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Abstract 

Many studies of animal behavior use video technology to mimic live interactions and minimize 

the variability of natural animal behavior. Here, I seek to understand how information processing 

differs among Anolis carolinensis (green anole lizards) exposed to a live lizard compared to a 

video representation of a lizard. I conducted behavioral trials in which I placed a male lizard in a 

visually neutral arena, presented it with visual information from a live anole or from carefully 

constructed video playback, and recorded their behavioral responses. Each lizard (n=40) was 

randomly assigned to one of four treatments – Live Anole (two live males interacting with each 

other), Anole Video (focal lizard shown video of a lizard displaying on a perch), Scrambled 

Video (focal lizard shown video of a lizard displaying on a perch, but with the pixels scrambled 

to remove social context), or Control (focal lizard shown video of a stationary perch). 

Immediately after each trial, lizard brains were flash-frozen in isopentane. To measure neural 

activity, I then used immunocytochemistry to quantify expression levels of the immediate early 

gene c-fos in two visual brain regions, the Nucleus Rotundus (NROT) and Lateral Geniculate 

Nucleus (LGN), and one social brain region, the Pre-Optic Area (POA). Behaviorally, I found 

that lizards in the Live Anole and Anole Video conditions did not differ in social display 

behaviors (pushups and dewlap extensions) or attentiveness, but lizards in both these conditions 

displayed more than lizards in the Scrambled Video and Control conditions – evidence that 

suggests there is no difference in lizard’s behavioral responses to live lizards compared to video 

lizards. I also found evidence for the inhibitory nature of the POA, as the POA showed the least 

neural activity in the Live Anole condition, and there was a negative correlation between 

attentiveness and POA activity within the Live Anole condition. Finally, I saw no differences in 

LGN and NROT activity across the four treatments, providing evidence that lizards process 
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visual information in the visual brain regions independently of the social context of that 

information. Overall, this study provides a greater understanding of the behavioral similarities, 

but neural differences, in visual and social processing of a live anole compared to a video 

representation of an anole, suggesting caution in the use of video representations of behavior. 
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Introduction 

 Almost all animals rely on visual information to understand the world around them. For 

example, many animals use visual cues to facilitate social interactions such as territory defense, 

courting a potential mate, or determining the location of resources (e.g., birds: Rogers & Kaplan, 

2000; amphibians: Hödl and Amézquita, 2001; insects: Lloyd, 1971). These complex cues are 

detected and processed in the brain, which then coordinates the animal’s behavioral responses 

(Brattstrom, 1974). One type of response to social information is to perform a behavioral display, 

usually directed at one or more other individuals. Many aspects of a behavioral display, such as 

the color or motion components of the display, are highly stereotyped; however, within species 

individuals can differ dramatically in their display rates, combinations of various display 

components, and/or the context of the display.  

 To understand how animals respond to visual cues, experiments where stimuli are 

controlled are useful. However, because live animals are variable in how they behave in certain 

situations, it is difficult to use live animals as experimental stimuli. Video playback technology 

offers the potential to present visual animals with controlled stimuli, but can focal animals 

recognize a video as a social stimulus? In this thesis, I use expression of the immediate early 

gene c-fos as a measure of neuronal activity. I test whether video stimuli elicit similar responses 

in the brain as live stimuli in green anole lizards (Anolis carolinensis).  

 

Anole Social Behavior 

 The almost 400 known species of Anolis lizards are primarily distinguished by two traits: 

expanded toepads that allow the lizards to move on vertical surfaces, and a colorful throat fan 
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known as the dewlap (Losos & Schneider, 2009). Anolis lizards are diurnal (i.e., their periods of 

activity occur during the day), generally eat insects and other arthropods, and defend territories 

that overlap extensively with territories of the opposite sex. Anoles are tropical lizards, found 

mostly throughout the Caribbean, Central and South America, and the Southeast United States 

(Losos, 2009).  

 Anolis carolinensis (green anoles) communicate largely through visual cues (Jenssen, 

1977), with little to none of their communication implementing chemical or auditory modalities 

(Robinson et al., 2015). Their visual displays, and the contexts in which these displays are used, 

have been described in detail (e.g., Greenberg, 1977; Jenssen et al., 1995). These aspects, along 

with the availability of a forebrain atlas (Greenberg, 1982), make green anoles an excellent 

model for studies of visual communication. 

 Visual displays used by green anoles include information communicated via motion, 

color, and postural changes (which during displays, often makes the lizard appear to be larger). 

Displays normally involve extension of the dewlap, head bobs, and pushups. Male anoles 

generally perform these displays more frequently than females, and most displays occur during 

courtship, territorial defense, or occasionally to deter predators (Leal & Rodriguez-Robles, 

1997). Territorial displays may exhibit increasing intensity with the lizard raising themselves 

further from the ground as the interaction escalates (Jenssen et al., 1995). Escalation of territorial 

behavior also often results in the erection of nuchal or dorsal crests , and the development of a 

dark spot posterior to the eye (Greenberg, 1977; Jenssen et al., 2000). Male anoles in dispute will 

position themselves side-by-side with their heads oriented in opposing directions, sometimes 

circling around and lunging at each other as the competition progresses until one lizard retreats 

or attacks (Jenssen et al., 1995). This suite of visual displays allows anoles to assess competitors 
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prior to violent combat, or, in the context of courtship, to evaluate potential mates prior to 

copulation; thus, interpreting visual cues is of clear ecological importance for these animals. 

 

Anole Visual Ecology 

 The field of visual ecology examines animal visual systems in relation to their ecological 

needs. The sensory drive hypothesis, a major hypothesis in the field, predicts that animal sensory 

systems have evolved for effective animal functioning, and that different systems may function 

best in different environments (Fleishman, 1992). The visual system, the behavioral repertoire, 

and the environment must work together to form the anole sensory system.  

 Light conditions in an environment often affect the interpretation of a visual stimulus. For 

anoles, light conditions differ across habitat types with varying degrees of shade or sun; 

however, species with variation in light habitat conditions had little to no variation in spectral 

sensitivity, or in other words, the colors to which a lizard’s eye is most sensitive (Fleishman et 

al., 1997). Spectral sensitivity is dependent on the types and quantities of photoreceptors present 

in the retina, and while different species of anoles have different numbers and types of 

photoreceptors, their spectral sensitivities do not vary; all anole species exhibit consistent 

spectral sensitivity function with peak sensitivity at 550 nm – the spectral radiance of vegetative 

backgrounds (Fleishman et al., 1997). This means that spectral sensitivity is more dependent on 

the habitat background color (which does not vary substantially across species) than the habitat 

light conditions (which do vary among species). 

 Each green anole eye has a 180° monocular receptive field, and the lateral placement of 

the eyes on each side of the head allows for 20° of forward-facing binocular overlap: a broad 
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field of view critical for the anole’s ability to scan for prey as it sits motionless on a perch 

(Fleishman, 1992). Designed for high-acuity diurnal vision, the retina of the anole eye is unique 

in its photoreceptor composition and density across the peripheral retina, temporal fovea, and 

central fovea. Photoreceptors of the retina are all of the cone type, with no rods present, and the 

density of cones in the central fovea is ten times the density of cones in the peripheral retina 

(Makaretz & Levine, 1980), while the temporal fovea, associated with binocular fixation, has 

photoreceptor densities that are lower than the central fovea but still three times greater than in 

the peripheral retina (Fite & Lister, 1981; Fleishman, 1992). The peripheral retina has a retinal 

ganglion cell (RGC) to cone ratio of 1:1; however, in the central fovea this ratio declines. The 

absence of rods and this low RGC to cone ratio lead anoles to have high acuity vision in high-

intensity light environments while having low acuity vision in low-intensity light environments.  

