)3 6      𝜇𝑚𝑜𝑙 >𝑂𝐻3 𝑠𝑖𝑡𝑒𝑠

𝑚2 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
       (a) 

 FeCO3 18 
𝜇𝑚𝑜𝑙 >𝐶𝑂3 𝑠𝑖𝑡𝑒𝑠

𝑚2 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
  (b) 

Surface Area Parameters Surface Area   

 Fe(OH)3 600 (
𝑚2 

𝑔 𝐹𝑒(𝑂𝐻)3
)  (a) 

 FeCO3 17 
𝑚2 

𝑔 𝐹𝑒𝐶𝑂3
  (c) 

       
logK logK- 95% 

C.I.b 

logK+ 95% 

C.I.c 

ref. 

Surface (de)protonation reactions 
    

Rxn. 

1 

Hfo_wOH + H+ = Hfo_wOH2
+ 7.29 

  
(a) 

Rxn. 

2 

Hfo_wOH = Hfo_wO- + H+ -8.93 
  

(a) 

Rxn. 

3 

Hfo_sOH + H+ = Hfo_sOH2
+ 7.29   (a) 

Rxn. 

4 

Hfo_sOH = Hfo_sO- + H+ -8.93   (a) 

Rxn. 

5 

SidH = Sid- + H+
 -4.4   (b) 

Ni 2+ reactions 
    

Rxn. 

6 

Sid- + Ni2+ = SidNi+ -1.3 
  

(g) 



Rxn. 

7 

Hfo_sOH + Ni2+ = Hfo_sONi + H+ 1.5 
  

(b) 

Co 2+ surface reactions 
    

Rxn. 

8 

Sid- + Co2+ = SidCo+ -1.5 
  

(g) 

Rxn. 

9 

Hfo_sOH + Co2+ = Hfo_sOCo + H+ 1.6   (b) 

Rxn. 

10 

Hfo_wOH + Co2+ = Hfo_wOCO+ + 

H+ 

-3.01   (a) 

Arsenate (As(V)) reaction 
    

Rxn. 

11 

Hfo_wOH + AsO4
3- + 3H+ = 

Hfo_wH2AsO4 + H2O 

29.31 28.29 30.34 (a) 

Rxn. 

12 

Hfo_wOH + AsO4
3- + 2H+ = 

Hfo_wHAsO4
- + H2O 

23.51 23.33 23.7 (a) 

Rxn. 

13 

Hfo_wOH + AsO4
3- + H+ = 

Hfo_wAsO4
2- + H2O 

18.1 
  

(e) 

Rxn. 

14 

Hfo_wOH + AsO4
3- = 

Hfo_wOHAsO4
3- 

10.58 10.01 11.15 (a) 

Arsenite (As(III)) reactions 
    

Rxn. 

15 

Hfo_wOH + H3AsO3 = 

Hfo_wH2AsO3 + H2O 

5.41 5.11 5.71 (a) 

Bicarbonate reaction 
    

Rxn. 

16 

Hfo_wOH + CO3
2- + 2H+ = 

Hfo_wHCO3 + H2O 

20.37 19.39 21.35 (f) 

Rxn. 

17 

Hfo_wOH + CO3
2- + H+ = 

Hfo_wCO3
- + H2O 

12.78 12.58 12.98 (f) 

Acid dissociation reactionsa 
    

Rxn. 

18 

H3AsO4 = H2AsO4
- + H+ 2.24 

  
(d) 

Rxn. 

19 

H2AsO4
- = HAsO4

2- + H+ 6.96 
  

(d) 

Rxn. 

20 

HAsO4
2- = AsO4

3- + H+ 11.5 
  

(d) 

Rxn. 

