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Abstract 

Steroid hormones have a well-studied influence on behavior, but circulating levels of 

testosterone alone cannot fully predict levels of social, androgenic behaviors. Androgen receptor 

(AR) expression may bridge the gap between circulating androgens and the muscles that control 

social behavior: species with higher rates of behavior should have higher levels of AR protein in 

the nuclei of the muscles that control these behaviors. In anole lizards, the ceratohyoid (CH) 

muscle extends the dewlap, a colorful throat fan used in social displays, and the retractor penis 

magnus (RPM) muscle retracts the intromittent organ after copulation. I observed social behavior 

in the field and measured AR protein in the nuclei of the CH and RPM in male lizards of six 

anole species native to the island of Hispaniola: Anolis chlorocyanus, A. coelestinus, A. 

brevirostris, A. distichus, A. cybotes, and A. longitibialis. I used immunocytochemistry to 

measure muscle AR in each of ten individuals per species, and calculated species averages for 

AR expression. In the field, male anoles of these species showed substantial variation in both 

their average rate of dewlap display and their observed rate of copulation. I found that lizard 

species with higher rates of dewlap displays have marginally more AR in the muscle that 

controls these same dewlap extensions, but found no support for such a relationship in the 

copulatory system. Furthermore, there was no relationship between AR expression in one muscle 

and AR expression in the other. These results suggest that AR expression is independently 

controlled in muscles that control different social behaviors. 
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Introduction 

     Hormones are signaling molecules that are synthesized and secreted by endocrine organs 

such as the thyroid and adrenal glands, as well as by the vertebrate brain, that then travel through 

the bloodstream to act on tissues. By exposing the entire body to a hormone, organisms can 

respond to internal and environmental stimuli, facilitating a synchronized response in multiple 

systems at once. When a response is required in an organism, whether it is to restore homeostasis 

or to facilitate a mating display, a slight change in circulating hormone levels is often sufficient 

to initiate a tissue-level response in an individual. Through the action of hormones, organisms 

can control traits ranging from circadian rhythms and internal homeostasis, to higher-level 

systems such as stress and social behavior (Adkins-Regan 2005). 

 Hormones can be divided into several categories based on their biosynthesis: amino-acid 

derivatives, fatty-acid derivatives, peptide hormones, and steroid hormones. Steroid hormones 

generally possess the same basic chemical structure— even across the animal kingdom (Adkins-

Regan 2005). All steroid hormones are derived from cholesterol, and thus possess the same basic 

carbon backbone: three hexagons and a pentagon (Carson-Jurica et al. 2008). Differences in 

functional groups and oxidation states then define each unique steroid hormone, resulting in 

differences to their active sites and binding affinities (Adkins-Regan 2005, Carson-Jurica et al. 

2008). In general, five primary classes of steroid hormone exist: mineralocorticoids, 

glucocorticoids, progestogens, estrogens, and androgens (Miller 1988, Tsai & O’Malley 1994). 

Androgens, including testosterone, are traditionally considered the “male hormones,” and work 

through binding to androgen receptors (AR) in cells, resulting in a cascade of changes in gene 

expression (Adkins-Regan 2005). 
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 Androgen receptors are nuclear transcription factors. When AR is first synthesized, it 

must be phosphorylated to lend the protein greater affinity for its ligands, namely testosterone 

and other androgens (Brinkmann et al. 1999). When an androgen then binds to AR, this provokes 

a conformational change that induces an additional phosphorylation, changing its binding 

affinities. This active version of the androgen-AR complex, along with any additional co-factors, 

can then use special zinc fingers to bind to special regulatory and promoter regions of DNA, 

known as hormone response elements, to provoke changes in gene expression (Beato 1989, 

Brinkmann et al. 1999, Mangelsdorf et al. 1995). In the case of androgen-dependent systems, 

these hormone response elements are palindromic, and AR binds with two identical copies of the 

protein, that is, as a homodimer (Tsai & O’Malley 1994). Two important structural motifs in the 

protein’s zinc fingers assist in this protein-DNA contact: an antiparallel beta sheet orients amino 

acid residues such that they come into full contact with DNA’s phosphate backbone, and an 

alpha helix fits into DNA’s major groove and interacts with the nucleotides themselves 

(reviewed in Tsai & O’Malley 1994). AR can remain bound in this transcriptionally-active stage 

for some time, prolonging the active life of androgens in the cell. As a direct consequence of this, 

very little circulating testosterone is necessary to produce large changes in gene expression 

(Adkins-Regan 2005). 

 Androgens pass through cell membranes with ease (Schlinger & Arnold 1991, Adkins-

Regan 1995), so as with most other steroid hormones, there is no storage of the hormone before 

its release. Instead, androgens are secreted into the bloodstream as they are manufactured 

(Adkins-Regan 2005), and they permeate cells all through the body, not all of which need 

testosterone to modulate their function. This means that a tissue’s sensitivity to testosterone (or 

lack thereof) is critical— all cells are exposed to androgens to some degree, but only cells with 
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AR can respond to it. When androgenic cells secrete testosterone, it acts on both the brain 

regions that influence behavior and on the peripheral muscle regions that exert those behaviors. 