 Green anoles have a total of four cone types whose absorption maxima are approximately 

565, 495, 450, and 365 nm (Leow & Fleishman, 1993). The cones with absorption maxima at 

565, 495, and 450 nm are visible light spectrum-sensitive, while the cone with absorption 

maxima at 365 nm is an ultraviolet-sensitive cone. The ability for ultraviolet vision is 

particularly important in anole visual communication through the use of ultraviolet-reflective 

dewlaps in ultraviolet-rich habitats (Leow & Fleishman, 1993). Stoehr and McGraw (2001) 

investigated coloration and ultraviolet reflectance of dewlaps in Anolis carolinensis and found 

that green anole dewlaps reflect maximally in both UV and long-wavelength portions of the light 

spectrum. In addition, green anole dewlaps are highly exposed to UV light in open spaces 

(Stoehr & McGraw, 2001), suggesting a selective advantage for green anoles to reflect UV light 

signals from their dewlap in UV-rich environments. Stoehr and McGraw (2001) also postulated 

that the ability for the green anole dewlap to reflect light of both UV and long-wavelength light 
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allows for visual communication that is accurate and efficient in environments that are sunny or 

cloudy. Combining information from both dewlap reflectance with visual perception, green 

anoles not only reflect light of both spectrums, but they perceive them as well. This link between 

behavior and the animal’s visual system sheds light on the evolution of visual signaling among 

green anoles. 

 Visual ecology makes it increasingly apparent that visual cues rely on habitat background 

and light reflectance. This leads to concern for the use of video technology in behavioral 

experiments as videos often fail to incorporate background cues from an ecological context – or 

to fully represent the natural interaction of the dewlap with light – a potentially critical 

component of dewlap function. 

 

Visual and Social Processing in the Brain 

Visual Pathways 

 Following the detection of visual and social cues by the eye, these cues are then 

processed and interpreted in the brain. There are three pathways (Figure 1) that project visual 

information from the anole retina to the telencephalon (the largest and foremost division of the 

brain): the lemnothalamic pathway, the collothalamic pathway, and the retino-thalamic pathway 

(Bruce, 2009). The lemnothalamic pathway projects from the retina to the lateral geniculate 

nucleus (LGN) of the thalamus and then to the primary visual cortex (Hodos and Butler, 1997). 

The collothalamic pathway projects from the retina through the optic tectum to the nucleus 

rotundus (NROT) of the thalamus, and then to the visual nuclei of the dorsal ventricular ridge 

(DVR) and the striatum (Hodos and Butler, 1997). The third pathway, the retino-thalamic 
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pathway, projects from the retina, through the optic tectum to the LGN of the thalamus and then 

to the DVR and/or pallial thickening (Bruce and Butler, 1984). While the retina is always the 

first to receive the visual input, the optic tectum serves as an intermediary between the thalamus 

(LGN and NROT) and the visual cortex (DVR/Pallial thickening/striatum) in the retino-thalamic 

and collothalamic pathways.  

 The mammalian visual system is in many ways homologous to the reptilian visual 

system. Information processed in the mammalian visual system travels through the retina to the 

optic chiasm and then up to the LGN of the thalamus where it is directed to the primary visual 

cortex (V1) (Breedlove et al., 2013). This mirrors the reptilian visual system nearly identically. 

For example, both reptilian and mammalian systems have pathways travelling from the retina to 

the LGN; however, V1 and DVR/pallial thickening/striatum, while homologous, present unique 

variations in the processing of visual information. In mammals, perception of information is not 

restricted to V1, but actually occurs throughout the visual processing pathway. It is unclear the 

extent to which visual processing occurs throughout this pathway in reptiles. 

 

Social Behavior Network (SBN) 

 Social information is processed in a different suite of brain regions. Newman (1999) and 

Goodson (2005) described the social behavior network (SBN) as six brain nuclei that occur in all 

vertebrates, and interact with each other to process social information and therefore elicit a 

behavioral response. These six brain nuclei include the amygdala, the lateral septum, 

ventromedial hypothalamus, anterior hypothalamus, preoptic area (POA), and the midbrain 

(Figure 2). Goodson and Kabelik (2009) described the relationship between vertebrate social 

behaviors and activation of the SBN. Behavior is most strongly associated with patterns of neural 
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activity across nuclei of the SBN rather than with one single nucleus, resulting in endless 

combinations of neural activity that can be associated with particular nuclei (Goodson & 

Kabelik, 2009). Likewise, work on social cues and the SBN has shown that social stimuli 

differentially activate hypothalamic networks, and that social experiences affect social behavior 

through the modification of SBN brain regions (Hoke et al., 2005; Yang & Wilczynski, 2007). 

 These brain regions have also been shown to be implicated in social behavior in the green 

anole. Greenberg et al. (1984) showed that lesioning of the amygdala and paleostriatum in the 

green anole resulted in reduced aggressive and courtship displays while lesioning only the 

amygdala impaired courtship behaviors and lesioning only the paleostriatum impaired challenge 

behaviors. Further, Tarr (1977) lesioned the medial amygdala in the western fence lizard, 

Sceloporus occidentalis. Normally, S. occidentalis demonstrates a predictable and consistent 

social display across environmental and social situations, but lesioned lizards failed to assert 

dominance or subordinance behaviors, suggesting the amygdala’s critical role in socially 

mediated aggression. In addition, findings by Neal and Wade (2007) suggest that the POA is 

inhibitory in the context of social behavior, while findings by Morganteler and Crews (1978a, b) 

suggest that the POA is implicated in regulating reproductive behavior in green anole lizards. By 

lesioning the anterior hypothalamic-preoptic area, Morgantaler and Crews (1978a) abolished 

courtship and agonistic behaviors in male green anole lizards that were not castrated and in those 

that were castrated and treated with androgens. In a similar study, Morgantaler and Crews 

(1978b) used testosterone implants in the anterior hypothalamus-preoptic area to restore 

reproductive behavior in castrated anoles. Beck et al. (2008) found differences in limbic brain 

region structure between male and female green anoles, and between breeding and post-breeding 

seasons. Their findings suggest that the limbic brain regions (POA, amygdala, and ventromedial 
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hypothalamus) are dynamic and that there are parallels between morphology of the POA and 

anole expression of masculine behaviors. 

 

Connecting the Visual Pathways and the SBN 

 The SBN and visual pathways must be connected for animals to perceive visual signals as 

socially relevant and therefore elicit a behavior in response. In the Algerian sand lizard 

(Psammodromus algirus), this connection has been found to project from the LGN to the NROT 

and then to the DVR and the amygdala (Guirado et al., 2000). This axonal connection likely 

bridges the social behavior network to the visual pathways. 