21 

H3AsO3 = H2AsO3
- + H+ 9.29 

   



 
aAcidity constants correspond to T = 20-25 °C and I = 0. 
bLower 95% confidence interval for logK value 
cUpper 95% confidence interval for logK value 

a. Dzombak and Morel (1990) 

b. Calibrated based on Van Capellen (1993) 

c. Calibrated based on Guo (2007) 

d. Smith and Martell (1976) 

e. Dixit and Hering (2003) 

f. Appelo et al. (2002) 

g. Calibrated based on calcium carbonate sorption LogK’s in 

Zachara et al (1990) 

  

 

2.3 Initial Conditions 

Initial parameters for organic C constituents, initial total C mass, and mass fractions of BEX, 

toluene, NVDOC, short-chain n-alkanes, and long chain n-alkanes are from Ng et al29. Initial 

concentrations for dissolved constituents (total carbonates, CH4, Ca2+, Cl-, Fe2+, Mg2+, Na+, DO, 

Mn2+, N2, pH) were determined based on data from six sampling periods between 1986 and 1995 

of an uncontaminated background well upgradient from the spill site (well 310E in Figure 1), these 

concentrations are also representative of modern-day background concentrations. Concentrations 

from these sampling periods were averaged and then equilibrated with calcite and charge-balanced 

using PHREEQC-2. Concentrations for initial model input of aqueous Ni2+ and Co2+ remained the 

same after equilibration at 5.2209 x 10-9 mol/L and 4.968 x 10-10 mol/L, respectively. The left 

boundary and water table boundary are constant concentration flux boundaries with the initial 

solution chemistry except Ni2+ and Co2+ which use recharge concentrations equivalent to 

background conditions that differ from calibrated initial conditions. Arsenic is not included in 

recharge solution chemistry at the boundaries because it is below detection (<1 µg/L) in 

background groundwater. 



Initial Fe(OH)3 concentrations were based on the average of background sample measurements 

using a 0.5 M HCl extraction method45 and assuming a bulk density of 1650 g/L. The extraction 

method used targets operationally defined “easily reducible” Fe(III)45 that is then characterized in 

the model as Fe(OH)3. The concentration of reducible Fe(III) was determined by comparing the 

amount of Fe(III) extracted from uncontaminated background sediment to the amount of Fe(III) 

extracted from sediment just downgradient from the oil body in the contaminant plume. Near the 

oil body, Fe-reduction has occurred for several years following the spill prior to turning 

methanogenic after the bioavailable Fe(III) had been depleted. Extraction results showed low 

amounts of HCl-extractable Fe(III) remain in the sediment near the crude-oil body despite redox 

conditions being methanogenic, indicating that not all Fe(III) in the sediment may be easily 

reducible by microbes16. Thus, the difference between Fe(III) concentrations in uncontaminated 

background sediment and sediment near the crude-oil body was used to constrain the initial 

Fe(OH)3 concentration of 0.0288 mol/Lv (Lv is bulk or total aquifer volume— solids plus pore 

space— in liters). Similarly, initial concentrations of Ni2+ and Co2+ sorbed to Fe(OH)3 were 

constrained by the difference between the background concentrations and residual concentrations 

near the crude-oil body. Thus, the model represents the concentration of Ni2+ and Co2+ made 

available through biodegradation. 

The surface complexation model for Ni2+ and Co2+ was equilibrated with the dissolved 

concentrations in the initial solution to approximate observed concentrations of Ni2+ and Co2+ 

sorbed to Fe(OH)3
1. The initial concentrations of dissolved Ni2+ and Co2+ were calibrated to best 

match concentrations of Ni2+ and Co2+ in groundwater and sediment while remaining close to 

background concentrations at 15,000 days to be 5.2209 x 10-9 mol/L and 4.968 x 10-10 mol/L 

respectively. The groundwater concentration of Ni2+ and Co2+ for recharge was set to groundwater 



background levels of 5.6209 x 10-9 mol/L and 1.6968 x 10-9 mol/L respectively, as reported by 

Jones1. After equilibration, concentrations of Ni2+ and Co2+ sorbed to Fe(OH)3 where 0.023 

mmol/Lv and 0.0027 mmol/Lv respectively. Background conditions for Ni2+ and Co2+ in sediment 

from field data are 0.07 mmol/Lv and 0.013 mmol/Lv respectively. Because background 

groundwater is undersaturated with respect to FeCO3, FeCO3 does not form in background 

sediment in the model, and thus there are no Ni2+ or Co2+ complexes on FeCO3 as an initial 

condition. 

2.4 Calibration Approach 

The model in this study was calibrated so that patterns of Ni2+ and Co2+ concentrations in the 

sediment and groundwater were similar to that of the field data collected from 2010 – 20191; it 

also honors the spatial concentration patterns of DO, pH, Fe2+, CH4, Fe(OH)3, and FeCO3 observed 

in 1987, 1999, 2008, and 2015, which were accounted for in previous versions of this model19,29. 

