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Cycles in Metabolic Networks

Tim Nunamaker

Abstract

Modeling sophisticated biological systems in a way that makes them more apprehensible,

without losing comprehension or robustness, is a challenging task. The flux balance analysis

(FBA) model describes metabolic networks of single-celled organisms with the goal of simu-

lating their steady-state behavior. FBA simulations yield reliable and biologically relevant

growth rate values, but do not simulate intra-cellular behavior well.

Solutions to the FBA model are often degenerate and non-unique. Ideally, the model

should simulate metabolic activity in exactly one way under any given circumstances–the

way the real organism’s metabolism behaves. The ultimate goal of this project is to better

understand the FBA model in order to improve it, so that this ideal may be more achievable.

An overview of biological networks, metabolism, and FBA is given to familiarize the

reader. Dominance, the amount that a reaction dominates consumption or production of its

reactants and products over other reactions, is used to define a partition of the metabolism

that groups reactions with similar properties. The term minimal environment is defined

to describe a set of metabolic resources that are limiting for a certain growth rate, and an

algorithm is developed for finding the minimal environment of a metabolic network.

Dominance is found to be an indicator for certain regions of the network that are cyclic,

and thus problematic. An algorithm is developed for finding cycles in a graph, which is

then applied to the metabolic network. The complexity of this algorithm when applied to

E. coli makes it too computationally difficult to be used, but the algorithm is useful in other

respects.
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Chapter 1

Metabolic Networks in Systems

Biology

The natural science community has found itself at an advantageous position due to advances

in computing capabilities. Large quantities of data to describe the microscopic details of cel-

lular processes are available. Biology, particularly, is reaping the benefits, as demonstrated

by the ongoing growth of computational biology.

Systems Biology is an interdisciplinary field that examines the behavior of organisms

as systems. Specifically, systems biology investigates the mechanisms that underlie the

functions of life. Biological entities are complex, and models that describe them can are

generally large. Gaining insight from mathematical models of biological systems is possible

as computing resources become more accessible and powerful. One such technique, Flux

Balance Analysis (FBA), describes the metabolism of single-celled organisms and simulates

cellular behavior. The model is normally assigned an objective of maximizing growth, which

matches experimental values, although other objectives are sometimes considered. The FBA

1
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model is presently unable to provide exactly biological information. This is partially due

to the model providing multiple simulated optimal solutions, instead of just one.

FBA aims to reveal information about the inner-workings of the cell that cannot be

observed in biological environments, and if it can be improved to become a viable tool,

would provide valuable information. Improving this model is the overarching goal of this

project.

1.1 Networks

Networks are commonly used in applications of systems biology. We begin with a basic

introduction to graph theory in support of our work. A graph is a pair of sets, a set of

vertices V and set of edges E, where any e ∈ E is associated with a pair of vertices, which

“connects” them. Directed graphs are composed of edges that are ordered pairs so that

E ⊆ {(a, b)|a, b ∈ V }. Graphs that are undirected are composed of edges that may be

denoted by sets (unordered by definition) so that E ⊆ {{a, b}|a, b ∈ V }. Figure 1.1 shows

an undirected graph and a directed graph. Notice that the edges in the directed graph have

arrowheads to denote directionality.

For an undirected graph, the degree of a vertex is the number of edges that are associated

with the vertex. For a directed graph, the in-degree and out-degree of a vertex are the

number of edges directed into and out of it, respectively.

A network is a weighted directed graph, where a weighted graph is a graph that has a

weight, or number, corresponding to each edge [4]. For example, weights are often used to

indicate levels of flow. A graph whose vertices represent cities and edges represent roads

between them might have each edge weight denote the average daily traffic on the road.

A path is a sequence of vertices in a graph so that each vertex shares an edge with the
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Figure 1.1: An undirected graph (left), and a directed graph (right).

subsequent vertex. A graph that is complete contains an edge for every pair of vertices (for

directed graphs, the edge is bidirectional). A cycle is a path where the first vertex is also

the last. Cycles are discussed at length in Chapter 2.

1.1.1 Biological Networks

Multiple layers of chemical activity across entire organisms such as Escherichia Coli (E.

coli) can be captured in a network model. The three primary networks are the gene regula-

tory network, protein-protein interaction network, and metabolic network. Protein-protein

interaction networks consist of vertices that represent intra-cellular proteins and edges that

represent various types of interactions between proteins. These include interactions such

as one protein modifying another or multiple proteins acting as a transducer for convey-

ing signals from the exterior to the interior of the cell. Gene regulatory networks describe

mRNA transcription by representing DNA and other components, such as useful proteins,

as vertices, and representing various interactions as edges [8]. Metabolic networks consist of

enzymes and metabolites, where one representation consists of representing the enzymes as
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vertices and metabolites as edges. Studying metabolic networks is the focus of this project.

1.2 The Metabolism

Biologist Christopher Mathews describes a metabolism to be “the totality of chemical re-

actions occurring within a cell” [6]. Reactions occur naturally within organisms and are

catalyzed, or accelerated, by enzymes1. In general, each enzyme present within a cell is re-

sponsible for ensuring that an associated reaction takes place when the necessary chemicals

are present. These reactants, as well as the products that the reaction produces, comprise

the cell’s metabolites. The set of metabolites includes molecules that act as raw materials,

intermediary materials, and those that are excreted. Some metabolites are consumed to

produce energy, such as Adenosine triphosphate (ATP), the main energy-storage molecule

within cells. The process of interconverting metabolites is facilitated by the metabolism.

A chemical reaction is described by a stoichiometric equation, where each metabolite

consumed and produced is weighted by a non-negative integer. For example, the stoichio-

metric equation

A+ 2B → C (1.1)

describes a reaction where one unit of metabolite A reacts with two units of metabolite

B to produce one unit of metabolite C. The stoichiometric coefficient of a reaction and a

metabolite is the quantity that describes how many units of the metabolite are consumed or

produced, which are the coefficients −1,−2 for the input metabolites and 1 for the output

metabolite in Equation 1.1 (these coefficients can be signed to model input versus output

metabolites). The flux of a reaction is the rate at which it occurs. It is essentially a

multiplier that scales the stoichiometric coefficients to the quantities of metabolites that
1The terms “enzyme” and “reaction” will be used interchangeably with regard to the model.
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Figure 1.2: The TCA cycle as a network. Vertices are reactions, edges are shared metabo-
lites.
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are actually consumed and produced.

One representation of enzymes and metabolites is a network where vertices denote the

reactions produced by each enzyme, and edges between vertices denote the metabolites that

are consumed and produced by the reactions. Figure 1.2 illustrates a representation of the

TCA cycle in E. coli as such a network.

Another representation has vertices denoted both reactions and metabolites, and each

edge connects a single reaction and metabolite, with directionality indicating whether the

metabolite is consumed by the reaction or produced by it. Figure 1.3 illustrates a bipartite

representation of a subset of a metabolism.

Consider such a network where the weights assigned to each edge represent the volume

of the metabolite that is produced by the first reaction and consumed by the second. This

volume is the product of the flux of the reaction and the stoichiometric coefficient of the

reaction-metabolite pair. Such a network is described by the LP discussed in Section 1.4,

and in the object-oriented model in Section 2.3.1.

In practice, it is unnecessary to consider weights for metabolic networks since the model

is used to determine the fluxes.

1.3 Linear Programming

A linear program (LP) is an optimization problem in which the function being optimized,

called the objective function, is constrained linearly. The standard form of a linear program

is

min{cTx : Ax = b, x ≥ 0},

where c is an n-vector, b is a m-vector and A is an m× n matrix. The vector bound x ≥ 0

is the same as xi ≥ 0 for each i.
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Figure 1.3: A bipartite graph of metabolite-

reaction pairs. Purple edges indicate reactions

that dominate consumption and green edges

indicate reactions that dominate production.

Blue reactions are in the HFN, red ones are in

the IFN, and the green reaction is in the LFN.

See Chapter 2 for definitions and a discussion

of dominance and the HFN, IFN, and LFN.

For example, suppose an individ-

ual wishes to buy two foods in dif-

ferent quantities, and that he/she will

buy A units of the first food and

B units of the second. He/she re-

quires at least C calories and R grams

of protein and wants to fulfill these

constraints by spending the least dol-

lar amount possible. Let PA de-

note the price of one unit of the first

food and let PB denote the price of

one unit of the second food. Choos-

ing the objective function as the to-

tal price APA + BPB, he/she could

solve the following LP to determine

which foods to buy and in what quanti-

ties:

minimize: APA +BPB

subject to: ARA +BRB ≥ R

ACA +BCB ≥ C

where A ≥ 0 and B ≥ 0,

The terms Ri and Ci denote the grams of protein and calories, respectively, in food i. When

solved, this LP returns the amounts of foods A and B that provide C calories, R grams of
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protein and the least cost.