 

Overview of the Current Study 

Behavioral Trials 

 In this study, I examined green anoles to determine neuronal activation within nuclei 

implicated in visual processing and nuclei implicated in social behavior when observing live 

anoles compared to video anoles. I manipulated visual stimuli that elicit highly social behavioral 

responses and measured the resulting changes in activity within the nuclei of the brain. I 

analyzed the nuclei of the POA for social behavior (Newman, 1999; Goodson, 2005) and the 

NROT and LGN for visual processing (Manger et al., 2002; Bruce, 2009).  

 I used a series of four behavioral treatments, in which each lizard experienced a single 

trial, to manipulate social and visual experience The four trials included a Live Anole condition 

where the visual and social stimuli were from another live anole, an Anole Video condition 

where the visual and social stimuli were a recorded video of an aggressive lizard display, a 



Jaramillo 16 
 

Scrambled Video condition where the visual stimulus was the aggressive dewlap display video 

with the pixels scrambled to remove the lizard image, and a Control condition where the visual 

stimulus was a perch, with no obvious social stimulus. According to Macedonia et al. (1994), 

video-recorded sequences of lizard displays are sufficient to mimic behavioral responses 

expected in a live interaction. Studies since have used video playback as a plausible method of 

controlling for confounding variables while eliciting the desired behavioral response in lizard 

animal communication (e.g., Ord et al., 2000). By looking at brain activity during video 

exposure, we can determine the accuracy of video representations of anole behavior, as 

perceived by the anole viewing the videos.  

 

Quantifying Neuronal Activity 

 In humans, fMRIs use blood oxygen levels to quantify brain activity in certain nuclei; 

however, this technique is quite expensive and is not available for all animals. On the other hand, 

an immediate early gene, c-fos, is a gene transcribed within minutes of neuronal activation, and 

quantification of c-fos is a useful tool for identifying brain activity. In this study, I measured 

levels of c-fos protein as a marker for neuronal activity in the brains of the lizards in each of the 

four experimental conditions (Morgan & Curran, 1991; Cruz et al., 2013).  

 Activation of the immediate early gene c-fos occurs within a few minutes of growth 

factor stimulation and is not detectable after 30 minutes (Sheng & Greenberg, 1990). This time 

delay is an advantage as it allows the animal to be handled immediately before euthanasia 

without interfering with the c-fos signal. The c-fos gene encodes for the c-fos protein which has a 

leucine zipper motif allowing for dimerization with members of the Jun family of oncogenes (c-

Jun, Jun B, and Jun D) on the AP-1 binding domain of DNA (Hoffman et al., 1993). Due to 
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DNA binding, staining for c-fos is localized to the cell nucleus; therefore, detection of c-fos can 

be accomplished with standard double labelling techniques such as immunocytochemistry 

(Hoffman et al., 1993). This DNA binding also allows c-fos to function in a way that rapidly 

alters gene transcription, and c-fos gene expression is induced in neurons following neuronal 

stimulation (Hoffman et al., 1993). 

 I used immunocytochemistry to quantify levels of c-fos which allows the measurement of 

activation within specific areas of the brain following the behavioral trials (following Guzowski 

et al., 2005; Neal and Wade, 2007). Using patterns of c-fos expression in the brain, I explored the 

connection between visual signals during visual exposure to live and video anoles and the 

activity of the brain regions that process those signals.  

 To understand visual processing of the aggressive video sequence in the green anole 

brain, I measured c-fos in the NROT and LGN. By analyzing the activity of these visual regions I 

hope to not only identify activity in these regions but also distinguish the pathways through 

which certain visual stimuli are processed. If activity is enhanced in the NROT, visual signals are 

being preferentially processed in the collothalamic pathway. If activity is enhanced in the LGN, 

visual signals are being preferentially processed in the retino-thalamo-telencephalic pathway or 

lemnothalamic pathway. In the SBN, I measured c-fos in the POA due to its well-defined roles in 

processing social behavior in anoles (Newman, 1999; Goodson, 2005; Manger et al., 2002; 

Bruce, 2009). 
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Hypotheses 

 First, I tested the hypothesis that stimuli with the most behavioral information will elicit 

the strongest behavioral response from lizards. I predicted the greatest behavioral response from 

anoles in the Live Anole condition, the second most behavioral response in the Anole Video 

condition, and the least behavioral response in both the Scrambled Video and Control conditions. 

Next, I tested the hypothesis that the visual and social nuclei of the lizard brain will have a high 

integrated density of c-fos when exposed to another anole, and that these nuclei will have a low 

integrated density of c-fos when given no visual or social stimulus. 

 Last, I tested the hypothesis that neuronal activation of visual and social nuclei are 

associated with lizards’ behavioral responses to social cues. I tested for correlations between 

attentiveness, dewlap display, and pushup behavior with the mean integrated density in each 

brain region to see if behavior correlates with cerebral response. I predicted that high levels of 

behavior will correlate with high levels of integrated density in visual brain regions, in each 

condition, while because of the likely inhibitory function of the POA (Neal & Wade, 2007), high 

social behavior will be associated with low activation of the POA. 
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Methods 

Study Organisms and Animal Care 

 Forty adult male A. carolinensis were captured by hand or noose from natural areas in 

San Antonio, Texas in July 2015. Anoles were individually housed in Trinity University’s 

Animal Care Facilities in clear, plastic cages (27 x 21 x 14 cm3) for no more than 4 days prior to 

experimental manipulation. Each cage contained R’zilla terrarium liner (Zilla, Franklin, WI) and 

a natural wooden perch, and light was provided by 25W full spectrum UV heat lamps (Zoo Med 

Laboratories, Sacramento, CA) set to a 12:12 L:D cycle. A wooden board was placed between 

cages to prevent visual contact between males. Temperatures in the facility ranged 25.3-28.4°C 

and humidity ranged 56-75%. Anoles were misted daily and fed a diet of 1-2 crickets coated in 

Fluker’s calcium powder (Port Allen, LA) every other day.  

 Lizards were randomly assigned to each treatment condition. To ensure that each 

condition did not differ in body size or head dimensions (traits that are associated with 

dominance behaviors (Bush et al, 2016), for each lizard, I measured snout-vent length (SVL) 

using a clear plastic ruler, mass with a Pesola spring scale, and head dimensions with digital 

calipers. I measured head width as the distance from ear to ear (the widest part of the skull), head 

length rostro-caudally from the tip of the mouth to the parietal eye, and head depth dorsal-

ventrally from the parietal eye to the bottom of the jaw (the deepest part of the skull). Trinity 

University’s Animal Research Committee approved all procedures used in this study (protocol # 

MJ050616 and 011415_MJ1). 
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General Experimental Methods 

 I randomly assigned ten lizards to each of the four conditions of behavioral trials and 

trials: Live Anole, Anole Video, Scrambled Video, or Control. All trials were run in random 

order. Lizards in the four conditions did not differ significantly in mass, SVL, or relative head 

length (calculated as the residuals from a regression of head length vs. SVL; Table 1: ANOVAs 

all F < 1.12 and p > 0.35). Each trial consisted of putting a lizard in a visually neutral arena, 

presenting it with visual information from another live anole or from carefully constructed video 

playback (Macedonia and Stamps, 1994; Yang et al., 2001), and recording its behavioral 

responses.  