Given that all these parameters are interdependent upon one another in the equilibrium model, I 

recognized that concessions regarding spatial patterns of trace elements and simulated 

concentrations would have to be made to honor the collective processes occurring in the model 

plume. As such, I decided that simulated concentrations within one order of magnitude of the 

measured concentrations in the field would constitute an “accurate” model. While I attempt to 

accurately simulate spatial distribution and concentration of Ni2+ and Co2+ in both groundwater 

and sediment, a general replication of the spatial distributions was accepted because concentrations 

can fluctuate in individual wells with no reflection of geochemical processes in the aquifer due to 

well construction59–61 and the purging/sampling procedures62 used. Thus, comparing point-to-point 

concentrations for calibration is likely overly prescriptive to gaining insight into the 



biogeochemical reactions that affect the mobilization and attenuation of Ni2+ and Co2+ in a 

contaminated aquifer. 

3. Results 

3.1 Aquifer Chemistry from Biodegradation 

In this paper, I report modeled concentrations 15,000 days after the oil spill for DO, Fe2+, HCO3
-

, CH4 and pH, as they are relevant to the geochemical processes controlling trace element cycling. 

Other species were included in the simulation but have little relevance to the cycling of trace 

elements, so their values are not reported here.  

Early aerobic biodegradation of the crude-oil results in depleted DO levels near the oil body 

(Figure 3.A) and thus allows for the onset of anaerobic biodegradation, namely biodegradation 

coupled with Fe-reduction and methanogenesis. During Fe-reduction, Fe(OH)3 is reductively 

dissolved and releases Fe2+ into groundwater creating a plume of elevated Fe2+ concentrations 

(Figure 3.E). After the reservoir of Fe(OH)3 has been depleted near the oil body due to Fe-

reduction, biodegradation proceeds by methanogenesis, resulting in a plume of elevated dissolved 

CH4 concentrations (Figure 3.B). During all biodegradation reactions, organic C is mineralized to 

produce high concentrations of HCO3
- (Table 2). Further downgradient from the methanogenic 

zone, where Fe(OH)3 reduction is the dominant TEAP (~100 m downgradient), elevated dissolved 

Fe2+ combined with elevated HCO3
- cause groundwater supersaturation with respect to siderite 

(FeCO3), causing it to precipitate with the highest concentrations from 50 – 100 m downgradient 

from well 421 (Figure 3.F)(Eq. 1).  

 

Fe2+ + HCO3
- = Fe2+ + CO3

2- + H+ = FeCO3 + H+  (Eq. 1) 

 



Multiple reactions, including siderite formation, are pH-dependent, so a discussion of the 

controls on pH is warranted. Near the oil body, field data have shown abundant non-carbonate 

Fe(II) in the sediment. This, combined with low pH as seen in field data1, leads to the use of cation 

exchange in the model to allow for partially immobilized Fe(II) to appear as FeX2
29, which 

produces acidity as a byproduct (Eq. 2).  

 

2HX + Fe2+ = FeX2 + 2H+   (Eq. 2) 

 

H+ is a reaction byproduct of methanogenesis (Table 2), a primary TEAP near to the oil body. 

Combined, methanogenesis and cation exchange explain the lower pH observed -25 - 100 m 

downgradient from well 421 (Figure 3.D). Further downgradient in the Fe-reducing zone, H+ is 

consumed as a reactant during Fe-reduction (Table 2), leading to an overall increase in pH as a 

result of the reaction. Lower pH (i.e., elevated concentrations of H+) thermodynamically disfavors 

the formation of FeCO3 near the oil, as H+ is a product of siderite precipitation from Fe2+ and 

HCO3
- (Eq.1). Despite the higher concentrations of Fe2+ (Figure 3.E) and HCO3

- (Figure 3.G) 

closer to the oil, the higher concentrations of H+ in this zone thermodynamically limit siderite from 

forming. This results in the highest siderite concentrations in the Fe-reducing zone (Figure 3.F), 

even though Fe2+ and HCO3
- concentrations are comparatively lower in groundwater in this zone.  