Both the brain and these muscles contain AR in their cells, varying amounts of which may 

explain differences in how these tissues respond to testosterone and other androgens. 

 Androgen-driven changes in gene expression have a variety of effects on behavior 

(reviewed in Adkins-Regan 2005). These responses can produce changes detectable both in the 

short term (i.e., a few hours) and over the lifetime of the animal: in other words, androgens have 

both activational and developmental effects. AR can alter enzyme levels in cells, facilitate the 

production of neurotransmitters, and alter the thresholds necessary to produce behavior, all while 

stimulating cell growth and development that will alter future response to AR. Not all of these 

effects are desirable simultaneously or on a constant basis, so there is a need to vary circulating 

androgen levels, AR, or both. 

Animals with mating seasons, for example, may need a baseline level of testosterone 

throughout their life cycle to regulate development and maintenance of sex characteristics, but 

vary circulating testosterone month-to-month to minimize the costs of testosterone during the 

non-mating season (Wingfield et al. 1990, Dufour et al. 1984). High levels of testosterone enact 

a high physiological cost on the individual, including suppression of the immune system 

(Grossman 1984, 1985) and an increase of vulnerability to parasitic infection (Saino et al. 1995). 

Having a higher sensitivity to testosterone in reproductively active tissues means less 

testosterone is necessary to produce the required effects, potentially minimizing the cost of high 

levels of testosterone on the immune system and other tissues. 

 There is extensive variation in how much AR is expressed in cells (e.g., Holmes & Wade 

2005, Neal & Wade 2007). This leads to variation both in how sensitive a particular muscle or 
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brain region is to androgens, across both individuals and species. As a result, it is likely that 

peripheral AR expression could be used to regulate behavioral responses (Holmes & Wade 

2005). Thus, when androgen-associated behaviors are necessary or advantageous, as they are in 

the breeding season or in populations with a high degree of male-male competition, these 

behaviors could be facilitated by increased levels of circulating androgens, higher sensitivity to 

testosterone and other androgens, or an interaction of the two. 

 

Androgens and Behavior in Anole Lizards 

 Lizards in the Anolis genus, known commonly as anoles, are an excellent group in which 

to study the association between androgens and behavior. A remarkably high diversity of species 

makes the genus well-suited for comparative work: of the approximately 400 species in the 

genus, around forty species exist on the island of Hispaniola alone (Schwartz & Henderson 

1991). In addition, there is an extensive body of literature on anole behavioral 

neuroendocrinology, most of which has focused on the green anole, Anolis carolinensis 

(reviewed in Wade 2011). Further, anole behavior is easily quantifiable through field 

observations – both copulatory and communicatory behaviors are highly visible (e.g., Greenberg 

1977, Johnson & Wade 2010). 

 Anole displays primarily consist of extension of a colorful throat fan called a dewlap, in 

combination with push-up and headbob displays. These displays facilitate a wide variety of 

social interactions, including territorial defense and courtship (Jenssen 1977). Although both 

males and females have dewlaps, the male dewlap is larger and is used more frequently (Jenssen 

et al. 2000). Temporal patterns of dewlap display are species-specific, as each species exhibits 

stereotypical rates and duration of dewlap extension (Jenssen 1977, Johnson & Wade 2010). 
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Additionally, across anole species, there is a huge diversity of dewlap size, color, and pattern, 

differences that may be involved in species recognition (Williams & Rand 1977, Nicholson et al. 

2007).  

 Movement of the dewlap is controlled by the ceratobranchial and ceratohyal cartilages 

and the ceratohyoid (CH) muscles on both sides of the throat. Contraction of the CH muscles, 

which are attached on either side of the throat to the ceratohyal and first ceratobranchial 

cartilages, exert a lever-like action on the second ceratobranchial cartilages, extending the 

dewlap (Font & Rome 1990, Bels 1990, Wade 2005). Dewlap display behaviors, like most social 

displays, are androgen-dependent (Crews 1978, Adkins & Schlesinger 1979, Winkler & Wade 

1998, Holmes & Wade 2005). Display behaviors decrease dramatically upon castration, but they 

re-appear in full with exogenous administration of testosterone (Crews 1974, Mason & Adkins 

1976, Crews et al. 1978). In the wild, testicular size is significantly correlated with testosterone 

levels, and both are greatest during the breeding season, when anoles have a greater need of 

mating and territorial displays (Tokarz et al. 2015). 

 Anole copulation behaviors are similarly androgen-dependent (Crews 1974, Mason & 

Adkins 1976, Crews et al. 1978), and quantifiable in the field. When anoles copulate, they evert 

one of two retractile intromittent organs, or hemipenes (Crews 1978). This eversion is driven by 

the contraction of a thin muscle that surrounds each hemipenis, called the transversus penis. 