 

Video Production 

 To produce the videos used in behavioral trials, I captured two adult male anoles from the 

grounds of Trinity University, placed them both in a mesh cage (20 x 25 x 15.5 cm3) that 

contained two GoPro HERO 3 white edition cameras (San Mateo, CA), and allowed the lizards 

to interact. When the lizards performed aggressive behaviors, I recorded these behaviors and 

then used this footage in the trial videos. I produced three separate streams of footage: a 15 min 

sequence of aggressive behavior (aggressive footage), that 15 min footage of aggressive behavior 

with the pixels scrambled (scrambled footage), and a 10 min and 25 min still frame sequence of a 

perch with no lizard (lizardless perch frame footage).  
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Aggressive Footage 

 To produce the aggressive footage, I imported approximately 60 sec (40 sec of a male 

anole’s aggressive push-up and dewlap display and 20 sec of the same anole performing only 

minor head turns) into Adobe Premiere Pro CC. Color, brightness, and sharpness were adjusted 

to best mimic the appearance of a real anole. The footage was then cropped to fit the size of an 

iPad screen and to approximate the actual size of a large Anolis carolinensis male. Next, the 

background was erased using repeated applications of a 16 point garbage matte that allowed us 

to mask out everything but the lizard and its perch, leaving behind a white background that 

matched the behavioral trial arena’s white walls. I exported this approximately 60 sec display-

rest-display sequence as a series of still frames, at a standardized rate of 30 frames per second, 

which I then imported into Adobe After Effects CC, where I set each frame to run for 1/30 sec 

and exported it as a video of the same length as the original imported footage. I then imported 

this aggressive sequence into Premiere Pro, where these sequences were then alternated and 

looped with smooth transitions to produce 15 min of an aggressive, intermittent lizard display 

composing the aggressive footage.  

 

Scrambled Footage 

 To produce the 15 min of scrambled footage, I collaborated with Charles Stein (’17) of 

Trinity University’s Department of Computer Science who wrote a pixel randomizer code in 

Matlab designed to scramble the pixels in the portion of the aggressive video that included the 

anole. The code works by partitioning each image of the video to isolate a rectangle containing 

the entire lizard. This rectangle has an x, y and z axis. The x and y axes correspond to each pixel 
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of the image while the z corresponds to the color – red (R), green (G), or blue (B). I permuted 

only the x and y axes, allowing us to write the code so the color integrity of the pixels was 

preserved.  

 I then followed all the steps used in producing the aggressive footage with a single 

additional step: before importing the footage into Adobe After Effects CC, I ran all the frames 

through the pixel randomizer. By using this code, I was able to maintain the same pixel colors 

and image complexity while ensuring that the dewlapping lizard was no longer clear in the video. 

 

Lizardless Perch Frame Footage 

 To produce the lizardless perch frame, a still frame of the lizard was captured from the 

aggressive footage and exported into Adobe Photoshop CC, where the anole was digitally 

removed but the image of the perch remained intact. I then imported this frame sequence into 

Premiere Pro, where it was looped with smooth transitions to produce 10 min of a lizardless 

perch comprising the acclimation period, and to produce 25 min of a lizardless perch comprising 

the nonsocial control video.  

 Using the unscrambled aggressive footage, scrambled footage, and lizardless perch frame 

footage, three separate videos were created in Premiere Pro and exported to YouTube, where 

they were streamed to an iPad (Apple, Cupertino, CA) for use in the behavioral trials.  
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Behavioral Trials 

 The arena consisted of a 61 by 30 by 30 cm3 plastic container with a lid and a wooden 

perch (Figure 3). The container and lid were both painted with white spray paint (Liquitex, 

Cincinnati, OH). The perch consisted of a circular wooden rod with a diameter of 2 cm and a 

length of 61 cm. I drilled 3 circular holes, each 2.5 cm in diameter, and one rectangular hole at a 

height of 13.5 cm and a width of 19 cm, into different faces of the arena. I used two of the 

circular holes for the two GoPro HERO 3 cameras, one circular hole for the perch, and the 

rectangular hole for the iPad screen. One of the circular GoPro camera holes was drilled above 

the rectangular hole on one of the 30 cm faces of the container while the other circular GoPro 

camera holes was drilled halfway up one of the 61 cm faces of the container. The final circular 

hole was used to insert the perch, at an approximately 30° angle, into the arena. I drilled the final 

circular hole on the final 30 cm face, opposite the face with both the iPad and the GoPro camera 

holes. I tethered the anole to the perch, using a dental floss, slip-knot noose tied around the 

lizard’s abdomen, in each trial and placed it into the arena oriented towards the iPad screen. In 

the arena, I exposed the lizard to a 10 min acclimation period, followed by 15 min of exposure 

footage played on an iPad (either aggressive footage, scrambled footage, or lizardless perch 

frame), or 15 min of exposure to another live anole. I recorded the lizards’ behaviors (number of 

head turns, licks, movements, times the lizard fell off the perch, dewlap extensions, and pushups; 

and duration of dewlap extensions and time not facing iPad screen) during each trial using the 

GoPro cameras. Within 5 sec of completion of each trial, the lizard was euthanized via rapid 

decapitation. I then immediately dissected out the lizard’s brain, which was flash-frozen in 

isopentane within at most 5 min after trial completion. All tissues were stored at -80°C until 

further processing.   
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Live Anole 

 The Live Anole condition consisted of two anoles in the arena, processing visual 

information from each other. In this condition, both lizards were focal animals, and both were 

included in all subsequent measures. I tethered all lizards, as described above, to ensure visual 

and social perceptions were not affected by any possible physical contact between the anoles and 

to ensure consistency amongst all conditions. For the 10 min acclimation period, I prevented 

visual contact between the lizards using a 8.5 x 11 in2 printed paper copy of the lizardless perch 

frame inserted into a clear self-standing desk frame. This ensured that lizards in all conditions 

had similar visual stimuli during the acclimation period. Following acclimation, I removed the 

frame, and the lizards were allowed to interact for 15 min. 

 

Anole Video 

 The Anole Video condition consisted of an anole in the arena, tethered to a perch, 

exposed to standardized video playback of an aggressive anole display. This video included 10 

min of lizardless perch frame footage (i.e., the acclimation period) followed by 15 min of the 

aggressive footage. 

 

 

Scrambled Video 

 The Scrambled Video condition consisted of an anole in the arena, processing visual 

information from standardized video playback of an aggressive lizard display where the pixels 

had been scrambled. This video included the 10 min of lizardless perch frame footage (i.e., the 

acclimation period) followed by 15 min of the scrambled footage.  
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Control  

 The Control condition consisted of an anole in the arena with standardized video 

playback consisting of 25 min of the acclimation period lizardless perch frame footage.  

 

Immunocytochemistry 

 I coronally cryosectioned each brain in four alternate series at 20 µm and thaw-mounted 

each section onto SuperFrost Plus microscope slides (Fisher Scientific; Hampton, NH). I stored 

all slides at -80°C until further processing.  