Last, the resulting pH controls the surface charge on the two sorbent phases, Fe(OH)3 and 

FeCO3, and thus controls their ability to sorb oppositely charged ions in solution. From Table 3, 

the pKa1 and pKa2 for Fe(OH)3 are 7.29 and 8.9354, respectively, meaning that below pH 7.29, the 

dominant surface charge will be positive, between pH 7.29 and 8.29 the dominant surface charge 

will be neutral, and above pH 8.29, the dominant surface charge will be negative. However, it is 



important to note that between pH 7.29 and 8.29, small fractions of both positive and negative 

surface species exist63, allowing for surface complexation of both cations and anions 

simultaneously. From Table 3, the pKa for FeCO3 is 4.4 meaning that below pH 4.4 the dominant 

surface charge will be neutral and above pH 4.4 the dominant surface charge will be negative57. 

Near the oil body where methanogenic conditions dominate, pH is lower (~6.6) than background 

conditions (Figure 3.D). Under these conditions, Fe(OH)3 would generate mostly positively 

charged surface sites, favoring anion sorption and disfavor sorption of trace element cations. 

Conversely,  FeCO3 would generate a negative surface charge, allowing it to sorb cations. Further 

downgradient in the Fe-reducing zone, pH is ~6.9-7.3, indicating that the majority of Fe(OH)3 

surface sites would be positively charged and favor anion sorption, though some surface sites can 

be negatively charged and sorb cations. FeCO3 surface sites would be negatively charged and favor 

cation sorption.  



 

Figure 3. Aquifer chemistry related to biodegradation processes 15,000 days after the oil spill. 

Constituents include A) dissolved oxygen (mM), B) CH4 (mM), C) Fe(OH)3 in sediment 

(mmol/Lv), D) pH, E) aqueous Fe2+ (mM), F) FeCO3 in sediment (mmol/Lv). 



3.2 Mobilization and Attenuation of Ni2+ and Co2+ 

Here I present results of aqueous and sorbed (to Fe(OH)3 and FeCO3) Ni2+ and Co2+ phases from 

the model and compare them to concentrations measured in groundwater and aquifer sediments 

reported by Jones1. Interpolated field data of sediment from Jones1 represents bulk sediment data 

(Figure 4.A; 5.A), that includes both available (i.e., mobilizable due to biodegradation processes) 

and non-available (i.e., Ni and Co remaining in sediment for ~40 years after the spill) Ni and Co 

in the sediment. Since this residual Ni and Co remain in sediment ~40 years after the spill, I 

assumed they are likely part of a more recalcitrant mineral phase that is not influenced by 

biodegradation processes in the plume. Therefore, to make more accurate comparisons of available 

Ni and Co and model results, the residual concentrations of Ni and Co in sediment near the oil 

body were subtracted from bulk Ni and Co sediment concentrations in the model domain, resulting 

in the amount of “available” Ni and Co in sediment that can be mobilized during biodegradation 

processes (Figure 4B; 5B). These resulting residual-subtraction concentrations of Ni and Co where 

then used for comparison to the model. It is important to note that the residual-subtraction plots do 

not specify any specific retention mechanism or phase. In order to illustrate the roles of sorption 

on FeCO3 and Fe(OH)3 individually, the model produces a plot indicating Ni and Co sorbed to 

FeCO3 and a separate plot indicating Ni and Co sorbed to Fe(OH)3. The true “total” Ni and Co in 

sediment in a model cell would be the sum of the metals sorbed to FeCO3 and the metals sorbed 

to Fe(OH)3, though no cell appears to have appreciable amounts of metals simultaneously sorbed 

to both minerals, as the two minerals are stable under opposing redox conditions.  

Near the crude-oil body, Ni2+ and Co2+ are depleted in the sediment for two reasons. First, 

methanogenesis is the primary TEAP because a majority of the available Fe(III) had been reduced 

in the past, when Fe-reduction was the dominant TEAP in this zone30. Ni2+ and Co2+, which were 



originally sorbed to Fe(OH)3 in sediments, were mobilized into groundwater as the hydroxides 

dissolved. This is reflected by increased concentrations of aqueous Ni2+ and Co2+ near the oil body 

(Figure 6). Second, as methanogenic conditions became predominant, and Fe2+ exchanged with 

H+ in sediment, groundwater pH decreased to values that generate only positive surface charge on 

Fe(OH)3 based on the pKa1 value of 7.29. Although there is some residual Fe(OH)3 near the oil 

body (Figure 3.C), the surface sites would electrostatically repulse positively charged Ni2+ and 

Co2+, causing them to desorb into groundwater and create their respective plumes.  