After copulation, retraction of the hemipenis is driven by a muscle that runs lengthwise down the 

tail and attaches to the base of each hemipenis, the retractor penis magnus (RPM; Ruiz & Wade 

2002). Both of these muscles are used once per copulation attempt, and express AR in their 

cytoplasm and nuclei.  
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The direct involvement of testosterone in social behaviors led researchers to predict that 

interspecific variation in anole behavior in the wild would be associated with variation in 

circulating androgen levels. However, Husak & Lovern (2014) found that in Caribbean anoles, 

ecomorphs (i.e., groups of species with similar ecology and morphology) with higher rates of 

both display behavior (measured as the total proportion of time spent displaying during a focal 

field observation) and aggression (measured through the response to intruder trials) were not 

necessarily those with the higher amounts of circulating testosterone. These results indicate that 

testosterone alone is not enough to explain behavioral differences. Instead, differences among 

anole species in sensitivity to testosterone, that is, differences in AR, may be more important in 

regulating behaviors. 

 Previous studies that have measured AR expression in anoles have only investigated a 

single species, Anolis carolinensis, the Carolina green anole. While all of these have measured 

AR expression through immunofluorescent imaging, Rosen et al. (2002) and Neal & Wade 

(2007) also measured AR via in-situ mRNA hybridization. Rosen et al. (2002) found AR 

expression in the regions of the anole brain associated with reproductive behavior, with females 

in that study (which used tissues from the non-breeding season) exhibiting slightly more AR 

expression than males. Additionally, this study found AR in the cytoplasm, consistent with 

findings in other vertebrate species (Rosen et al. 2002). Holmes & Wade (2005) found AR 

expression in the CH and RPM muscles, and furthermore, found no difference in AR expression 

between individuals from the breeding season and non-breeding season. When lizards were 

treated with testosterone, AR expression was increased in the RPM, but not in the CH (Holmes 

& Wade 2005). Neal & Wade (2007) found that AR expression in the kidneys (which function as 

accessory glands in reptiles, producing the non-sperm components of the ejaculate (Johnson et 
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al. 2011)) was a better predictor of social behavior than circulating testosterone, and found 

almost no differences in AR expression between high-displaying and low-displaying individuals; 

this study also found no correlation between AR expression in the CH or the RPM and their 

behavioral use. 

Although Neal & Wade (2007) did not find a clear relationship between AR expression in 

these tissues and their associated behaviors, it is possible that AR expression could be 

responsible for differences in behavior among species. To test this hypothesis, I measured AR 

expression and behavior across multiple species of Anolis. 

  

Anole Ecomorphology 

 On the islands of the Greater Antilles (Cuba, Hispaniola, Jamaica, and Puerto Rico), 

anole lizards have repeatedly, independently evolved into sets of microhabitat specialists, or 

ecomorphs (Losos et al. 1998). Six anole ecomorphs exist, although not all species of anoles fit 

neatly into these categories. Ecomorphs are distinguished by convergent morphologies that have 

evolved in tandem with their ecology, and named after the specific niche they use: crown giant, 

twig, trunk-crown, trunk, trunk-ground, and grass-bush (Williams 1972, 1983). Within each 

ecomorph, distantly-related species exhibit remarkable similarities in their dorsal color, body 

size, limb proportions, and behavior (reviewed in Losos 2009). Lizards adapted to the same 

microhabitats exploit them in similar ways, and both foraging and predator deterrence behaviors 

are broadly consistent within ecomorphs (Williams 1983, Johnson et al. 2008). 
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Figure 1. Three pairs of closely-related anole species from the Dominican Republic. 

Trunk-crown anoles (A: Anolis chlorocyanus, D: Anolis coelestinus), trunk anoles (B: 

Anolis brevirostris, E: Anolis distichus), and trunk-ground anoles (C: Anolis cybotes, F: 

Anolis longitibialis). Photos by M. Johnson and A. Kahrl (A. chlorocyanus). 

  

In this thesis, I studied the behavior of adult male lizards in three pairs of closely related 

species (Figures 1 and 2), in the Dominican Republic: two species in the trunk-crown ecomorph 

(Anolis chlorocyanus, and A. coelestinus, two species of Hispaniolan green anole), two in the 

trunk ecomorph (A. brevirostris, the short-nosed anole, and A. distichus, the bark anole), and two 

in the trunk-ground ecomorph (A. cybotes, the large-headed anole and A. longitibialis, the Isla 

Beata anole).  

The two trunk-crown species, Anolis chlorocyanus and A. coelestinus, are medium-large 

(the average snout-to-vent (SVL) length of adults is 69 and 64 mm, respectively), green arboreal 

lizards, which occupy the trunk and branches of trees. Anolis chlorocyanus is found throughout 

the island at moderate temperatures, preferring mixture of sunny and shaded environments. Its 

counterpart A. coelestinus is restricted to southern Haiti and the southwest coast of the 
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Dominican Republic, can tolerate dryer environments, and prefers cool, shaded perches 

(Schwartz & Henderson 1991). 