We use an LP to construct an FBA model of a cellular metabolic network. This is

discussed in section 1.4 and Chapter 3.

1.4 Flux Balance Analysis

Flux Balance Analysis is an approach to estimate cell behavior by constructing and solving

an LP that encompasses the information of the metabolic network described in section 1.2.

The objective of the LP is usually assumed to be the maximization of growth, which

is a natural interpretation of the behavior of single-celled organisms. Laboratory data has

demonstrated that this assumption yields a strong correlation between simulated and actual

growth values for different environments [7], where an environment is a collection of bounds

that limit the rate at which metabolites can be transported into the cell through the cellular

membrane and into the cytoplasm.

Environmental resources are bounded to within the ranges prescribed by the environ-

ment, which form some of the constraints in the LP. Realistic environments must have lower

bounds of zero for resources, and upper bounds must be non-negative but may be finite

or infinite. A resource with an infinite upper bound indicates growth is limited by the

mechanics of the cell and not by resource availability.

An important property of the model is that it is treated as steady state, which is reflected

by
∂Ci

∂t
= 0, (1.2)

where Ci is the concentration of a metabolite i. Equation 1.2 describes how the concentra-

tion of every metabolite is constant over time.

The FBA model solves for optimal growth and records the fluxes of all of the enzymes
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in the network.

1.4.1 Steady State

Suppose that metabolite M is used in exactly two reactions:

R1 : A→M

R2 : 2M → B

Suppose R1 has flux ν1 and R2 has flux ν2. Then the rate of change of the concentration C

must be
∂C

∂t
= ν1 − 2ν2.

Since the concentration is constant, we have that

ν1 − 2ν2 = 0.

This generalizes to
∂Ci

∂t
=

∑
Rj∈R

Ai,jνj = 0,

where R is the set of the cell’s reactions, Ai,j is the stoichiometric coefficient of metabolite

Mi in reaction Rj , and νj is the flux of reaction Rj . This prevents any metabolite from ac-

cumulating in the cell. Each metabolite must be converted into something that is consumed

for energy or growth, or excreted from the cell..

The model contains a few reactions that are important to note, and are presented as

specific to of E. coli. The first is called VGRO (virtual growth), which has a stoichiometric
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equation of

5× 10−5ALA + 46ATP + · · ·+ 0.4VAL→ Biomass + 46ADP + 46PI + 0.7PPI

This reaction defines the growth rate. In order to gain a unit of biomass, the metabolites

that are inputs to this reaction must be present in the values denoted by the stoichiometric

coefficients. ADP, PI, and PPI are by-products of the physical creation of more cell mass,

so they are resources that must be accounted for.

Energy spent by the cell on constant maintenance is captured by the dummy reaction,

ATPM, which has a stoichiometric equation of

ATP→ ADP + PI.

This reaction has a constant flux of 7.6, which represents the energy expenditure of non-

metabolic processes. The ATP drain is of some significance when it is in cycles, discussed

in Section 4.3.

Degeneracy An important aspect of using FBA is accounting for degeneracy in solutions.

In general terms, degeneracy occurs in solving an LP when the solving algorithm cannot

overcome some obstacle in working toward an optimal solution. In FBA, degenerate fluxes

are those that can either be zero or non-zero for an optimal solution. Degeneracy contributes

to the non-uniqueness of optimal solutions by allowing reactions to either be active or

inactive, arbitrarily.
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1.4.2 FBA Example

Consider the following reactions in the metabolic network for a hypothetical single-celled

organism, with stoichiometric coefficients of A3,1 = 2 and Ai,j = 1 for (i, j) 6= (3, 1), where

Ai,j is the coefficient for metabolite Mi and reaction Rj :

Import reactions:

R1: → M1

R2: → M2

Intracellular reactions:

R3: M1 → 2M3

R4: M3 → M4 +M5

R5: M2 +M5 → Biomass+M3

Export reactions:

R6: Biomass →

R7: M2 →

R8: M5 →

Let νj denote the flux of reaction Rj . Assign lower and upper bounds to the fluxes as

follows:

L1 = 0 ≤ ν1 ≤ ∞ = U1

L2 = 0 ≤ ν2 ≤ 10 = U2
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L3 = 0 ≤ ν3 ≤ ∞ = U3

L4 = −10 ≤ ν4 ≤ 10 = U4

L5 = L6 = L7 = L8 = 0 ≤ ν5, ν6, ν7, ν8 ≤ ∞ = U5 = U6 = U7 = U8

The following LP can be used for simulation:

maximize: ν6

subject to: Ai,jνj = 0

where Lj ≤ νj ≤ Uj

Maximizing the flux of R6 requires maximizing the flux of R5 to provide the most

production of Biomass. Reaction R5 can have a flux of up to 10 and is limited by reactions

R1 and R4. Reaction R1 has an unlimited flux, and R4 has a maximal flux of 10. Reaction

R4 is limited by R3’s production of M3, so by maximizing the amount of M3 produced by

R3, maximal Biomass is available. Thus, an optimal solution is to have fluxes ν1 = 5,

ν2 = 10, ν3 = 5, ν4 = 10, ν5 = 10, ν6 = 10, ν7 = 0, and ν8 = 10. For more than 10 units

of M3 produced by R3, however, Biomass is unaffected. Reaction R3 can produce M3 in

unlimited quantity, so the flux of R3 influences the system the same way for any ν3 ≥ 5,

allowing infinitely many optimal solutions.

A systematic approach to finding an optimal solution involves describing information

about the network in the matrix equation

Aν = b,

where matrix A describes a system of equations that characterize the stoichiometric equa-

tions of enzymes in the network, vector b is zero because of the steady-state assumption,
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disallowing the accumulation of any metabolite, and ν is a column vector of fluxes for each of

the reactions. In this case, optimal growth is estimated by using an LP to maximize ν6. See

Appendix A for AMPL model and data files for this example. The AMPL implementation

is discussed in Section 3.1.
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R1 R2 R3 R4 R5 R6 R7 R8

M1 1 0 -1 0 0 0 0 0

M2 0 1 0 0 -1 0 -1 0

M3 0 0 2 -1 1 0 0 0

M4 0 0 0 1 0 0 0 0

M5 0 0 0 1 -1 0 0 -1

Biomass 0 0 0 0 1 -1 0 0


×



Flux

R1 νR1

R2 νR2

R3 νR3

R4 νR4

R5 νR5

R6 νR6

R7 νR7

R8 νR8



=



b

M1 0

M2 0

M3 0

M4 0

M5 0

Biomass 0



(1.3)

Equation 1.3 shows a description of the metabolic network from the example in a matrix

form. Stoichiometric coefficients are listed as negative for metabolites on the left-hand side

of the stoichiometric equation and positive for those on the right-hand side. Net production

and consumption is zero for each metabolite due to the steady state assumption.



Chapter 2

Partitioning Enzymatic Reactions,

Minimal Environments, and Cycles

Due to the diversity and large quantity of reactions, partitioning a set of reactions into

smaller sets with common characteristics may make it easier to study metabolic pathways

and to draw insights about similar reactions. In particular, identifying groups of reactions

that are more heavily used than other reactions is generally valuable in identifying important

pathways.

Investigating which resources are required for different levels of growth and in what

ways they are required leads us to develop an environment for which every metabolite is

limiting. Additionally, complications associated with partitioning the network direct us to

investigate cycles within the network.

15
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2.1 Partitioning Reactions with Dominance

For each collection of fluxes that achieve an optimal growth state for a particular envi-

ronment, we have that each metabolite has one or more associated reactions that equally

consume or produce more of it than any other reaction. Consider the set of all such re-

actions. These reactions are each dominant consumers or producers (of some metabolite).

For one of these reactions, we say that the difference in flux between this reaction and the

next greatest consumer (or producer) is the dominance of the reaction for this metabolite.

We say that the maximum dominance is the supremacy of the reaction for this metabolite.

2.1.1 The HFB, Degeneracy and a Partition

Reactions that both dominate the consumption of a metabolite in this manner, as well as

the production of the same or another metabolite, are in the high flux backbone (HFB) [2].

The HFB is defined for enzymes in a real-life organism. Thus, the HFB is not based on

degenerate solutions because it is not defined in terms of a solution from the model, but

in terms of the biological behavior that an actual organism performs. The HFB can be

produced by the model for a hypothetical organism that operates exactly in the real-world

as the model behaves for a particular solution. Such an HFB may not be meaningful,

however.