In the model, the center of mass in the Ni2+ groundwater plume is near 50 m downgradient from 

well 421 and at an elevation of 421 m AMSL with a maximum concentration of 0.0025 mmol/L 

(Figure 6.B). Field data show the center of mass in the Ni2+ groundwater plume is closer to 25 m 

downgradient from well 421 and at an elevation of 422 m AMSL with a maximum concentration 

of 0.002 mmol/L1 (Figure 3.A). The center of mass in the Co2+ groundwater plume is near 60 m 

downgradient from well 421 and at an elevation of 421.5 m with a maximum concentration of 

0.00041 mmol/L (Figure 3.D). Field data show the center of mass in the Co2+ groundwater plume 

is near 0 m downgradient from well 421 and at an elevation of 422.5 m AMSL with a maximum 

concentration of 0.0004 mmol/L1 (Figure 3.C). 

 



 

Figure 4 Measured and modeled Ni2+ in sediment. A) is a plot of interpolated field data of Ni2+ in 

sediment (mg/kg)from Jones. B) is a plot of interpolated field data of Ni2+ in sediment with the 

residual value of 2.75 mg/kg subtracted and data converted to the model units of mmol/Lv. C) is a 

plot of modeled Ni2+ sorbed to FeCO3 in sediment (mmol/Lv). D) is a plot of modeled Ni2+ sorbed 

to Fe(OH)3 in sediment (mmol/Lv).  

 



 

Figure 5 Measured and modeled Co2+ in sediment. A) is a plot of interpolated field data of Co2+ 

in sediment from Jones (2020). B) is a plot of interpolated field data of Co2+ in sediment with the 

residual value of 1.25 mg/kg subtracted. C) is a plot of modeled Co2+ sorbed to FeCO3 in sediment 

keeping a consistent color bar range with field data. D) is a plot of modeled Co2+ sorbed to Fe(OH)3 

in sediment keeping a consistent color bar range with field data. E) is a plot of modeled Co2+ sorbed 

to FeCO3 in sediment with a unique color bar range to highlight the concentrations found in the 

aquifer. F) is a plot of modeled Co2+ sorbed to FeCO3 in sediment with a unique color bar range 

to highlight the concentrations found in the aquifer 

 

 



 

 

Figure 6. Mobilized trace elements measured from well sampling and modeled in this study. A) 

is a plot of interpolated measurements of aqueous Ni2+ (mM) in the aquifer from Jones1. B) is a 

plot of modeled aqueous Ni2+ (mM) in the aquifer. C) is a plot of interpolated measurements of 

aqueous Co2+ (mM) in the aquifer from Jones1. D) is a plot of modeled aqueous Co2+ (mM) in the 

aquifer. 

 

From field sampling, Jones1 observed enrichment of of Ni2+ and Co2+ in sediment of the Fe-

reducing zone and hypothesized that carbonates may be precipitating and sorbing cations. I was 

able to replicate this hypothesis in the model (Figure 3.F), lending support to Jones’ hypothesis. 



Increased concentrations of aqueous Fe2+ and HCO3
-, a result of geochemical mechanisms 

described previously (Table 2), result in the precipitation of FeCO3, and at the pH values present 

in the Fe-reducing zone (Figure 3.D), FeCO3 generates a negative surface charge (Table 2) 

allowing Ni2+ and Co2+ to sorb onto siderite in the sediment. Thus at 15,000 days, Ni2+ and Co2+ 

are largely attenuated by sorption from 0 - 100 m downgradient from well 421 with the highest 

concentrations occurring in the Fe-reducing zone between 50 – 100 m downgradient from well 

421 via this mechanism. The maximum concentrations of Ni2+ and Co2+ sorbed to FeCO3 at 15,000 

days are 0.03 mmol/Lv and 0.0041 mmol/Lv, respectively (Figures 4 and 5), and are slightly lower 

than concentrations seen in field data of 0.08 mmol/Lv and 0.03 mmol/Lv, respectively1. 