The two trunk species, Anolis brevirostris and A. distichus, are relatively small (average 

adult male SVL 44 and 51 mm, respectively), mottled grey or brown lizards that primarily 

occupy the trunk and lower branches of trees. Anolis brevirostris is restricted to the two main 

mountain ranges of Hispaniola and the coast immediately south of these, and prefers larger trees, 

but can also be found on fence posts and in a variety of sunny and shady environments. Anolis 

brevirostris can tolerate dryer environments than A. distichus, which is found in habitats across 

Hispaniola, but prefers shade to sunlight. Anolis distichus has adapted to life in a variety of 

environments, including forest edges, fields, and even shrubs more characteristic of grass-bush 

anoles (Schwartz & Henderson 1991). 

Anolis cybotes and A. longitibialis are gray or brown trunk-ground lizards, around the 

same size of their trunk-crown counterparts (average adult male SVL 67 and 64 mm, 

respectively) but occupying only the lower part of tree trunks and the surrounding rocks and 

terrain. Anolis cybotes often perches on the lower half of tree trunks, facing down towards the 

ground with its head bent at an angle for long periods of time. Anolis longitibialis, on the other 

hand, is restricted to a small section of the southern tip of the island and adapted to much dryer 

environments, often small caves and crevices (Schwartz & Henderson 1991). 
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Figure 2. Phylogeny of the six focal species, adapted from Pyron et al. (2013). 

 

Hypotheses 

 Using these six species in three ecomorphs, I tested the hypothesis that species with 

higher rates of dewlap and copulation behavior will have higher AR expression in the associated 

muscles. More specifically, I predicted that in my six focal species, (1) lizard species with higher 

density of AR in their CH will have higher rates of dewlap use, and (2) lizard species with higher 

density of AR in their RPM will have higher rates of copulation. If these predictions are 

supported, then (3) AR expression in one muscle should not predict AR expression in the other, 

as AR would be associated with differences in behavior unique to each muscle. Finally, I 

predicted that (4) within each ecomorph pair of species, species with a higher rate of behavior 

would have higher AR density in the associated muscles. 

 

  

Anolis coelestinus

Anolis chlorocyanus

Anolis longitibialis

Anolis cybotes

Anolis distichus

Anolis brevirostris
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Materials and Methods 

Field Methods 

 We studied the six species of anoles in the Dominican Republic, during June 2006, 2011, 

and 2015, in the following locations: Anolis coelestinus, A. brevirostris, and A. cybotes were 

studied on the grounds of the Coralsol Beach Resort in Barahona (18.062, -71.111), Anolis 

distichus was studied south of Baní (18.232, -70.347), Anolis chlorocyanus was studied near the 

town of Ocoa (18.525, -70.510), and Anolis longitibialis was studied in the town of Manuel 

Goya (17.836, -71.450). 

For each species, we performed 10-120 min focal behavioral observations on adult males, 

for a minimum of 20 h per species (Table 1). Animals were located for observations by walking 

slowly through the field sites, until locating an undisturbed lizard. We visually determined the 

sex of the lizards by observing relative body and head size (adult males are generally larger than 

females, with larger heads), and identifying the presence of a large dewlap and/or a bulge behind 

the tail (which indicates the presence of hemipenes). As male anoles are territorial and generally 

remain in a small home range (Rand 1967, Decourcy & Jenssen 1994), we avoided repeating 

observations in the same immediate area to minimize the probability of watching the same lizard 

more than once. During observations, we recorded the frequency of dewlap extensions, and used 

a digital stopwatch to measure the total amount of time that a lizard’s dewlap was extended. For 

each individual, we calculated dewlap frequency as dewlap extensions per minute, and dewlap 

duration was calculated as the average time span for a single dewlap extension (in seconds). 

Additionally, we recorded each time an individual was observed copulating, and calculated the 

average copulation rate for each species for use in subsequent analyses.  



M. Webber 2017  Page 18 of 39 

After observations were completed, we captured ten adult males per species by hand or 

noose, temporarily housed them in small plastic containers for transport, and transported them to 

Trinity University via cargo shipping. All procedures were approved by Trinity’s Animal 

Research Committee (protocols NSF_050213_MAJ3, 011415_MJ1, and 042811-MJ1) and by 

the Ministerio de Medio Ambiente y Recursos Naturales (Environment and Natural Resource 

Ministry) in the Dominican Republic. 