Attempting to compute the actual HFB for an organism, which is biologically dependent

on the environment, using FBA methods, gives a solution that is computationally dependent

on the solution of the LP [1], and is thus not equal to the real HFB. The specific solution

resulting from computing the HFB is dependent on the algorithm used by the solver; each

solver identifies a single optimal solution from infinitely many. Which environmental re-

sources are available to the cell greatly affects which pathways are possible. For example,
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E. coli’s metabolism includes aerobic pathways and anaerobic pathways, and depending on

whether oxygen is an available resource, some significant reactions might not be used at all.

Degeneracy issues call for an unambiguous partition for cellular reactions. We augment the

concept given by the HFB to the following sets.

The high flux network (HFN) is similar to the HFB, but includes reactions that have the

capacity of simultaneously dominating both consumption and production for any optimal

setting. The intermediate flux network (IFN) is the set of reactions that can dominate

consumption or production, but not both, in some optimal state, and the low flux network

(LFN) is the set of reactions that are incapable of dominating production or consumption

in any optimal state.

We say that a reaction is in the HFN, IFN, or LFN independent of the environment if it

is in the set for every environment, otherwise it is in the set dependent on the environment.

2.2 Minimal Environment

For any organism, achieving the maximal growth rate requires using resources efficiently.

Given resources in unbounded quantity, a single-celled organism can only transport them

into the cell and process them at a rate limited by reaction fluxes, among other things. In

such a scenario, processing resources more efficiently may require improving these physical

limiting properties. If resources themselves are not limiting, using a greater or fewer number

of resources may not directly affect the growth rate.

Since these organisms do not necessarily, and indeed most often do not, have access to

resources in unlimited quantities, resource availability has a direct effect on the growth rate.

This introduces the question, how little resources are necessary for optimal growth? That

is, what environment can provide resources in as limiting a manner as possible and allow
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the cell to achieve a specified growth rate?

It is important to be precise about what is meant by “how few” in the context of

maximizing growth with resources that are limiting, because to answer it with the aggregate

quantity of different resources pressupposes the equality of one unit of a resource with one

unit of any other resource. Is one unit of oxygen as vital as one unit of nitrogen? Is it as

easily accessible?

One approach is to weight each resource and minimize the sum of total resources used

by the cell. However, this solution requires an unambiguous weighting process, which may

be difficult to develop in a way that yields meaningful results.

An alternative approach is to iteratively minimize a common upper bound on the import-

fluxes of non-limiting resources, with the constraint that growth must be fixed at some

desired value less than or equal to optimal growth. The solution to each minimization

includes one or a group of the resources that limit the bound to be equal to the value

of the common import-flux of these resources. When the reactions that remain are non-

limiting, the algorithm is applied again without including the newly-limiting resources. It

terminates when there are no non-limiting resources remaining. The set of import-fluxes

for each resource is defined to be the minimal environment.

2.3 Cycle Analysis

Some reactions can dominate others in an unbounded quantity. Because there is no cost

associated with catalyzing a reaction in the FBA model, reactions that are in cycles may

attain unbounded fluxes, with the exception of cycles that link to the ATP drain, ATPM, the

only reaction that has a fixed flux to account for energy spent by the cell on maintenance (a

dummy reaction). Any reaction’s products can be reconverted to its reactants by restricting
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the export of products to reactions within the cycle. In other words, reactions can simply

“trade off” metabolites amongst themselves. This is analogous to counting the number of

cars that pass through a network of roads. A car that drives around the same block, in

circles, could be mistakenly counted multiple times. Any optimal solution to the model

could have arbitrary fluxes for these reactions. Not only is meaningful information about

these fluxes lost, but infinitely many solutions are produceable with no clear indication

about which of them most closely reflects reality. Consider an example consisting of the

following reactions, as shown in Figure 2.1:

R1 : a→ b

R2 : b→ c

R3 : c→ a

Notice that, regardless of the quantity of metabolite a that reaction R1 has available,

reactions R1, R2, and R3 can exchange metabolites a, b, and c arbitrarily many times,

without affecting the actual quantity of c produced by R3.

Finding cycles in a metabolic network and investigating their properties may prove useful

by providing a means of overcoming the problem they introduce in calculating supremacy.

Unfortunately, certain questions pertaining to the set of all cycles of the network may not

be answerable, as it turns out that it is computationally infeasible to to find all cycles for

a network such as the metabolic network of E. coli. Instead, this analysis can be applied

to subsets of the network. In particular, each dominance calculation that yields unbounded

supremacy for some metabolite-reaction pair has an associated set of reactions whose fluxes

are unbounded for that solution. A reaction with unbounded supremacy for some metabolite

can have infinite dominance over all reactions not in that cycle. This is because it can have



20

an arbitrarily large flux while reactions not in the cycle are unaffected.

Figure 2.1: A three-

reaction cycle. Reac-

tions R1, R2, and R3 can

trade off metabolites a,

b, and c indefinitely.

Because the flux of the ATPM reaction is fixed, it cannot be

part of an unbounded cycle. We can take the set of unbounded

cycles that are individually generated by finding the supremacy of

a metabolite-reaction pair and performing analysis on individual

cycles as well as unions and intersections of multiple cycles. Each

of these cycles is significant because its cyclic nature directly

affects the information encoded in the solution.

A graph data structure is created for this project in Java

to find cycles within a metabolic network. Before presenting

our analysis, an object-oriented model is created as described in

Section 2.3.1.

2.3.1 Constructing the Network

Object orientation is constructed to serve as a flexible model for

finding cycles. Three objects are used to describe the network,

Metabolite objects, which represent metabolites used by reac-

tions in the network, Reaction objects, which represent the re-

actions, and Graph objects, which are data structures that man-

age Reaction and Metabolite objects. Each Reaction object

contains information about a reaction in the metabolism, including a list of metabolites

associated with it, and each Metabolite object contains information about a metabolite,

including a list of reactions by which it is consumed or produced.

Each Graph object provides the structure needed to model a metabolism, or a subset of

one. The Reactions in the Graph are graphically represented by vertices, and associated
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Metabolites are represented by edges. Edges are created between reactions when one reac-

tion consumes a metabolite that another produces, with directionality toward the consuming

reaction. The Graph object provides functionality for generating a graph-representation of

the network as an image file. It also includes special functionality for analysis. This in-

cludes methods for finding unions and intersections of arbitrarily many Graphs and, most

importantly, finding and retrieving all cycles within the network.

The Reaction object provides a way of abstracting information from a reaction by

storing its name and the metabolites it consumes and produces. The reaction is also defined

to have bounds on its flux, where the default bounds are 0 ≤ νi ≤ ∞ for the flux of reaction

Ri, νi. Unless otherwise specified, a reaction can only run in the forward direction, and

can do so with any flux. The Metabolite object stores the name of a metabolite and the

reactions it is consumed and produced by.



Chapter 3

Computational Aspects

A description of computational methods for the project is given in this chapter. This

includes the general layout and components of the AMPL model used to model metabolic

networks. Data structures and algorithms that are used to partition the network, find the

minimal environment, and find and investigate cycles are also discussed.

3.1 FBA Model

Constructing an FBA model requires information about a cell’s metabolism, including each

reaction in the metabolism and the associated metabolites. A Modeling Language for

Mathematical Programming (AMPL) is used to construct the model. Two AMPL data

files consist of a list of reactions and their stoichiometric coefficients for each metabolite,

Ai,j for metabolite Mi and reaction Rj , as well as bounds of the form Lj and Uj on the

fluxes of reactions of the form νj , so that Lj ≤ νj ≤ Uj , for reaction Rj . The model

file interprets the data and defines the sets, parameters, constraints and objective function

needed to describe the LP. This file is executed and solved in the AMPL environment, which

22
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returns the optimal growth value and associated fluxes.

The primary data file defines values used for the bounds on the fluxes of all reactions that

do not import metabolites from the environment, as well as values used for the stoichiometric

coefficients. A secondary data file defines values for the bounds of the reactions that import

metabolites. Stoichiometric coefficients are integers that are signed to differentiate between

metabolites that are consumed and those that are produced.

In the model file, the set of fluxes (reactions), FLUX, is defined and partitioned into

three subsets: fluxes of reactions that transport resources into the cell (FLUXI), reactions

that process metabolites within the cell (FLUXC), and reactions that export waste from

the cell (FLUXO).

Metabolites are indexed by the set METS, where a constraint is added that forces

each metabolite’s net accumulation to be zero. Metabolite-reaction pairs given by the

stoichiometric equations for each reaction form 2-element sets that are contained by sets

PRSI, PRSC, PRSO. These three sets contain elements that are used for transporting

metabolites into the cell, processing metabolites within the cell, and transporting reactions

out of the cell, respectively. The stoichiometric coefficients of these pairs are defined in

sets Ai, Ac, and Ao. Lower and upper bounds for reaction fluxes are defined by sets Ubd

and Lbd, and are indexed by elements of FLUX. A constraint in the model requires the

flux of a reaction to be within its lower and upper bounds. The objective function is the

maximization of the sum of the fluxes of all of the reactions. The AMPL script, model file,

and a data file for the example in Section 1.4.2 is shown in Appendix A.