 I used immunocytochemistry to measure brain activity using the immediate early gene c-

fos (Guzowski et al., 2005; Neal & Wade, 2007). Alternate slide series (i.e., those sections at 40 

µm intervals) were warmed to room temperature. I fixed tissue in 4% paraformaldehyde for 10 

min followed by three 5 min rinses in PBS. I then incubated the slides for 2 h in 4% normal 

donkey serum (EMD Millipore, Temecula, CA), 0.1M PBS, and 0.3% Triton X-100. Following 

this initial incubation, I incubated tissues in c-fos primary antibody (1:1000 EMD Millipore, 

Temecula, CA) in 0.1M PBS with 0.3% Triton X-100 at 4°C for 48 h. After 48 h, I rinsed tissues 

in PBS 3 times for 5 min each time. In the dark, I incubated the tissues in donkey anti-sheep 

secondary antibody (1:1000 ThermoFisher Scientific, Waltham, MA) for 2 h. I then rinsed the 

tissues in 0.1M PBS 3 times for 5 min each time before coverslipping with DAPI fluoromount-G 

(Southern BioTech, Birmingham, AL). I stored tissues for a minimum of 1 d in a light proof box 

before quantifying c-fos levels in the POA, NR, and LGN using a confocal microscope.  

 In order to confirm the absence of non-specific labeling, I used two controls. First, I 

processed tissues without primary antibody, and the detection of fluorescence within neurons 
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was low (see Results). Second, I ran a preadsoprtion control by mixing the c-fos primary 

antibody (EMD Millipore, Darmstadt, Germany) with 20 times molar excess c-fos synthetic 

peptide (ThermoFisher Scientific, Waltham, MA) and observed minimal fluorescent signal (see 

Results). 

 

Confocal Imaging 

 I imaged slides at 40X magnification on a Nikon A1 Confocal microscope (Nikon 

Instruments). I used a DAPI and TRITC laser with parameters optimized to detect AlexaFluor 

555: 402.6nm (DAPI) laser power 1.0, gain 120, offset -3; 561.4nm (TRITC) laser power 3.0, 

gain 130, offset -7. I standardized my capture settings by adjusting the settings (laser power, 

gain, and offset) on a single run so that I was using the full width of the histogram for both DAPI 

and AlexaFluor 555. I chose slides with the highest c-fos expression so that the signal on all 

slides would fall within the confocal’s range limitations. The pinhole was always set to 3.2. For 

capture, all lasers were fired in a channel series. All images had an optical resolution of 0.2µm 

and an optical sectioning of 0.33 µm. I used 4x line averaging to reduce background signal.  

 I captured 2-6 images located in the rostrocaudal center of each brain region for each 

hemisphere (left and right). In the NROT, I measured nuclei in one 204.8 µm x 204.8 µm. This 

yields a total of 41,943 µm2 per image. In the POA, I measured nuclei in one 184.3 µm x 92.2 

µm. This yields a total of 16,986 µm2 per image. In the LGN, I measured nuclei in one 204.8 µm 

x 51.2 µm. This yields a total of 10,486 µm2 per image. 
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Data Analysis 

 I quantified c-fos levels using ImageJ. I used a macro that identified all the nuclei in the 

image, then analyzed fluorescence levels in each nucleus. The program measured the area of the 

nucleus, mean levels of fluorescence in each nucleus, integrated density (the area of the nuclei 

multiplied by the mean fluorescence within the nuclei), and raw integrated density (the sum of 

the values of the pixels within the nuclei). In subsequent analyses, I used integrated density as an 

estimate of c-fos expression. As a value that measures all the fluorescence within the nucleus and 

then multiplies by the area of the nucleus, the integrated density quantifies fluorescence in a way 

that controls for the area of nuclei in question. This is opposed to the mean fluorescence which 

does not take into account the size of the nuclei. I averaged all the results (from all pictures of 

both left and right sides) for a single brain region for each anole. 

 I performed a series of one-way ANOVAs to compare behavioral responses 

(attentiveness, dewlaps, pushups, times oriented body away from the stimulus, head turns, falls, 

licks, and movements) across the conditions. If no lizards in the condition performed the 

behavior, that condition was excluded from the ANOVA. Significant results were followed by 

Tukey’s post hoc tests. Furthermore, I performed another series of one-way ANOVAs to 

compare neural activity (mean integrated density) for each region (POA, NROT, or LGN) across 

all four conditions. Significant results were followed by Tukey’s post hoc tests. While behavioral 

analyses had sample sizes of 8-10 per condition, confocal image analyses (to date) had sample 

sizes of 3-5 per condition. To see if behavior was related to activity in associated brain regions I 

used a series of bivariate correlation analyses comparing attentiveness and each brain region: one 

with the entire sample and one with the sample split by condition. All analyses were performed 

in SPSS. 
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Results 

Behavior 

 Lizards in the Live Anole, Anole Video, and Scrambled Video conditions were more 

attentive to the video (looked more at the screen, and did not turn away from the screen as often) 

than those in the Control condition (ANOVA: F(3,35)=5.461, p=.004, Figure 4). Conditions also 

differed significantly in number of times they oriented their body away from the stimulus 

(ANOVA: F(3,35)=3.115, p=.039) with lizards in the Live Anole condition turning away 

significantly less than those in the Control condition (p=.038) and lizards in the Anole Video 

condition turning away marginally less than those in the Control condition (p=.086). Conditions 

did not differ significantly in number of head turns (ANOVA: F(3,35)=0.871, p=.493), falls off 

the perch (ANOVA: F(3,35)=0.853, p=.254), licks (ANOVA: F(3,35)=0.853, p=.475), or 

movements (ANOVA: F(3,35)=0.696, p=.561) where a movement constituted a lizard moving 

three or more limbs (such as moving forward or backwards on the perches). 

 Social behaviors also differed among the four conditions, as lizards in the Live Anole and 

Anole Video condition performed both pushups and dewlap extensions, but lizards in the 

Scrambled Video condition performed only dewlap extensions, and lizards in the Control 

condition performed none of these displays. Live Anole and Anole Video conditions did not 

differ significantly in number of pushups performed (ANOVA: F(1,18)=2.073, p=.153, Figure 5) 

or dewlaps performed (ANOVA: F(2,27)=2.306, p=.119, Figure 6) . 
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Neural Activity 

 The no-primary and preabsorption controls both showed minimal levels of integrated 

density, indicating a lack of non-specific binding of the antibodies (Figure 7). Lizards did not 

differ significantly across condition in area of neuron cell bodies in any of the three focal brain 

regions (ANOVA for POA: F(3,12)=0.486, p=.699; ANOVA for NROT: F(3,10)=0.289, p=.833; 

ANOVA for LGN: F(3,11)=1.222, p=.348).  

 Within the POA, the four conditions differed significantly in integrated density 

(ANOVA: F(3,12)=4.602, p=.023, Figure 8) with lizards in the Live Anole condition expressing 

less c-fos than lizards in the Scrambled Video condition (p=.019), and lizards in the Control 

condition expressing marginally less c-fos expression than lizards in the Scrambled Video 

condition (p=.065). Within the NROT and the LGN, there was no significant difference in 

integrated density among the four conditions (ANOVA for NROT: F(3,10)=.545, p=.662, Figure 

9; ANOVA for LGN: F(3,11)=1.245, p=.340, Figure 10). 