 

Table 1. Behavioral data collected for six focal species 

Species Total Observation 
Time (h) 

Number of 
Lizards Observed 

Average Observation 
per Lizard (min) 

Ecomorph 

Anolis chlorocyanus 23.3 22 63.5 Trunk-Crown 
Anolis coelestinus 60.0 87 41.4 Trunk-Crown 
Anolis brevirostris 57.5 85 40.6 Trunk 
Anolis distichus 30.8 37 49.9 Trunk 
Anolis cybotes 74.1 113 39.3 Trunk-Ground 
Anolis longitibialis 33.6 31 65.0 Trunk-Ground 

 

Muscle Tissue Collection 

 Lizards were euthanized by rapid decapitation within five days of capture. I then 

dissected jaw and tail tissues, which were immediately flash-frozen on dry ice. Tissues were 

stored at -80 ºC until further processing. 

 I cryosectioned jaw and tail tissues at 20 µm in six alternate series. I thaw-mounted 

tissues on SuperFrost Plus microscope slides (Fisher Scientific; Hampton, NH) and stored at -80 

ºC. I then stained one series per tissue for each individual with hematoxylin and eosin (H&E) to 

locate the muscles of interest for immunofluorescence. 
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Protein Labeling by Immunofluorescence 

To quantify AR expression in muscle tissues, I performed immunofluorescence staining 

using a second series of cryosectioned tissue. Samples from all individuals were included in a 

single run for each tissue type. After allowing the slides to defrost for 10 min, tissues were fixed 

in 4% paraformaldehyde (PFA) for 10 min, rinsed three times in phosphate-buffered saline 

(PBS), and encircled on the microscope slide with a pap pen. Tissues were blocked for 2 h at 

room temperature in 200 µL blocking solution  (4% normal goat serum and 0.3% Triton-X 

detergent in PBS), during which time they were covered with parafilm and placed in an airtight, 

plastic container to maintain humidity levels. Then, slides were incubated with primary antibody 

(PG-21 rabbit anti-AR polyclonal antibody (EMD Millipore)), at a concentration of 1:500 for 

tails and 1:250 for jaws (in 2% normal goat serum and 0.3% Triton-X in PBS), in airtight 

containers for approximately 48 h at 4 ºC. After the primary incubation period, tissues were 

rinsed three times in PBS and incubated in secondary antibody solution (1:1000 AlexaFluor 594-

conjugated goat anti-rabbit antibody and 0.3% Triton-X in PBS), in total darkness for 2 h at 

room temperature. Finally, slides were coverslipped with DAPI Fluoromount-G and stored flat in 

a light-proof container to dry. 

 In each run, I included a no-primary control to quantitatively determine baseline levels of 

background staining. This control consisted of at least two slides with Anolis carolinensis (a 

species whose AR expression in jaw and tail muscles has been previously characterized using 

PG-21; Holmes & Wade 2005, Neal & Wade 2007) jaw or tail tissue and was treated exactly like 

every other slide, but was incubated without primary antibody. I also conducted a pre-adsorption 

control by staining one tail and one jaw tissue from each of the species as per the usual protocol, 

but with primary antibody that had previously been incubated with 20x molar mass of purified 
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AR protein (custom peptide from Biosynthesis, Inc., Lewisville, TX). PG-21 is raised against the 

first 21 amino acids of the human AR protein, and in the binding domain, anole AR has 97% 

sequence identity with human AR.  

 

Image Capture 

 After the slides dried for a minimum of 1 day, I imaged slides at 400X magnification on a 

Nikon A1 Confocal microscope (Nikon Instruments). The DAPI laser and TRITC laser 

parameters were optimized to detect AlexaFluor 594 as follows. Lasers were fired in a channel 

series for capture, and the final image was captured using the full field of view at 2048 x 2048 

pixels. Line averaging (4x) was used to reduce background signal. Capture settings were 

standardized by adjusting the laser power, gain, and offset to use the full width of the histogram 

for both DAPI and AlexaFluor 594 on a single slide from the run, chosen from the tissues with 

the highest AR expression, such that the signal on slides always falls within the device’s 

dynamic range limitations. The pinhole was always set to 1.2, as determined by the airy unit 

(AU) for the longest wavelength (594 nm). 

 In the CH, I measured nuclei in two 320 µm x 320 µm regions on one side of the animal 

(for a total of 204,800 µm2), near the rostrocaudal center of the muscle (following Neal and 

Wade 2007). In the RPM, I measured nuclei in one 320 µm x 320 µm regions on one side of the 

animal (for a total of 102,400 µm2), near the rostrocaudal center of the muscle (following Neal 

and Wade 2007). 
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Image Processing 

 I conducted image processing in the FIJI program (Schindelin et al. 2012). After setting a 

threshold to eliminate the dark background from images in the DAPI channel, such that only 

nuclei are visible to the software, I selected all nuclei in each image with the Analyze Particles 

function. Using the AlexaFluor594 channel (which captures fluorescence from the fluorophores-

conjugated secondary antibody, AlexaFluor 594, and thus AR), I used a median filter to reduce 

noise and measured mean brightness and integrated density for each individual nucleus. I wrote a 

macro script to automate this process for all the images I captured, quantifying AR expression in 

the nuclei and exporting nucleus integrated density values for each individual into Microsoft 

Excel. 