3.2 The Partitioning Process

Partitioning the network into the HFN, LFN, and IFN is done in a 2-step process:
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1. Execute an AMPL script (see Appendix B)

(a) Calculate the supremacy of each metabolite-reaction pair

(b) For pairs that have non-zero supremacy or tie for zero supremacy

i. If supremacy is finite, flag the minimum growth as -1

ii. If supremacy is unbounded, calculate the minimum possible growth with

supremacy fixed as unbounded. Also record all reactions whose fluxes are

unbounded

(c) Catalog pertinent information

i. If supremacy is non-zero or tied at zero, record as a candidate for the HFN

or IFN

ii. If supremacy is zero, not tied, record as an element of the LFN

2. Execute a PHP script (also in Appendix B)

(a) Read LFN elements, write them to a file

(b) Read HFN and IFN candidates

(c) Find all instances of a reaction dominating consumption or production

i. If the reaction dominates both consumption of at least one metabolite and

production of at least one metabolite, record as an element of the HFN and

write it to a file

ii. If the reaction only dominates consumption or only dominates production,

record as an element of the IFN and write it to a file

(d) Write HFN and IFN reactions to a file
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The script directs AMPL to read in the model and data files. This script runs in the

AMPL environment, so AMPL commands are used to control solver options. Here we have

the first step of constructing the HFN, which is to determine every possible metabolite-

reaction pair for which the reaction can dominate the consumption and/or production of

the metabolite under some environment (i.e., have a non-zero supremacy).

The AMPL script serves the purpose of identifying single cases of reactions dominating

metabolite consumption or production, and the PHP script collects all such cases for a

particular reaction and classifies the reaction accordingly.

Cycles from Unbounded Dominance Calculations During the partitioning process,

whenever a solution is found in which the metabolite-reaction pair obtains unbounded

supremacy/dominance, the pair is recorded, along with a list of reactions whose fluxes are

unbounded for the solution. These lists can be used to construct cycles by constructing

a graph for each list, where the graph contains reactions that are in the list. The object-

oriented model program discussed in section 2.3.1 is used for this.

3.3 Finding the Minimal Environment

An AMPL script is used to compute the minimal environment for various growth rates by

iterating over a set of discrete growth rate values. For each growth rate, k, the flux of

the reaction “Growth” is fixed to k. Each import-reaction is added to the set of unfixed

reactions, UNFIXED, which is the set of reactions whose fluxes are bounded by a common

upper bound, B. The script enters a loop that iterates until the fluxes of reactions in

UNFIXED can be minimized to zero, which is guaranteed to occur when the set is empty.

In each iteration, B is minimized under the constraint that the growth rate is attainable.
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The resulting solution contains a subset of UNFIXED whose elements have fluxes that are

equal to B. Most likely, all of these fluxes are equal to B because they are limiting at the

value given by B and cannot be lowered, but it is possible that some of them could be

lowered and merely attain a flux of B arbitrarily. Every flux is fixed to the value given in

the solution. In order to identify reactions that are limiting, a loop is entered that iterates

over each import-reaction that has attained flux B. The reaction’s flux is unfixed and

minimized, then fixed again. If it cannot be minimized below B, then it is limiting with

flux B. It is removed from the set UNFIXED and added to the set FIXED and the flux is

recorded.

After this is repeated for each reaction, the set UNFIXED is guaranteed to have lost

elements, because some import-reaction must be limiting in order for B to be nonzero,

and all such reactions are added to FIXED. Eventually, either UNFIXED is empty or B is

zero, at which point the fluxes are recorded and represent the minimal environment for the

network.

3.4 Finding all Cycles

A depth-first-search is used to find all cycles in the network. All possible paths through the

network from each reaction are traversed. Paths that return to the starting reaction are

cycles. The union of the sets of all cycles for all reactions forms the set of all cycles in the

network.

3.4.1 Initial Algorithm

This algorithm traverses every path in the network that starts at the root and does not

visit any vertex twice, with the exception of the terminating vertex. Paths that terminate
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at the root vertex are identified as cycles. Pseudo-code is shown in Listing 3.1.

Listing 3.1: Pseudo-code for the initial algorithm showing how the network is traversed.

getCyc l e s ( Graph graph ) {

while ( graph . hasNextVertex ( ) ) {

ver tex = graph . getNextVertex ( ) ;

Graph s ta r tCyc l e = new Graph ( ) ;

ge tCyc le sHe lper ( vertex , vertex , s t a r tCyc l e ) ;

}

}

getCyc le sHe lper (Node root , Node v i s i t i n g , Graph c y c l e ) {

v i s i t i n g . v i s i t e d = fa l se ;

c y c l e . add ( v i s i t i n g ) ;

while ( v i s i t i n g . hasNextChild ( ) ) {

c h i l d = v i s i t i n g . getNextChi ld ( ) ;

i f ( c h i l d == root ) {

c y c l e . add ( root )

p r i n t c y c l e ;

}

else i f ( c h i l d . v i s i t e d ) {

getCyc le sHe lper ( root , ch i ld , c y c l e ) ;

}

}

c y c l e . remove ( v i s i t i n g ) ;

v i s i t i n g . v i s i t e d = true ;

}
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3.4.2 Modified Algorithm

Because of problems introduced by the complexity of the initial algorithm (see Section 3.4.3),

a modified version is developed. Given a root vertex, a traversal through the network occurs

until the root vertex is reached, forming a cycle. The recursion of the algorithm is used

for labeling a vertex as being part of a cycle with the root vertex if one of its children has

such a label. This step of the algorithm isn’t intended to find all cycles, but to determine

which vertices are in cycles. A vertex only has to be identified as being part of at least one

cycle to be included in the set of vertices considered by the second step of the algorithm.

Because of this, vertices are only visited once (but may be referenced by vertices directed

to them).

The second step of the modified algorithm is essentially the initial algorithm, but with

the additional condition that child vertices are only visited if they are labeled as vertices

that are in cycles with the root vertex. If the number of reactions in cycles is sufficiently

smaller than the total number of reactions, performance improves because the second step

of the algorithm is only applied to those reactions. This comes at the cost of preprocessing

the reactions with a segment of the algorithm that is less complex (also discussed in Section

3.4.3). Pseudo-code is shown in Listing 3.2, and code used to implement it in Java is shown

in Appendix C.

Listing 3.2: Pseudo-code for the modified algorithm showing how the network is traversed.

getCyc l e s ( Graph graph ) {

while ( graph . hasNextVertex ( ) ) {

ver tex = graph . getNextVertex ( ) ;

r e cur seForCyc l e s ( vertex , ver tex ) ;

bu i ldCyc l e s ( vertex , vertex , new Graph ) ;

}
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}

r ecur seForCyc l e s (Node root , Node v i s i t i n g ) {

v i s i t i n g . v i s i t e d = true ;

while ( v i s i t i n g . hasNextChild ( ) ) {

c h i l d = v i s i t i n g . getNextChi ld ( ) ;

i f ( c h i l d == root )

then {

v i s i t i n g . r eaches ( root ) = true ;

} else i f ( c h i l d . v i s i t e d == fa l se ) {

r ecur seForCyc l e s ( root , c h i l d ) ;

}

i f ( c h i l d . r eaches ( root ) ) {

v i s i t i n g . r eaches ( root ) = true ;

}

}

}

bu i ldCyc l e s (Node root , Node v i s i t i n g , Graph c y c l e ) {

v i s i t i n g . v i s i t e d = fa l se ;

c y c l e . add ( v i s i t i n g ) ;

while ( v i s i t i n g . hasNextChild ( ) ) {

c h i l d = v i s i t i n g . getNextChi ld ( ) ;

i f ( c h i l d . r eaches ( root ) ) {

i f ( c h i l d == root ) {

c y c l e . add ( root )
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pr in t c y c l e ;

}

else i f ( c h i l d . v i s i t e d == true ) {

bu i ldCyc l e s ( root , ch i ld , c y c l e ) ;

}

}

}

c y c l e . remove ( v i s i t i n g ) ;

v i s i t i n g . v i s i t e d = true ;

}

3.4.3 Complexity

Finding cycles for the entire metabolic network is intractable and computationally difficult.

The model has 197 transport reactions that solely import and export metabolites into and

out of the cell. Not including these reactions, E. coli has 631 reactions, with an average

reaction out-degree of c̄ = 35.09 and median out-degree of cm = 11. It is important to

keep in mind that the out-degree of a reaction is not the number of different metabolites

it produces, but the number of reactions that consume a metabolite that it produces. For

small enough subsets of the network, however, enumerating all cycles is reasonable and may

provide useful information.