The model indicates a greater attenuation of Ni2+ and Co2+ via sorption to FeCO3 near the oil 

body than is observed in field data, perhaps because groundwater pH in the model is ~0.5-0.75 pH 

units higher than observed in groundwater near the oil, diminishing the effect of low pH inhibition 

of siderite precipitation (Eq. 1) while simultaneously increasing the relative abundance of negative 

surface sites able to sorb Ni2+ and Co2+. Regardless, the model demonstrates an overall depletion 

of Ni and Co concentrations in sediment in this region relative to background concentrations, 

consistent with the pattern observed from field sampling; both modeled data and field data reflect 

regions of high concentrations of Ni2+
 and Co2+ in sediment in the Fe-reducing zone and at the 

leading edge of the plume, caused by the precipitation of FeCO3 and Fe(OH)3, respectively. Both 

of these minerals serve as sorbent phases for Ni2+ and Co2+ based on the pH in their respective 

zones. 

 Further downgradient where the aquifer transitions from anoxic Fe-reducing zone to suboxic 

conditions, groundwater is no longer supersaturated with respect to FeCO3, so its precipitation 

ceases (Figure 3.D). Additionally, the suboxic conditions result in the oxidizing of aqueous Fe2+ 



and precipitate Fe(OH)3, which in turn attenuates Ni2+ and Co2+ through sorption. At ~125 m 

downgradient from well 421, a “wall” of elevated concentrations of Ni2+ and Co2+ sorbed to 

Fe(OH)3 in sediment occurs (Figures 4 and 5), because Fe(OH)3 is stable under the suboxic 

conditions and the pH allows for the formation of negatively charged surface sites. The maximum 

concentrations of Ni2+ and Co2+ sorbed to the wall of precipitated Fe(OH)3 at 15,000 days are 0.02 

mmol/Lv and 0.003 mmol/Lv respectively. The maximum concentrations of Ni2+ and Co2+ in 

sediment from field data are 0.08 mmol/Lv and 0.03 mmol/Lv, respectively1. 

4.1 Discussion 

Concentrations and patterns in the model reflect the same general patterns observed in field data, 

but the model could not exactly match the field data due to the comprehensive modeling approach 

of simulating numerous parameters for 40+ years of data with reasonable accuracy. The sediment 

concentrations can be more closely matched to field data using different logK values, but this 

match occurs at the expense of not only groundwater concentrations but the location of the 

groundwater plume as well. Thus, a model that is not an exact match but is close to both sediment 

concentrations as well as groundwater plume location was considered accurate.  

While extensive research of sorption parameters for Fe(OH)3 exist54, this model illustrates the 

need for a better understanding of sorption parameters related to FeCO3, especially in contaminant 

plumes where Fe-reduction occurs. Some research has looked at the surface area and site density 

of FeCO3
56,57 though these laboratory findings likely do not reflect the surface area of amorphous 

FeCO3 precipitates that form in a complex geochemical environment like the Bemidji contaminant 

plume. Little research has been done to determine sorption constants for Ni2+ or Co2+ sorption to 

siderite. A more robust understanding of sorption parameters for FeCO3 much like that of Fe(OH)3 

is essential to better understand mobilization and attenuation of trace elements in crude-oil 



contaminated aquifers and more generally in aquifers with abundant bioavailable organic carbon 

that biodegrades via Fe-reduction. 

Parameterizing FeCO3 is further complicated by the fact that the actual Fe carbonate phase has 

been difficult to characterize in the Bemidji aquifer. It has been particularly difficult to positively 

identify crystalline Fe-carbonates in sediment from the field (Ziegler, personal communication), 

likely due to its amorphous or poorly crystalline nature. This is congruent with expectations for 

recently precipitated FeCO3. Kohler et al.64 looked at two sediment cores from the Fe-reducing 

zone of Bemidji contaminant plume. Each of these cores contained Fe2+ attributed to ion 

exchangeable and/or carbonate reservoirs. By performing an extraction step that inhibits carbonate 

dissolution it was possible to determine the amount of Fe2+ from a reservoir other than ion 

exchange, possibly a carbonate reservoir such as siderite, ferroan calcite, or an amorphous phase. 

Because the carbonate phase(s) is not well characterized, it is difficult to determine model inputs 

for its mineral properties (i.e. surface area, surface side density, and reactivity).  

There are multiple surface complexation models that can be used in a reactive transport model. 