 Protein expression in nuclei can be measured through its integrated density, which is 

roughly equivalent to the area of a nucleus multiplied by its average brightness. Although both 

brightness and integrated density are proportional to the amount of fluorescent-labeled protein, 

the measure of average brightness can only represent the average nucleus. For example, in the 

hypothetical case of two individuals with identical average nuclei brightness scores, if one 

individual has larger nuclei than the other, then that individual needs to have a correspondingly 

larger amount of AR being expressed in its tissues. This would therefore correspond to a greater 

sensitivity to testosterone than the individual with smaller nuclei, a nuance that a simple measure 

of average brightness would fail to convey. 

 

Statistical Analysis 

 I conducted all statistical analyses in R 3.3.1 (R Core Team 2016) and IBM SPSS 

Statistics for Windows 24.0 (IBM Corporation 2016). I first tested for differences in AR 
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expression and behavior using ANOVAs in SPSS, following with Tukey’s HSD as a post-hoc 

test. I tested for correlations between AR density (as measured by both species average nucleus 

brightness and species average nucleus integrated density) and behavior (as measured by the 

species average number of dewlap extensions per minute and copulation rate per hour), using 

generalized least squares correlation assuming Brownian evolution of traits, using the gls 

function in nlme (Pinheiro et al. 2009), hence referred to as phylogenetic correlations. I then 

conducted t-tests to determine differences in AR expression within each ecomorph pair. Finally, 

I calculated Blomberg’s K and Pagel’s lambda as tests for phylogenetic signal (Pagel 1999, 

Blomberg et al. 2003) using the phylosig function in phytools (Revell 2012).  
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Results 

Dewlap Display and Copulation Behavior 

Dewlap display and copulation behaviors differ dramatically among the six species in this 

study (Table 2). Species differed in dewlap rate (ANOVA: F5,213 = 17.48, p < 0.001) and 

duration of dewlap extension (ANOVA: F5,160 = 8.54, p < 0.001), as follows. The two trunk-

crown species (A. chlorocyanus and A. coelestinus) had among the longest durations of dewlap 

extension. The two trunk anole species (A. distichus and A. brevirostris) dewlapped most 

frequently, although for the shortest duration. The two trunk-ground species differed 

dramatically in their rate of dewlap extension, with A. cybotes doing so six times more often than 

A. longitibialis, on average. Each ecomorph pair had a higher-displaying species that displayed 

more frequently for a shorter time, and a low-displaying species, that conversely extended their 

dewlaps less frequently, for longer durations. Anolis chlorocyanus was observed copulating the 

most often (0.215 copulations per hour). Anolis longitibialis was not observed copulating in 33.6 

hours of focal observations. 

 

Table 2. Behavioral data for six focal species 

Species Average Dewlap Rate, 
± 1 SE 

(extensions / minute) 

Average Dewlap 
Duration,  ± 1 SE 

(seconds) 

Observed Copulation 
Rate (copulations / 

hour) 

Ecomorph 

Anolis chlorocyanus 0.047 ± 0.115 27.554± 4.263 0.215 Trunk-Crown 
Anolis coelestinus 0.125 ± 0.082 9.323 ± 3.178 0.034 Trunk-Crown 
Anolis brevirostris 0.513 ± 0.082 2.155 ± 2.714 0.051 Trunk 
Anolis distichus 1.023 ± 0.089 1.586 ± 3.066 0.065 Trunk 
Anolis cybotes 0.226 ± 0.082 7.790 ± 2.644 0.079 Trunk-Ground 
Anolis longitibialis 0.038 ± 0.097 21.701 ± 3.788 0.000 Trunk-Ground 
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Figure 3. Immunofluorescent staining for AR protein shows signal in both the CH (A) 

and RPM (D). No-primary controls show minimal background staining for both the CH 

(B) and the RPM (E). Protein pre-adsorption controls show minimal background staining 

for both the CH (C) and RPM (F). 

 

 

Figure 4. Cropped image of RPM shows the progression of software labeling of nuclei in 

ImageJ. Data from the AR channel (A) are matched with data from the DAPI channel (B) 

to produce a composite (C), from which nuclei can be selected and measured (D). 
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Interspecific Variation in AR Expression 

Immunofluorescent labeling was specific to AR in both muscles (Figure 3), and the 

ImageJ macro correctly identified nuclei from the DAPI channel (Figure 4). 

AR expression in the CH muscle did not significantly differ among the six species (F5,50 = 

0.59, p = 0.071; Figure 5). Among each species, there was substantial variation in integrated 

density measures, suggesting high variability in AR expression in this muscle. Across species, 

there is a trend towards a relationship between the rate of dewlap extension and AR expression in 

the CH, such that species with higher rates of dewlap extension have marginally higher average 

integrated density in the cell nuclei of the CH (phylogenetic correlation, t4 = 2.33, p = 0.081; 

Figure 6). 