The complexity of the algorithm is dependent on the network. The first case to consider

is the worst case in which the network is complete and every vertex shares a bidirectional

edge with every other vertex. Another case to consider is the one in which each vertex

has the same out-degree, which may be much smaller than it is for a complete graph. The

modified algorithm does the same thing but only considers vertices that are in cycles. The
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complexity of these cases is as follows, where we consider only the complexity for the first

reaction as a root node. Each reaction must be individually considered as a root node to

find every cycle.

1. Complete: O((V − 1)!), where V is the number of vertices,

2. Each vertex vi with out-degree of ci: O(
∏V

i=1 ci), or O(cV ) for c = ci = cj ∀i, j ≤ V

3. Considering only a subset of the vertices in cycles, V ∗, and each vertex with outdegree

ci : O(V + E) +O(
∏V ∗

i∈I ci), where I indexes V ∗ and E is the number of edges

This problem is most computationally difficult when the network is complete and every

vertex shares a bidirectional edge with every other vertex. For a vertex, the V −1 remaining

vertices are visited. For these vertices, the remaining V − 2 are visited, etc. Continuing in

this fashion, the complexity of the algorithm is O((V − 1)!).

For a network in which each vertex vi has out-degree ci, the number of paths is multiplied

by ci at each vertex indexed by vi, so to traverse every path in the network, the complexity

for the algorithm is O(
∏V

i=1 ci). Estimating each ci as the median, c̄, we have that the

algorithm is O(11631). This is obviously impractical.

The first step of the modified algorithm is of complexity O(V ) because every vertex is

visited exactly once. The first step finds all vertices that are in cycles, V ∗, so the complexity

to find all cycles among these is O(
∏V ∗

i∈I ci), where I indexes V ∗, and the total complexity

is O(V ) +O(
∏V ∗

i∈I ci). We hope that V ∗ is small enough to make computation feasible.
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Results and Conclusions

This chapter includes a discussion of results and interpretations. All results are either for

E. coli, or are not specific to any organism. See the appendices for tables of results when

applicable. Results for FBA analyses and for cycle analysis are given, and future work is

discussed. The model for E. coli is the iJE660a genome scale model [3], which can be used

to reference reactions by acronyms in the FBA model. A newer model has been developed

for E. coli, iJR904, with improved capabilities [5].

4.1 Network Partition

A partition of the network is given in Appendix D. The LFN makes up 93/631, or 14.7%,

of the network, the IFN makes up 105/631, or 16.6%, and the HFN makes up 433/631, or

68.7%. What is surprising is that most reactions can, under some circumstances, simul-

taneously dominate production and consumption of metabolites (reactions in the HFN).

Each metabolite is associated with an average of 2.96 reactions, and only one of them can

dominate consumption and only one can dominate production of the metabolite for each
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solution. Because there are infinitely many solutions, we should expect that the dominant

consumers and producers of metabolites should vary. It is important to keep in mind that

different components of any biological organism are more or less critical and more or less

used than others. In a metabolism, some pathways are very important and are used in nearly

every steady-state condition. These include the TCA cycle, shown in Figure 1.2, which is

included in the HFN in its entirety. This is a good indication that the HFN contains some

of the more heavily used and maybe more important pathways.

A possible interpretation of the size of the HFN being quite large relative to the other

parts of the partition is that E. coli contains many reactions and pathways that are specially

suited for particular environments. More than two-thirds of the network can be dominant

consumers and producers simultaneously. Many of these reactions may only achieve large

fluxes, relative to other reactions, in the particular types of environments that they are

suited for. Growth in an aerobic environment, for example, is known to require a very

different set of active pathways than anaerobic growth. In oxygen-rich environments, many

reactions that are specific to anaerobic growth are not used heavily, if at all. These reactions

become critical when oxygen is limiting, however. Because E. coli can adapt to achieve

maximal growth in a wide array of environments, it contains many reactions that are heavily

used under specific circumstances.

4.2 Minimal Environment

The minimal environment for E. coli is shown in Figure 4.2 for different growth rates.

Inorganic phosphate has the highest required import flux-per-unit of growth for nearly all

growth rates, and a second group of 41 reactions all tie for the next highest required flux

for nearly all growth rates.
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Figure 4.1: Minimal environment fluxes for E .coli. Red values correspond to high growth
rates and blue values correspond to low growth rates. Flat regions identify metabolites that
can be substitutes for one another.

The flux of every metabolite-import reaction correlates piecewise-linearly with the growth

rate, with the exception of alanine and glycine. This correlation is linear in segments for

these metabolites. There is one growth rate value at which the rate of flux-per-unit growth

increases for glycine, and two such growth rates for alanine. This behavior is illustrated in

Figure 4.2. For both alanine and glycine, there are growth rates before which growth can

be achieved without using them, but after which they are required.

The large flat region in Figure 4.2 begs the question of whether the metabolites it

includes are somehow related in a significant way. Each of these 41 metabolites have exactly

the same minimal import-fluxes, with the exception of alanine, for growth rates that are

less than 0.2. The answer to this question is that these metabolites are related in that

they all provide raw materials required to make the same required resource. Growth can
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Figure 4.2: Minimal flux versus growth rate for three metabolites in E. coli. The relationship
is non-linear for alanine and glycine.

be achieved for E. coli by either manufacturing certain metabolites from raw materials, or

by importing the metabolites directly. Complex resources can also be broken down and

converted into needed metabolites.

Many different metabolites can be used to provide the same function or to produce

the same necessary metabolites. In this case, growth is not limited by any resource of the

group in particular, but by the aggregate quantity of all resources in the group. For this

reason, when the minimal environment is calculated, the upper bound for these metabolites

is common among the group. If any metabolite in the group had a higher import-flux than

another, a trade-off could be made where the import-flux of the first metabolite is decreased

and the flux of the other is increased.

4.3 Cycles and Unbounded Dominance
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Table 4.2: Intermediate Flux Network of E. coli.
Reactions
ADHEx1 ALDA DCUAx1 GALU GPSAx1 PGIx1

ADK ALR FRDA GLTP NDK PGIx2
ADKx1 DADX GALF GPSA PGI SDHA
Metabolites

ADP ATP FADH GL3P NAD SUCC
ALA bDG6P FUM GTP NADH T3P2
AMP DALA G1P HEXT NADP UDPG
ASP F6P G6P LACAL NADPH UTP

ASPxt FAD GDP LLAC PPI

Table 4.1: Non-transport re-

actions not in cycles.

Reactions

FADL PNUC

FADLx1 PNUE

FADLx2 R0017

Growth R0018

All Cycles Unfortunately, 622 reactions are found to be in cycles

(none of which are transport reactions). Only 8 reactions, not in-

cluding transport reactions, are not found in cycles, and are shown

in Table 4.1 . This means that the complexity of enumerating every

cycle, estimated using the median reaction out-degree, cm = 11, is

O(631) + O(11622). This is still too difficult to compute. We see

that almost every reaction in E. coli’s metabolic network’s is in a

cycle, so the intractability of the problem is unavoidable, and the

cycles are not enumerated.

Dominance Cycles There are 52 metabolite-reaction pairs with

unbounded supremacy for E. coli. Results are the same under both

the M9-minimal environment, which is a commonly used medium

in wetlab work, and unbounded environment. This is not surprising because unbounded

supremacy appears to be driven by the existence of cycles, which can have arbitrary fluxes

as long as the appropriate metabolites exist in non-zero quantities. These pairs contain 18

reactions and 29 metabolites, listed in Table 4.2 .
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Figure 4.3: Cycles found by dominance calculations for E. coli with M9. These cycles are
all disjoint.

The cycles characterized by these reactions are shown in Figure 4.3. The cycles corre-

sponding to individually generated sets of reactions from dominance calculations are either

equal or disjoint. They are equal when the dominating reactions that generate them are in

the same cycle.

The ATP drain, ATPM, discussed in Section 1.4, limits the number of unbounded

cycles. When its flux is not fixed, there are 698 metabolite-reaction pairs with unbounded
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supremacy, which include 182 reactions and 139 metabolites. The cycles that they generate

are also disjoint, as expected. Additionally, the intersection of the set of cycles generated

with the flux of ATPM unbounded and the set of cycles generated with the flux bounded is

exactly the set of cycles generated with the flux bounded. That is, by removing the bounds

on ATPM’s flux, no new cycles are generated that do not include ATPM.

4.4 Future Work

Flux balance analysis is an attempt to simplify extremely complex biological systems to

make them more manageable for the purpose of computational and mathematical study.