 

Bivariate Correlations 

 I found a significantly positive correlation between integrated density in the two visual 

regions, the NROT and the LGN (r=.939, p<.001, Figure 11). Expression of c-fos in the social 

region, the POA, was not correlated with expression in either visual region. 

 With each condition considered separately, within the Live Anole condition, I found a 

marginally significant negative correlation between attentiveness and integrated density in the 

POA (r=-.935, p=.065, Figure 12). No other significant correlations were found between c-fos 

expression in the brain region and behavior. 
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Discussion 

 In this study, I found that lizards presented with a visual stimulus (i.e., those in the Live 

Anole, Anole Video, and Scrambled Video conditions) were more attentive to their visual cues 

than those with no visual stimulus (such as the Control condition). Furthermore, lizards in the 

Live Anole and Anole Video conditions did not differ in social display behaviors (pushups and 

dewlap extensions), but lizards in both these conditions displayed more than lizards in the 

Scrambled Video and Control conditions. I also found that in the social brain region (the POA) 

lizards exposed to another live lizard expressed the lowest amount of c-fos. Further, among 

lizards in the Live Anole condition, I found a strong negative correlation between attentiveness 

and c-fos expression. Together, these results suggest that social experiences result in decreased 

level of neural activation in the POA, consistent with an inhibitory role for the POA in 

facilitating social behavior. On the other hand, in the NROT and LGN there were no statistically 

significant differences in c-fos expression levels between conditions. Interestingly, there was a 

strong positive correlation between the NROT and the LGN (both regions of the visual pathway). 

The implications of these results are explored below. 

 I predicted that stimuli with the most behavioral information (such as the Live Lizard and 

Anole Video conditions) would elicit the greatest level of behavioral response and that 

behavioral response would decrease from Live Anole, to Anole Video, to Scrambled, and 

Control conditions. Dewlap behaviors (Figure 6) followed this predicted trend, while pushup 

behaviors followed the trend but less closely (Figure 5). In particular, lizards in the Scrambled 

Video condition performed dewlap behaviors, but never paired with pushup behaviors. This 

suggests that these dewlap behaviors observed in the Scrambled condition were spontaneous 

rather than social as displays in response to social stimuli generally include pushups, or dewlaps 
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and pushups in combination, but not dewlaps alone; therefore, they were likely not in response to 

any particular behavioral stimulus coming from the video (Greenberg, 1977; Jenssen, 1977). 

With no significant differences in behavior between the Live Anole and Anole Video conditions, 

these data support the generality of Macedonia et al.’s (1994) and Ord et al.’s (2000) findings 

that video stimuli offer sufficient behavioral information to mimic the behavioral response to a 

live animal. Similar findings have also been observed when exposing anoles to a robotic 

representation of a male anole (Martins et al., 2005). Together, similarity in behavior between 

video and live representations as well as robotic and live representations supports the use of 

alternative representations of anoles to successfully mimic live anoles, at least behaviorally. 

 Attentiveness also followed my predicted trend; however, the Scrambled Video condition 

showed a greater level of attentiveness than expected. Lizards in the Scrambled Video condition 

may have displayed a high level of attentiveness to the movement on the screen if that movement 

was similar to movements that lizards would attend to in an ecological context, such as prey. As 

sit and wait predators, anoles hunt by waiting and scanning for prey in a particular location 

(Moermond, 1979). If the lizards in the Scrambled Video condition were scanning for prey, this 

would have resulted in attentiveness to any movement. Another possible explanation for this 

level of attentiveness is that the movement on the screen was similar to movements in a second 

ecological context – predators. Anoles often implement a survey posture when scanning for 

predators (Stamps, 1977). Similar to scanning for prey, this survey behavior in response to 

unexpected and unfamiliar movement likely results in a greater level of attentiveness to the 

movement thereby preparing the lizard in case of a threat. In this experimental condition, the 

only representation of movement in the arena came from the video; therefore, any lizards 

scanning for prey or predators in the Scrambled Video condition would have been attentive to 
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the video. This offers a plausible explanation for the similarity in attentiveness between the 

Scrambled Video condition and the two conditions in which high attentiveness was expected 

because of the presence of another lizard (live or video).  

 Furthermore, I predicted that there would be a direct association between levels of 

activity in the brain nuclei, behavioral responses to social cues, and exposure to another anole. 

As predicted, I found that the Live Anole condition had the lowest levels of c-fos expression in 

the POA while the Scrambled condition had the highest levels of c-fos expression in the POA. 

The lower levels of c-fos expression in the Live Anole condition are consistent with findings by 

Neal and Wade (2007) that greater levels of social exposure correlate with lower levels of c-fos 

expression in the POA. Further, the negative correlation between POA activity and attentiveness 

in the Live Anole condition indicated that the POA had greater c-fos expression when the lizard 

was less attentive. Together, these results further suggest that the POA may act as an inhibitory 

structure, and shutting it off in the social pathways ensures greater expression in other regions of 

the SBN that will further process highly social responses. The inhibitory nature of the POA has 

also been previously observed in mammals (McIntyre et al., 2002; Simmons and Yahr, 2003). In 

relation to video, finding a correlation between attentiveness and POA activity in the Live Anole 

condition and not the Anole Video condition brings into question whether the Anole Video is 

truly mimicking the Live Anole during processing of visual and social stimuli, although not all 

brain tissue samples have yet been analyzed. 

 I predicted that both visual regions of the brain would exhibit enhanced activity following 

social stimuli exposure; however, there were no significant differences in c-fos expression in the 

NROT or LGN across conditions. The similarity in activity in the NROT and LGN between the 

different conditions suggests that while the lizards are processing the images in the visual 
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pathways, all images are processed in a similar way with no regard to which images are more 

socially relevant than others. This correlation also suggest that multiple visual pathways (Figure 

1) are used simultaneously. Studying primates, Joffe and Dunbar (1997) described visual brain 

regions as devices for input of social information from socio-visual stimuli (which includes 

facial expressions and bodily gestures). On the other hand, Joffe and Dunbar (1997) claimed the 

social brain regions of the neocortex serve to encode and interpret these social cues following the 

initial input by the visual brain regions. They found a correlation between social group size of 

the animal and the V1 visual area; however, this correlation is not present in non-V1 visual brain 

regions (such as the LGN). Interestingly, in primates the LGN projects to the V1 visual area 

(Mignard & Malepli, 1991). In anoles, the LGN projects to the dorsal cortex/pallial thickening. If 

neural activity in anoles mimics neural activity in primates, these forebrain regions of the anole 

may exhibit a greater level of social processing than the LGN and NROT (Figure 1). Similarly, 

in humans recognition of familiar faces has been found to occur in the visual and social brain 

regions with activity in the extrastriate visual cortex exhibiting greater activity when processing 

the most familiar faces (Gobbini & Haxby, 2007). My findings in green anoles show that 

processing of the social information within the image does not occur during the early visual 

processing of the image, but may occur either later in visual or processing or after visual 

processing is complete. Additionally, activity in neither the NROT nor LGN correlated with 

activity in the POA. While there is a connection between the visual pathways and the SBN 

(Guirado et al., 2000), this result implies that there are still differences in the inputs that these 

regions receive and/or how these regions process their inputs. This leads to the conclusion that 

the visual and social pathways, while connected, remain fairly independent in processing. 
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 To address the question “do videos accurately mimic live interactions?” this study 

provides results from brain and behavior. Firstly, evidence from this study supports the findings 

from previous studies (Macedonia et al., 1994; Ord et al., 2000) that lizards do not behave 

differently when exposed to a live lizard compared to a video representation of a lizard. In 

addition, socially relevant images do not result in greater activity in the visual pathways than 

non-socially relevant images. In terms of neural processing of videos in comparison to live 

interactions, attentiveness and POA activity had a strong negative effect in the Live Anole 

condition only, suggesting differences in neural processing between the Anole Video and Live 

Anole conditions. While these results do not discount the use of video in studying animal 

behavior in a controlled environment, they do suggest caution in the use of video stimuli in lizard 

behavioral experiments. Further analyses involving all the relevant visual and social brain 

regions (in addition to the NROT, LGN, and POA) will allow us to better understand whether or 

not videos mimic neural processing of live interactions, and if not which brain regions differ in 

processing.  