 

Figure 5. Ceratohyoid AR expression for six Anolis species, measured as average 

nucleus integrated density. Error bars are ± 1 standard error from the mean. Trunk-crown 

species are in green, trunk species in purple, and trunk-ground species in orange. 
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Figure 6. Species with higher average rates of dewlap extensions have marginally more 

AR expression in the ceratohyoid, the muscle that controls this extension. AR expression 

is quantified as the average nucleus integrated density. Trunk-crown species are in green, 

trunk species in purple, and trunk-ground species in orange. 

 

 The six species differ in their AR expression in the RPM (F5,50 = 3.10, p = 0.016; Figure 

7). Only A. brevirostris and A. chlorocyanus, and A. brevirostris and A. longitibialis differ 

significantly from each other; A. brevirostris had the highest AR expression in the RPM, while 

A. chlorocyanus and A. longitibialis both had the smallest. As with the CH, there was substantial 

variation in integrated density measures, suggesting high variability in AR expression in this 

muscle. No relationship is evident between the rate of copulation and AR expression in the RPM 

(phylogenetic correlation, t4 = -0.17, p = 0.88; Figure 8). 
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Figure 7. Retractor penis magnus AR expression for six Anolis species, measured as 

average nucleus integrated density. Error bars are ± 1 standard error from the mean. 

Trunk-crown species are in green, trunk species in purple, and trunk-ground species in 

orange. 

 

 

Figure 8. There was no relationship between the observed copulation rate and AR expression in 

the RPM, the muscle that controls hemipenis retraction. AR expression is quantified as the 

average nucleus integrated density. Trunk-crown species are in green, trunk species in purple, and 

trunk-ground species in orange. 
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 I found no relationship between AR expression in the CH and AR expression in the RPM 

(phylogenetic correlation, t4 = -0.63, p = 0.56; Figure 9). I found no phylogenetic signal for AR 

expression in either the CH (K = 0.81, p = 0.32; λ = 6.6e-05, p = 0.71) or the RPM (K = 0.98, p = 

0.19 ; λ = 0.423, p = 1). 

 

Figure 9. AR expression in the CH is not associated with AR expression in the RPM. 

 

Variation in AR with Ecomorph Pairs 

 When comparing the two species in each ecomorph pair, I found no difference in CH AR 

expression (Figure 5) between the two species in either the trunk-crown ecomorph (t15 = -0.52, p 

= 0.61), the trunk ecomorph (t16 = 0.94, p = 0.36), or the trunk-ground ecomorph (t19 = -0.29, p = 

0.77). Likewise, in the RPM (Figure 7), AR did not differ between species pairs in either the 

trunk-crown ecomorph (t18 = -1.08, p = 0.30), the trunk ecomorph (t17 = -1.31, p = 0.21), or the 

trunk-ground ecomorph (t15 = -1.37, p = 0.19). 
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Discussion 

 The first prediction, that AR expression in the CH would correlate with the rate of dewlap 

extension, was partially supported by the data (Figure 6). The high degree of variability in my 

results (individuals’ average nucleus integrated density values ranged from less than 4,000 to 

almost 20,000) means there was no detectable difference in AR expression in this muscle among 

species, limiting interpretation of the data (Figure 4). Because the phylogenetic analyses used in 

this study only analyze species means, this variation is not considered in the evolutionary 

analysis. Yet, the results from the phylogenetic correlation are in the direction I predicted – and 

as more species are measured, this pattern (or its absence) will become clearer. Fuxjager et al. 

(2015) found a similar pattern in passerines, where species that perform more complex wing 

displays have more AR in the nuclei of the wing muscles.  

 The second prediction, that AR expression in the RPM would correlate with the observed 

average copulation rate, was not supported by the data. Again, the measure of AR expression in 

this muscle showed a large degree of variability: individual lizards’ averages ranged from less 

than 2,000 to over 22,000. However, here there were significant differences in AR expression 

amongst the species, between A. brevirostris and A. chlorocyanus, and between A. brevirostris 

and A. longitibialis. These represent the difference between the species with the most AR 

expressed, A. brevirostris, and the two species with the least AR expressed in the RPM, A. 

chlorocyanus and A. longitibialis (Figure 7). The large degree of individual variation seen here 

could be related to differences in circulating testosterone, of which baseline levels for different 

species range by a factor of 4x (Husak & Lovern 2014) and which is known to influence RPM 

AR expression (Holmes & Wade 2005). 

 My third prediction, that AR expression could be controlled by different factors in different 



M. Webber 2017  Page 30 of 39 

muscles, is supported by the results of this study. AR expression in one muscle is not associated 

with AR expression in the other (Figure 9). Contingent on the addition of more species in future 

studies, it is possible that the AR in the CH could be tied to display behavior, as in Fuxjager et al. 