There are still many unanswered questions about what the most appropriate methods for

applying the model are, and about how the model should be modified to most closely

emulate living organisms. In this project, we investigate aspects of the metabolic network

as it behaves independent of the other networks. The protein interaction and gene regulatory

networks, discussed in Section 1.1, are also important. Developing a model that accounts

for all three networks and how they affect each other would probably be much more reliable

and robust. Incorporating all three networks into a single model should be considered for

future work.

The partition formed by the LFN, IFN, and HFN should be more closely inspected.

Known biological pathways should be classified as being contained by one or more parts in

order to determine what characteristics reactions and pathways generally have when they

are partially or completely contained by each of the parts. This partition could potentially

be used to develop a systematic method to classify regions of metabolic networks in one or

more useful ways for any organism.

The partition formed by the LFN, IFN, and HFN is independent of any solution, but
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dominances are calculated for each solution. Consider the partition LFN*(s), IFN*(s),

HFN*(s), the HFN, IFN, LFN where the solution space is a single solution. An interesting

result would be to find the average distribution of reactions into LFN*(s), IFN*(s), HFN*(s),

for all s ∈ S, where S is the entire solution space. We may define

LFN∗ =
∫

S

|LFN∗(s)|
|M |

, IFN∗ =
∫

S

|IFN∗(s)|
|M |

, HFN∗ =
∫

S

|HFN∗(s)|
|M |

where M is the set of all reactions in the metabolism. This information would give insight

into how many reactions at a given time (for some solution) are maximum producers and

consumers, one of the two, or neither of the two. Note that |HFN*(s)| ≤ |HFN| and

|LFN*(s)| ≥ |LFN| for all s because the definition of the partition is such that a reaction is

excluded from the LFN if it can dominate for any s. Considering more solutions decreases

the number of reactions in the LFN and increases the number of reactions in the HFN

and IFN. This could be considered in future work, along with other interesting or useful

properties of the network associated with the partition.

The algorithms developed for finding cycles can be utilized for applications unrelated

to metabolic networks. The object oriented program can be modified and generalized to

serve as a toolbox for creating graphs, visualizing them, and finding cycles in them. With

no great effort, this program could be made useful to individuals using graphs in a wide

variety of contexts, not just cycle analysis of metabolic networks.
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Appendix A

FBA Code

. This appendix contains AMPL code for the FBA model. Files include a script used to

execute the code, the model file, a data file for the network, and a data file for resources.

The data used is from the example in Section 1.4.2.

Listing A.1: The AMPL script. This is used to set various solver options load the model

and data files and solve the problem.

#!/ usr / l o c a l / bin /ampl

model fba . mod ;

data iJE660a . dat ;

data iJE660a env . dat ;

l e t { j in FLUXI} Ubd [ j ] := Ubd2 [ j ] ;

l e t { j in FLUXI} Lbd [ j ] := Lbd2 [ j ] ;

opt ion s o l v e r ”/ usr / l o c a l /ampl/cplexamp” ;

opt ion c p l e x o p t i o n s ’ pr imalopt ’ ;

opt ion p r e s o l v e e p s 2 .16 e−05;

s o l v e ;
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opt ion d i s p l a y 1 c o l ’ 100000 ’ ;

d i s p l a y f l x > amplOutput . out ;

d i s p l a y MGrwth ;

Listing A.2: The AMPL model file.

s e t FLUXI ;

s e t FLUXO;

s e t FLUXC;

s e t METS;

s e t FLUX := FLUXI union FLUXC union FLUXO;

s e t PRSI with in {METS, FLUXI} ;

s e t PRSC with in {METS, FLUXC} ;

s e t PRSO with in {METS, FLUXO} ;

param Ai {PRSI} >= 0 ;

param Ac {PRSC} ;

param Ao {PRSO} <= 0 ;

param Ubd {FLUX} ;

param Lbd {FLUX} ;

param Ubd2 {FLUX} ;

param Lbd2 {FLUX} ;

var f l x { j in FLUX} >= Lbd [ j ] , <= Ubd [ j ] ;

maximize MGrwth : f l x [ ”Growth” ] ;
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s u b j e c t to e q c o n s t r a i n t s { i in METS} :

sum { j in FLUXI : ( i , j ) in PRSI} Ai [ i , j ]∗ f l x [ j ] +

sum { j in FLUXC : ( i , j ) in PRSC} Ac [ i , j ]∗ f l x [ j ] +

sum { j in FLUXO : ( i , j ) in PRSO} Ao [ i , j ]∗ f l x [ j ] = 0 ;

Listing A.3: The primary AMPL data file. Bounds are defined for intracellular and export

reactions but not import reactions.

s e t FLUXI :=

R1 R2 ;

s e t FLUXC :=

R3 R4 R5 ;

s e t FLUXO :=

R6 R7 R8 ;

s e t METS :=

M1 M2 M3 M4 M5 Biomass ;

s e t PRSI :=

M1 R1 1

M2 R2 1 ;

s e t PRSC :=

M1 R3 −1

M3 R3 2

M3 R4 −1
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M4 R4 1

M5 R4 1

M2 R5 −1

M5 R5 −1

Biomass R5 1 ;

s e t PRSO :=

Biomass R6 −1

M2 R7 −1

M5 R8 −1;

param : Lbd :=

R3 0

R4 −10

R5 0

R6 0

R7 0 ;

param : Ubd :=

R3 10

R4 10

R5 INFINITY

R6 INFINITY

R7 INFINITY ;

Listing A.4: The AMPL data file in which bounds are defined for import reactions to

control resource availability.

param : Lbd2 :=
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R1 0

R2 0 ;

param : Ubd2 :=

R1 INFINITY

R2 INFINITY ;



Appendix B

Partitioning the Network

This appendix contains code for creating the network partition. Reactions go through a

first cut and are classified as in the LFN, or in one of the HFN/IFN. The first cut is made

by AMPL, and the second and final cut is made by PHP.

Listing B.1: Code for the AMPL file should go here

#! / usr / l o c a l / bin /ampl

# Read the model and dat f i l e s

model e c o l i . mod ;

data iJE660a ATP unbounded . dat ;

data iJE660a env . dat ;

# make sure we get the c o r r e c t environment v a r i a b l e s

l e t { j in FLUXI} Ubd [ j ] := Ubd2 [ j ] ;

l e t { j in FLUXI} Lbd [ j ] := Lbd2 [ j ] ;

# Turn o f f that darn p r e s o l v e and use o r i g i n a l s t a r t i n g po in t s
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opt ion p r e s o l v e 0 ;

opt ion r e s e t i n i t i a l g u e s s e s 1 ;

# s o l v e the o r i g i n a l problem

s o l v e ;

d i s p l a y f l x [ ”Growth” ] ;

e x i t ;

# add parameter to check that one o f p o s i t i v e or negat ive f l ows i s

f e a s i b l e

param FeasCheck ;

# add paramter i n d i c a t i n g p o s i t i v e f low , FlowDir = 1 ,

# or negat ive f low , FlowDir = −1;

param FlowDir ;

param Progress ;

param S i z e ;

# add the in f−norm bounding v a r i a b l e

var w;

# Add c o n s t r a i n t to make sure s i gn o f w i s c o r r e c t

s u b j e c t to SignFlxBound : FlowDir ∗ w >= 0 ;

# Add in f−norm type bounds

s u b j e c t to FlowBound { i in TESTMETABOLITE, j in NOTTESTFLUX} :

FlowDir ∗ Aceq [ i , j ]∗ f l x [ j ] <= FlowDir ∗ w;

# make sure the metabo l i t e i s moving in the c o r r e c t d i r e c t i o n

s u b j e c t to SignedFlow { i in TESTMETABOLITE, j in TESTFLUX} :
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FlowDir ∗ Aceq [ i , j ] ∗ f l x [ j ] >= 0 ;

# Fix the o b j e c t i v e va lue

f i x f l x [ ”Growth” ] ;

# add new o b j e c t i v e s for f l ows .

maximize MaxMetFlow :

sum { i in TESTMETABOLITE, j in TESTFLUX}

FlowDir ∗ Aceq [ i , j ] ∗ f l x [ j ] − FlowDir ∗ w;

o b j e c t i v e MaxMetFlow ;

l e t S i z e := card (METS) ;

#pr in t ” s i z e o f f l u x c ” ;

#pr in t card (FLUXC) ;

# Remove the output and log f i l e

s h e l l ’rm −r f cutOneHFB ’ ;

s h e l l ’rm −r f Log ’ ;

l e t Progres s := 0 ;

for { i in METS} {

l e t Progres s := Progress +1;

p r i n t ” Progress :∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ” ;

p r i n t 100∗( Progres s / S i z e ) ;

l e t TESTMETABOLITE := { i } ;