 

 

 

 

 

 

  



Jaramillo 35 
 

References 

Beck, L. A., E. L. O'Bryant, and J. S. Wade. 2008. Sex and seasonal differences in morphology 

 of limbic forebrain nuclei in the green anole lizard. Brain Research 1227:68-75. 

Brattstrom, B. H. 1974. The evolution of reptilian social behavior. American Zoologist 14:35-49. 

Breedlove, S. M., and N. V. Watson. 2013. Biological Psychology. Sinauer Associates, 

 Sunderland, Massachusetts. 

Bruce, L. L. 2009. Evolution of the Nervous System in Reptiles. Pages 233-264 In Kaas, J. 

 H., editor. Evolutionary Neuroscience. Academic Press, Amsterdam. 

Bruce, L. L., and A. B. Butler. 1984. Telencephalic connections in lizards. I. Projections to 

 cortex. The Journal of Comparative Neurology 229:585-601. 

Bush, J. M., M. M. Quinn., E. C. Balreira. and M. A. Johnson. 2016. How do lizards determine 

 dominance? Applying ranking algorithms to animal social behaviour. Animal Behaviour 

 118:65-74. 

Cruz, F. C., E. Koya, D. H. Guez-Barber, J. M. Bossert, C. R. Lupica, Y. Shaham, and B. T. 

 Hope. 2013. New technologies examining the role of neuronal ensembles in drug 

 addiction and fear. Nature Reviews Neuroscience 14:743-754. 

Fite, K. V., and B. C. Lister. 1981. Bifoveal vision in Anolis lizards. Brain, Behavior, and 

 Evolution 19:144-154. 

Fleishman, L. J. 1992. The influence of the sensory system and the environment on 

 motion patterns in the visual displays of anoline lizards and other vertebrates. American 

 Naturalist 139:S36-S61. 



Jaramillo 36 
 

Fleishman, L. J., M. Bowman, D. Saunders, W. E. Miller, M. J. Rury, and E. R. Loew. 1997. The 

 visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. 

 Journal of Comparative Physiology A 181:446-460.  

Gobbini, M. I., ND Haxby, J. V. 2007. Neural systems for recognition of familiar faces.  

 Neuropsychologia, 45(1):32-41. 

Goodson, J. L. 2005. The vertebrate social behavior network: evolutionary threats and variations. 

 Hormones and Behavior 48:11-22. 

Goodson, J. L., and D. Kabelik. 2009. Dynamic limbic networks and social diversity in 

 vertebrates: from neural context to neuromodulatory patterning. Frontiers in 

 Neuroendocrinology 30:429-441. 

Greenberg, N. 1977. A neuroethological study of display behavior in the lizard Anolis 

 carolinensis (Reptilia, Lacertilia, Iguanidae). American Zoologist 17:191-201. 

Greenberg, N. 1982. A forebrain atlas and stereotaxic technique for the lizard, Anolis 

 carolinensis. Journal of Morphology 174:217-236. 

Greenberg, N., M. Scott, and D. Crews. 1984. Role of the amygdala in the reproductive and 

 aggressive behavior of the lizard, Anolis carolinensis. Physiology & Behavior 32:147-

 151. 

Guirado, S., J. C. Davila, M. A. Real, and L. Medina. 2000. Light and electron microscopic 

 evidence for projections from the thalamic nucleus rotundus to targets in the basal 

 ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard. The Journal 

 of Comparative Neurology 424:216-232. 



Jaramillo 37 
 

Guzowski, J. F., J. A. Timlin, B. Roysam, B. L. McNaughton, P. F. Worley, and C. A. Barnes. 

 2005. Mapping behaviorally relevant neural circuits with immediate-early gene 

 expression. Current Opinion in Neurobiology 15:599-606. 

Hödl, W., and A. Amézquita. 2001. Visual signaling in anuran amphibians. Pages 121-141 In 

 Ryan, M. J., editor. Anuran Communication. Smithsonian Institution Press, Washington, 

 DC. 

Hodos, W., and A. B. Butler. 1997. Evolution of sensory pathways in vertebrates. Brain, 

 Behavior, and Evolution 50:187-197. 

Hoffman, G. E., M. S. Smith, and J. G. Verbalis. 1993. c-Fos and related immediate early gene 

 products as markers of activity in neuroendocrine systems. Frontiers in 

 Neuroendocrinology 14:173-213. 

Hoke, K. L., M. J. Ryan, and W. Wilczynski. 2005. Social cues shift functional connectivity in 

 the hypothalamus. Proceedings of the National Academy of Sciences of the United States 

 of America 102:10712-10717. 

Jenssen, T. A. 1977. Evolution of anoline lizard display behavior. American Zoologist 17:203-

 215. 

Jenssen, T. A., Greenberg, N., and Hovde, K. A. 1995. Behavioral profile of free-ranging male 

 lizards, Anolis carolinensis, across breeding and post-breeding seasons. Herpetological 

 Monographs 9:41-62. 

Jenssen, T. A., K. S. Orrell, and M. B. Lovern. 2000. Sexual dimorphisms in aggressive signal 

 structure and use by a polygynous lizard, Anolis carolinensis. Copeia 2000:140-149. 



Jaramillo 38 
 

Joffe, T. H., and R. I. M. Dunbar. 1997. Visual and socio–cognitive information processing in 

 primate brain evolution. Proceedings of the Royal Society of London B: Biological 

 Sciences 264(1386):1303-1307. 

Leal, M., and Rodrigues-Robles, J. A. 1997. Signaling displays during predator–prey interactions 

 in a Puerto Rican anole, Anolis cristatellus. Animal Behaviour 54(5):1147-1154. 

Leow, E. R., and L. J. Fleishman. 1993. Ultraviolet vision in lizards. Nature 365:397. 

Lloyd, J. E. 1971. Bioluminescent communication in insects. Annual Review of Entomology 

 16:97-122. 

Losos, J. B. 2009. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles. 

 University of California Press, Berkeley. 

Losos, J. B., and C. J. Schneider. 2009. Anolis lizards. Current Biology 19:R316-R318. 

Macedonia, J. M., C. S. Evans, and J. B. Losos. 1994. Male Anolis lizards discriminate video-

 recorded conspecific and heterospecific displays. Animal Behaviour 47:1220-1223. 