(2015), and that AR in the RPM could be constrained by anoline evolutionary history or other 

factors. Holmes & Wade (2005) found that testosterone increased AR density in the RPM, but 

not the CH, in A. carolinensis. On average for this study, the proportion of standard error to 

mean AR expression is 0.11 in the CH and 0.21 in the RPM (Figure 10). For Holmes & Wade 

(2005), those proportions are 13.3% and 19.2%, respectively; although the former study 

examined only a single species, both the relative magnitudes of error between muscles and the 

approximate values of these proportions are similar across studies. Standard error is dependent 

on sample size, but Holmes & Wade reports only 8 individuals for the breeding season, 

comparable to the 10 individuals per species in my own study. 

 

 

Figure 10. There is a greater proportion of error to the mean in the RPM (right) than the 

CH (left), and this proportion varies between species. 
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 Husak et al. (2007) reports similar degrees of variation in circulating testosterone levels for 

A. carolinensis, with the proportion of standard error to mean circulating testosterone 0.17 on 

average. If circulating testosterone directly affects AR in the RPM, this could explain why I 

found a higher degree of variation for AR expression in the RPM than in the CH. To estimate a 

potential influence of circulating testosterone on AR expression in both muscles, I extracted 

approximate values for circulating testosterone from Husak & Lovern (2014) for four of my 

species: A. brevirostris, A. coelestinus, A. cybotes, and A. distichus. In both muscles, circulating 

testosterone seems to predict AR expression. However, this relationship is potentially stronger 

with the CH (Figure 11) than the RPM (Figure 12).  

 

 

Figure 11. Circulating testosterone (data from Husak & Lovern 2014) may predict AR 

expression in the ceratohyoid (R2 = 0.553). The dashed line is a best fit as approximated 

by a linear model, y = 140x + 8815. 
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Figure 12. Circulating testosterone (data from Husak & Lovern 2014) may predict AR 

expression in the retractor penis magnus (R2 = 0.209). The dashed line is a best fit as 

approximated by a linear model, y = 182x + 5961. 

 

 I found little support for my fourth prediction, that within ecomorph pairs, behavior would 

be positively correlated with AR expression in the associated muscle. In the CH, both trunk and 

trunk-crown anole pairs vary in the expected directions (Figure 3). However, the trunk-ground 

species pair does not. The high degree of variation in AR expression within species may hide a 

possible relationship with behavior within ecomorph pairs, but there is as of now little support 

for this prediction. 

 I found a large amount of extra-nuclear AR in both the CH and RPM. This is consistent 

with previous findings in the brain of a single species, A. carolinensis (Rosen et al. 2002). This 

free AR could work as a reserve, meaning only a small amount of testosterone is necessary to 

produce a large effect in the cell. If the level of AR is high enough, a threshold at which there is 

more AR than circulating testosterone would mean that species differences in AR might not 

necessarily correlate with species differences in behavior. 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

11000 

12000 

0 2 4 6 8 10 12 14 16 18 

R
PM

 A
R

 E
xp

re
ss

io
n 

Circulating Testosterone (ng/mL) 



M. Webber 2017  Page 33 of 39 

 It is possible the genes that regulate or influence behavior in these muscles vary in the 

presence of androgen response elements across species. If some species have genes with 

response elements that better favor AR binding (Shaffer et al. 2004), those species would have a 

greater influence of androgens on behavior regardless of absolute AR concentration in the 

muscles. Different genes could influence behavior across species, further complicating the 

relationship between AR and behavior. 

 It is important to note that the lizards we caught for this study are not necessarily the same 

ones I observed in the field. If the high degree of variance in AR expression is not an artifact of 

my data collection, it is possible that ten individuals per species are simply not enough to 

uncover subtle influences of AR on behavior. Future studies could look at measuring AR in 

lizards that have individual observational data points, thus answering this question from a 

different perspective. Within a single species, it is possible that individuals with higher display 

rates have higher AR, and that this within-species variation is much larger than across-species 

differences. 

 This study shows suggestive support for the idea that display behavior is associated with 

AR expression in the muscles. Fuxjager et al. (2015) demonstrated this was the case for seven 

species of tropical passerines: that study found both that display complexity was associated with 

AR in the muscles that exert these displays, and that for any given species, AR in one muscle or 

region did not always correlate with AR in another muscle. This is consistent with the results of 

this study, and provides support for AR-dependent control of display but not copulatory 

behavior. 

 AR expression, as well as behavior, may be controlled by different factors in different 

muscles. For the CH, that may be display behavior; for the RPM, that may be circulating 
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testosterone. This is the second study to date looking at the evolutionary relationship between 

AR expression and behavior across species, and further contributes to our understanding of the 

cellular mechanisms that drive social behavior in anoles. The results from this study open the 

door for the continued study of this relationship in anole lizards.  
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