# t e s t metabo l i t e s i n to r e a c t i o n s ( p o s i t i v e c o e f f i c i e n t s )

for { j in FLUXC: ( i , j ) in PRSCEQ and Aceq [ i , j ] <> 0} {

# get the r e a c t i o n ( f l u x ) to be t e s t e d

l e t TESTFLUX := { j } ;

# get the r e a c t i o n s to compare with

l e t NOTTESTFLUX :=
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{k in FLUXC: ( i , k ) in PRSCEQ and Aceq [ i , k ] <> 0} d i f f TESTFLUX

;

# Set FeasCheck to 0 − i . e . f a i l

l e t FeasCheck := 0 ;

# Make sure metabo l i t e s are headed in to r e a c t i o n s

l e t FlowDir := 1 ;

# s o l v e the problem

s o l v e ;

# repor t connect ion

# repor t connect ion

i f match ( so lve message , ” optimal s o l u t i o n ” ) then {

# Add the l i n k i f r e a c t i o n dominates metabo l i t e consumption

i f MaxMetFlow >= 0 then {

p r i n t f ”%s \ t %s \ t %4.4 f \ t %4.4 f \ t %4.4 f \ t %d \n” ,

i , j , MaxMetFlow , Aceq [ i , j ] , f l x [ j ] , FlowDir >> cutOneHFB

;

} ;

#Set FeasCheck to 1 − i . e . i t passed

l e t FeasCheck := 1 ;

} else i f match ( so lve message , ”unbounded problem” ) then {

p r i n t f ”%s \ t %s \ t I n f i n i t y \ t %4.4 f \ t %4.4 f \ t %d \n” ,

i , j , Aceq [ i , j ] , f l x [ j ] , FlowDir >> cutOneHFB ;

#Set FeasCheck to 1 − i . e . i t passed

l e t FeasCheck := 1 ;

} ;

# Make sure metabo l i t e s are headed out o f r e a c t i o n s

l e t FlowDir := −1;

# s o l v e the problem
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s o l v e ;

# repor t connect ion

i f match ( so lve message , ” optimal s o l u t i o n ” ) then {

# Add the l i n k i f r e a c t i o n dominates metabo l i t e consumption

i f MaxMetFlow >= 0 then {

p r i n t f ”%s \ t %s \ t %4.4 f \ t %4.4 f \ t %4.4 f \ t %d \n” ,

i , j , MaxMetFlow , Aceq [ i , j ] , f l x [ j ] , FlowDir >> cutOneHFB

;

} ;

#Set FeasCheck to 1 − i . e . i t passed

l e t FeasCheck := 1 ;

} else i f match ( so lve message , ”unbounded problem” ) then {

p r i n t f ”%s \ t %s \ t I n f i n i t y \ t %4.4 f \ t %4.4 f \ t %d \n” ,

i , j , Aceq [ i , j ] , f l x [ j ] , FlowDir >> cutOneHFB ;

#Set FeasCheck to 1 − i . e . i t passed

l e t FeasCheck := 1 ;

} ;

#I f FeasCheck = 0 , then both FlowDir are i n f e a s i b l e , which i s

# i s an e r r o r . Record t h i s in a log f i l e

i f FeasCheck <> 1 then {

p r i n t f ”%s and %s was i n f e a s i b i l i t y in both f low d i r e c t i o n s .\n”

,

i , j >> LogLFN

} ;

} ;

} ;
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Listing B.2: Code for the PHP file should go here

#!/ usr / b in /php/

<?php

$amplHFNIFN = explode ( ”\n” , f i le get contents ( $argv [ 1 ] ) ) ;

$amplLFN = explode ( ”\n” , f i le get contents ( $argv [ 2 ] ) ) ;

$rcnt = 0 ;

$LFN = array ( ) ;

#This loop reads in the l o g g e d LFN r e a c t i o n s . Note t h a t some o f t h e s e

might show up in the HFN or IFN f o r d i f f e r e n t m e t a b o l i t e−r e a c t i o n

p a i r s . This i s taken care o f a f t e r the HFN and IFN have been found .

for ( $k=0; $k<s izeof ($amplLFN) ; $k++) {

i f (preg match ( ”/\S+\s+\S+\s+\S+\s+\S+\s+\S+/” , trim ($amplLFN [ $k

] ) , $junk ) > 0) {

$ l i n e = p r e g s p l i t ( ”/\ s+/” , $amplLFN [ $k ] ) ;

array push ($LFN, $ l i n e [ 1 ] ) ;

}

}

#This loop reads in the l o g g e d HFN−IFN r e a c t i o n s .

for ( $k=0; $k<s izeof ($amplHFNIFN) ; $k++) {

i f (preg match ( ”/\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+/” , trim ($amplHFNIFN [ $k

] ) , $junk ) > 0) {

$ l i n e = p r e g s p l i t ( ”/\ s+/” , $amplHFNIFN [ $k ] ) ;

$prod = f loatval ( $ l i n e [ 3 ] ) ∗ f loatval ( $ l i n e [ 5 ] ) ;

i f (preg match ( ”/\w+/” , $ l i n e [ 1 ] , $junk ) > 0) {

$ r e a c t i o n s [ $rcnt ] = $ l i n e [ 1 ] ;

$ rcnt++;
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}

$inpNum [ $ l i n e [ 1 ] ] = 0 ;

$outNum [ $ l i n e [ 1 ] ] = 0 ;

}

}

$inpCnt = 0 ;

$outCnt = 0 ;

#This loop counts the number o f m e t a b o l i t e s t h a t a r e a c t i o n dominates

consumption and product ion o f .

for ( $ i =0; $i<s izeof ($amplHFNIFN) ; $ i++) {

i f (preg match ( ”/\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+/” , trim ($amplHFNIFN [

$ i ] ) , $junk ) > 0) {

$ l i n e = p r e g s p l i t ( ”/\ s+/” , $amplHFNIFN [ $ i ] ) ;

$prod = f loatval ( $ l i n e [ 5 ] ) ;

i f ( $prod < 0) {

$ inputs [ $inpCnt ] = array ( $ l i n e [ 0 ] , $ l i n e [ 1 ] , $ l i n e [ 3 ] ,

$ l i n e [ 6 ] , $ l i n e [ 2 ] ) ;

$inpCnt++;

$inpNum [ $ l i n e [ 1 ] ]++;

} else i f ( $prod > 0) {

$outputs [ $outCnt ] = array ( $ l i n e [ 1 ] , $ l i n e [ 0 ] , $ l i n e

[ 3 ] , $ l i n e [ 6 ] , $ l i n e [ 2 ] ) ;

$outCnt++;

$outNum [ $ l i n e [1 ] ]++;

} else echo ”There ’ s a zero d i r e c t i o n−something ’ s wrong\n” ;

}

}
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#Remove d u p l i c a t e r e a c t i o n s .

$react ionsUnique = array values (array unique ( $ r e a c t i o n s ) ) ;

$hfnCnt = 0 ;

$IFN = array ( ) ;

#This loop checks the number o f m e t a b o l i t e s a r e a c t i o n dominates in and

out . I f i t can ’ t do both , i t must be in the IFN .

for ( $ i =0; $i<s izeof ( $react ionsUnique ) ; $ i++) {

i f ($inpNum [ $react ionsUnique [ $ i ] ] > 0 &&

$outNum [ $react ionsUnique [ $ i ] ] > 0) {

$HFN[ $hfnCnt ] = $react ionsUnique [ $ i ] ;

$hfnCnt++;

} else {

array push ($IFN , $react ionsUnique [ $ i ] ) ;

}

}

sort ($IFN) ;

#Any r e a c t i o n s in the HFN and IFN are removed from the i n i t i a l s e t o f

LFN r e a c t i o n s .

$LFNUnique = array values (array unique ( a r r a y d i f f ( a r r a y d i f f ($LFN, $HFN)

, $IFN) ) ) ;

#Write the p a r t i t i o n to f i l e .

f i l e p u t c o n t e n t s ($amplHFNIFNs [ ”HFN” ] , implode ( ”\n” , $HFN) ) ;

f i l e p u t c o n t e n t s ($amplHFNIFNs [ ”IFN” ] , implode ( ”\n” , $IFN) ) ;

f i l e p u t c o n t e n t s ($amplHFNIFNs [ ”LFN” ] , implode ( ”\n” , $LFNUnique ) ) ;

?>



Appendix C

Cycle Analysis Code

This appendix shows highlights of the Java implementation of the cycle finding algorithm

and associated data structure.