Macedonia, J. M., and J. A. Stamps. 1994. Species recognition in Anolis grahami (Sauria, 

 Iguanidae): evidence from responses to video playbacks of conspecific and 

 heterospecific displays. Ethology 98:246-264. 

Makaretz, M., and R. L. Levine. 1980. A light microscopic study of the bifoveate retina in 

 the lizard Anolis carolinensis: general observations and convergence ratios. Vision 

 Research 20:679-686. 

Manger, P. R., D. A. Slutsky, and Z. Molnár. 2002. Visual subdivisions of the dorsal ventricular 

 ridge of the iguana (Iguana iguana) as determined by electrophysiologic mapping. The 

 Journal of Comparative Neurology 453:226-246. 



Jaramillo 39 
 

Martins, E. P., T. J. Ord., and S. W. Davenport. 2005. Combining motions into complex 

 displays: playbacks with a robotic lizard. Behavioral Ecology and Sociobiology 

 58(4):351-360. 

McIntyre, K. L., Porter, D. M., and Henderson, L. P. 2002. Anabolic androgenic steroids induce 

 age-, sex-, and dose-dependent changes in GABA A receptor subunit mRNAs in the 

 mouse forebrain. Neuropharmacology 43(4):634-645. 

Mignard, M., and J. G. Malpeli. 1991. Paths of information flow through visual cortex. Science 

 251(4998):1249-1252. 

Moermond, T. C. 1979. The influence of habitat structure on Anolis foraging behavior. 

 Behaviour 70(1):147-167. 

Morgan, J. I., and T. Curran. 1991. Stimulus-transcription coupling in the nervous system: 

 Involvement of the inducible proto-oncogenes fos and jun. Annual Review of 

 Neuroscience 14:421-451. 

Morgantaler, A., and D. Crews. 1978a. The role of the anterior hypothalamus-preoptic area in 

 the regulation of male reproductive behavior in the lizard, Anolis carolinensis: lesion 

 studies. Hormones and Behavior 11:42-60. 

Morgantaler, A., and D. Crews. 1978b. Role of the anterior hypothalamus-preoptic area in the 

 regulation of reproductive behavior in the lizard, Anolis carolinensis: implantation 

 studies. Hormones and Behavior 11:61-73. 

Neal, J. K., and J. Wade. 2007. Effects of season, testosterone and female exposure on c-fos 

 expression in the preoptic area and amygdala of male green anoles. Brain Research 

 1166:124-131. 



Jaramillo 40 
 

Newman, S. W. 1999. The medial extended amygdala in male reproductive behavior: a node in 

 the mammalian social behavior network. Annals of the New York Academy of Sciences 

 877:242-257. 

Ord, T. J., R. A. Peters, C. S. Evans, and A. J. Taylor. 2000. Digital video playback and visual 

 communication in lizards. Animal Behaviour 63:879-890. 

Robinson, C. D., M. S. Patton, B. M. Andre, and M. A. Johnson. 2015. Convergent evolution of 

 brain morphology and communication modalities in lizards. Current Zoology 61:281-

 291. 

Rogers, L. J., and G. T. Kaplan. 2000. Songs, Roars, and Rituals: Communication in Birds, 

 Mammals, and Other Animals. Harvard University Press, Cambridge, Massachusetts. 

Sheng, M., and M. E. Greenberg. 1990. The regulation and function of c-fos and other immediate 

 early genes in the nervous system. Neuron 4:477-485. 

Simmons, D. A., and P. Yahr. 2003. GABA and glutamate in mating‐activated cells in the 

 preoptic area and medial amygdala of male gerbils. The Journal of Comparative 

 Neurology 459(3):290-300. 

Stamps, J. A. 1977. The function of the survey posture in Anolis lizards. Copeia 1977(4):756-

 758. 

Stoehr, A. M., and K. J.  McGraw. 2001. Ultraviolet reflectance of color patches in male 

 Sceloporus undulatus and Anolis carolinensis. Journal of Herpetology 35(1):168-171. 

Tarr, R. S. 1977. Role of the amygdala in the intraspecies aggressive behavior of the iguanid 

 lizard, Sceloporus occidentalis. Physiology & Behavior 18(6):1153-1158. 

Yang, E. J., and W. Wilczynski. 2007. Social experience organizes parallel networks in sensory 

 and limbic forebrain. Developmental Neurobiology 67:285-303. 



Jaramillo 41 
 

Yang, E., S. M. Phelps, D. Crews, and W. Wilczynski. 2001. The effects of social experience on 

 aggressive behavior in the green anole lizard (Anolis carolinensis). Ethology 107:777-

 793. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Jaramillo 42 
 

Table 1. Mean and standard deviation of mass, SVL, and residuals of Head Length: Snout-Vent 

Length (HL:SVL) for each condition 

  Mass 
 

SVL 
 

Residuals of HL:SVL 

Condition Mean SD Mean SD Mean SD 

Live Anole 3.82 1.48 64 3.62 -.06 .92 

Anole Video 4.99 1.96 65.6 5.97 -.30 .99 

Scrambled Video 4.98 1.91 65.3 5.31 .27 1.30 

Control 4.62 1.94 64.8 7.33 .06 .87 
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Figure 1. Visual pathways projecting visual information up to the telencephalon. Nuclei circled 

in orange are the visual nuclei of interest in this study. Figure adapted from Bruce (2009). 
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Figure 2. The social behavior network. Nuclei circled in orange are the social nuclei of interest 

in this study. Figure adapted from Goodson, 2005. 
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Figure 3. Arena used in behavioral trials, including GoPro HERO3 cameras used for recording 

behavior in the arena (a), video as the variable source of visual information (b), and live anole 

tethered to a perch (c). 
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 Figure 4. Mean lizard attentiveness, as measured by the proportion of time the lizard in each 

trial spent with their eye tilted towards the screen. Error bars represent +1 standard deviation. 

Columns with different superscripts are significantly different from one another. 
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Figure 5. Mean number of pushups per trial by treatment condition. Error bars represent +1 

standard deviation. 
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Figure 6. Mean number of dewlaps per trial by treatment condition. Error bars represent +1 

standard deviation. 
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Figure 7. Confocal images of the LGN in the green anole brain in the no-primary control, 

preabsorption control, and an experimental condition. Blue circles indicate DAPI-stained nuclei 

and red indicates the presence of c-fos. 

 

 

 

 

 

 



Jaramillo 50 
 

Figure 8. Integrated density as a measure of c-fos expression in the nuclei of the POA. Error bars 

represent +1 standard deviation. Columns with different superscripts are significantly different 

from one another. 
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Figure 9. Integrated density as a measure of c-fos expression in the nuclei of the NROT. Error 

bars represent +1 standard deviation. 
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Figure 10. Integrated density as a measure of c-fos expression in the nuclei of the LGN. Error 

bars represent +1 standard deviation. 
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Figure 11. Across all conditions (n=15), c-fos expression in the LGN is strongly correlated with 

c-fos expression in the NROT. 
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Figure 12. Within the Live Anole condition (n=4), c-fos expression in the POA is marginally 

negatively correlated with attentiveness. 
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