Previous modeling studies have used the constant-capacitance model65, the diffuse-layer model54, 

the triple-layer model66, and the charge distribution multisite surface complexation (CD-MUSIC) 

model67. The constant-capacitance model assumes a sorption mechanism of ligand exchange for 

anionic trace elements that sorb and form tightly bound inner-sphere complexes68. The diffuse-

layer model, also known as the double-layer model, assumes inner-sphere surface complexes are 

formed but also includes a diffuse layer formed by background electrolyte ions68. Surface 

complexation of Fe(OH)3 has been successfully modeled at the Bemidji aquifer69 with surface 

parameters from Dzombak and Morel54 using the double-layer model thus the same was used in 

this model. The triple-layer model assumes inner-sphere complexation occurs as well as adsorption 



through an outer-sphere adsorption mechanism that results in weaker surface complexes68. The 

CD-MUSIC model assumes inner- and outer-sphere complexes are possible but also allows for 

various reactive surface groups including singly, doubly, and triply coordinated hydroxyl groups68. 

These more specific surface complexation models were considered for FeCO3 in this model. 

However, due to the lack of studies on surface parameters for FeCO3, these more specific models 

were determined to be over-parameterized for modeling trace element sorption to FeCO3 in this 

study. 

Geogenic trace elements like Ni2+ and Co2+ commonly occur in aquifer solids, through sorption 

to Fe hydroxides. However, when bioavailable organic C is introduced into the system, 

biodegradation processes can result in the mobilization trace elements through Fe-reduction and 

create secondary trace element contaminant plumes. In the Bemidji aquifer, we observed this 

phenomenon with respect to Ni2+ and Co2+ while others have also observed the mobilization of As 

and Ba2+ and Sr2+. However, it is important to recognize that trace element mobilization is not 

limited to just these particular trace elements. In fact, the potential for trace element mobilization 

is dependent upon the trace elements originally sorbed to the Fe hydroxide in the aquifer matrix. 

For example, lead, cadmium, and mercury were non-detectable in uncontaminated sediments in 

the Bemidji aquifer, therefore they likely would not pose a groundwater threat. However, it is 

possible that an aquifer with higher levels of naturally occurring lead, cadmium, or mercury in 

sediment is vulnerable to unsafe groundwater concentrations of these toxic elements if reducing 

conditions are established.  

Complex mixtures of trace elements in groundwater can have unique ecological health 

consequences and human health impacts via drinking water. In the contaminated portion of the 

Bemidji aquifer, aqueous Ni2+ exceeds regulatory limits. Excess Ni2+ has been linked to skin 



irritation21. Though Co2+ is not currently regulated by the EPA, it is under consideration due to its 

possible public health concerns23. Furthermore, more research is needed to understand the 

combined toxicology of simultaneous exposure to benzene, Ni2+, Co2+, and other mobilized trace 

elements70 .This model underscores the importance of monitoring not only organic contaminants 

at crude-oil spill sites but inorganic contaminant, and particularly trace elements, as well. 

5. Conclusion 

This model describes the geochemical processes behind mobilization and attenuation of 

geogenic trace elements triggered by biodegradation processes. Reducing conditions in the aquifer 

lead to biodegradation coupled with Fe-reduction which causes the dissolution of Fe(OH)3 and 

mobilizes trace elements such as Ni2+ and Co2+ that were previously sorbed to Fe(OH)3 in the 

aquifer matrix. Within the active Fe-reducing zone groundwater becomes saturated with respect to 

FeCO3 leading to its precipitation. Given the conditions of the aquifer where FeCO3 precipitates, 

it generates a negative surface charge and thus is capable of attenuating previously mobilized 

cations while allowing mobilized oxyanions (such as As) to remain in groundwater. Downgradient, 

conditions are no longer favorable for siderite but are favorable for the precipitation of Fe(OH)3, 

allowing for the sorption of both cations and oxyanions including Ni2+, Co2+, and As based on its 

simultaneous positively and negatively charged surface sites. Conditions in the active Fe-reducing 

zone which allow for the precipitation and negative surface charge of FeCO3 can, in part, account 

for the similarities in Ni2+ and Co2+ attenuation patterns in the aquifer as well as the differences in 

Ni2+/Co2+ and As attenuation patterns in the aquifer. This modeling study highlights the importance 

in expanding our knowledge of FeCO3 sorption parameters as well as the importance of monitoring 

inorganic contaminants, specifically trace elements, at organic contaminant sites. 
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