Listing C.1: Code for the modified algorithm should go here

public void getCyc l e s ( S t r ing d i r e c t o r y ) {

hashCodes = new ArrayList<Integer >(1) ;

for ( int i = 0 ; i < cycReact ions . s i z e ( ) ; i++) {

r ecur seForCyc l e s ( cycReact ions . get ( i ) , cycReact ions . get ( i

) , d i r e c t o r y ) ;

bu i ldCyc l e s ( cycReact ions . get ( i ) , cycReact ions . get ( i ) ,

new Graph ( ) , d i r e c t o r y ) ;

for ( int j = 0 ; j < cycReact ions . s i z e ( ) ; j++) {

cycReact ions . get ( j ) . v i s i t e d = fa l se ;

cycReact ions . get ( j ) . reachesRoot = fa l se ;

cycReact ions . get ( j ) . l i s tOfOutgo ingCyc l e s = new

ArrayList<Reaction >(1) ;

}
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}

return ;

}

private void r ecur seForCyc l e s ( Reaction root , Reaction vertex , S t r ing

d i r e c t o r y ) {

ArrayList<Reaction> nextRxns = vertex . getNextReact ions ( this ) ;

int numNextRxns = nextRxns . s i z e ( ) ;

ve r tex . v i s i t e d = true ;

for ( int i = 0 ; i < numNextRxns ; i++) {

i f ( nextRxns . get ( i ) . equa l s ( root ) ) {

ver tex . reachesRoot = true ;

ve r tex . l i s tOfOutgo ingCyc l e s . add ( root ) ;

} else i f ( ! nextRxns . get ( i ) . v i s i t e d ) {

r ecur seForCyc l e s ( root , nextRxns . get ( i ) ,

d i r e c t o r y ) ;

}

i f ( nextRxns . get ( i ) . reachesRoot ) {

ver tex . reachesRoot = true ;

ve r tex . l i s tOfOutgo ingCyc l e s . add ( nextRxns . get ( i ) )

;

}

}

}

private void bu i ldCyc l e s ( Reaction root , Reaction vertex , Graph cyc le ,

S t r ing d i r e c t o r y ) {

ver tex . v i s i t e d = fa l se ;
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c y c l e . addReaction ( ver tex ) ;

ArrayList<Reaction> outgo ingCyc les = vertex . l i s tOfOutgo ingCyc l e s

;

for ( int i = 0 ; i < outgo ingCyc les . s i z e ( ) ; i++) {

i f ( outgo ingCyc les . get ( i ) . equa l s ( root ) ) {

c y c l e . addReaction ( root ) ;

// Write to F i l e ///////////////////////////////

int hash = c y c l e . getSortedHash ( ) ;

i f ( ! hashCodes . conta in s ( hash ) ) {

c y c l e . w r i t e F i l e ( d i r e c t o r y + ”/ c y c l e s /

c y c l e ” + cyc leCounter ) ;

cyc leCounter++;

hashCodes . add ( hash ) ;

}

c y c l e . removeForwardEdge ( vertex , root ) ;

} else i f ( outgo ingCyc les . get ( i ) . v i s i t e d ) {

c y c l e . addForwardEdge ( vertex , outgo ingCyc les . get (

i ) ) ;

bu i ldCyc l e s ( root , outgo ingCyc les . get ( i ) , cyc l e ,

d i r e c t o r y ) ;

c y c l e . removeForwardEdge ( vertex , outgo ingCyc les .

get ( i ) ) ;

}

}

c y c l e . cycReact ions . remove ( ver tex ) ;

ver tex . v i s i t e d = true ;

}



Appendix D

Partition Results

The following tables list reactions found to be in the LFN, IFN, and HFN for E. coli.

Table D.1: Low Flux Network of E. coli.

Low Flux Network of E. coli

ACPS CYOE EPD HEMA HEMX MENDx1 PDXA RHAD THIM UBIG

ADKx2 CYSG FUCA HEMB HYAA MENE PDXB RHAT THIN UBIH

ATOB CYSGx1 FUCI HEMC ISPA MENF R0008 SAPA THRCx1 YAES

BIOA DEOAx1 FUCK HEMD ISPAx1 MENG R0010 SERCx1 TNAAx1

BIOB DPPA FUCO HEME ISPB NAGA R0011 THIB UBIA

BIOD ENTA FUCP HEMF MALX NAGE R0012 THIC UBIB

BIOF ENTB GALM HEMG MENA NANA R0019 THID UBIC

BRNQ ENTD GOR HEMH MENB NANT R0020 THIG UBID

CADA ENTE GSHA HEML MENC NHAA RHAA THIK UBIE

CPSG ENTF GSHB HEMM MEND OPPA RHAB THIL UBIF

Table D.2: Intermediate Flux Network of E. coli.

Intermediate Flux Network of E. coli

ADD CDD EDD GLNA GUAC NAGB PNTA R0016 TDKx1 USHAx8

Continued on next page
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Table D.2 – continued from previous page

Intermediate Flux Network of E. coli

ADHEx1 CDH FABB GLTB KDPA NUPGx5 PNTB R0021 TNAA USHAx9

ADKx4 CLS FABBx1 GLTJ LIG PCKA PPC R0022 UDKx1 YBAS

AGP COAE FABBx2 GLTK LIVJx1 PDXK PROA R0025 UPP YGJG

AMN CODA FABBx3 GLTP LPXA PDXKx1 PROV R0028 USHA YICP

ANSA CYCAx1 FABF GPT MAEA PDXKx2 PURA RIBA USHAx1 YNBA

APT CYCAx5 FADB GPTx1 MAEB PFKA PUTAx1 RIBB USHAx10

ARAF CYSK FBP GPTx2 METK PGL PYRG SDAA USHAx11

ARGEx1 DADX FOLE GSK MURA PGSA R0006 SERA USHAx5

ARGT DUT GALF GSKx1 MURI PNCB R0009 SERB USHAx6

ASPA EDA GLK GUAB MUTT PNCC R0015 TDK USHAx7

Table D.3: High Flux Network of E. coli.

High Flux Network of E. coli

ACCA AVTA DSDA GLGP ILVCx1 MTLD NUPGx8 PTA R0033 TPIA

ACEA BGLX ENO GLMM ILVD MURB NUPGx9 PTSG R0034 TREA

ACEB CARA FABBx4 GLMS ILVDx1 MURC PABA PURB R0035 TREC

ACKA CDDx1 FABD GLMU ILVE MURD PABC PURBx1 R0036 TRKA

ACNA CDSA FABH GLNH ILVEx1 MURE PANB PURBx2 R0037 TRPA

ACS CMK FADA GLPD ILVEx2 MURF PANC PURC RBSA TRPC

ADDx1 CMKx1 FADD GLPF ILVN MURG PAND PURD RBSK TRPCx1

ADHC CMKx2 FADE GLPK KBL MUTTx1 PANE PURE RFAL TRPD

ADHE COAA FADL GLPT KDSA MUTTx2 PANF PURF RIBD TRPDx1

ADK CODB FADLx1 GLTA KDSB NADA PAT PURH RIBDx1 TRXB

ADKx1 CYCA FADLx2 GLTPx1 KDTA NADB PDXH PURHx1 RIBE TYNA

ADKx3 CYCAx2 FBAA GLYA KDTAx1 NADC PDXHx1 PURK RIBF TYRA

ALAB CYCAx3 FDHF GLYAx1 KDTB NADD PDXHx2 PURL RIBFx1 TYRB

ALDA CYCAx4 FDNG GLYAx2 KGTP NADDx1 PDXHx3 PURM RIBH TYRBx1

ALDH CYDA FOCA GMK LACY NADE PFKB PURN RPE TYRP

ALR CYOA FOLA GMKx1 LEUA NADF PFLA PURT RPIA UDK

AMTB CYSC FOLB GND LEUB NDH PFS PURU SAD UDP

ARAA CYSD FOLC GNTS LEUC NDK PGI PUTA SCR URAA

Continued on next page
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Table D.3 – continued from previous page

High Flux Network of E. coli

ARAB CYSE FOLD GNTV LIVH NDKx1 PGIx1 PUTP SDAC USHAx2

ARAD CYSH FOLDx1 GPMA LIVJ NDKx2 PGIx2 PYKA SDHA USHAx3

ARAE CYSI FOLK GPSA LIVJx2 NDKx3 PGK PYRB SDHB USHAx4

ARGA CYSP FOLP GPSAx1 LLDP NDKx4 PGM PYRC SERC VGRO

ARGB DADA FRDA GPTx3 LPCA NDKx5 PGPA PYRD SPEA XAPA

ARGC DAPA FRUA GPTx4 LPDA NDKx6 PHEA PYRE SPEB XAPAx1

ARGD DAPB FRUK GUAA LPXB NDKx7 PHEAx1 PYRF SPEC XAPAx2

ARGE DAPC FUMA GUFP LPXC NRDA PITA PYRH SPED XAPAx3

ARGF DAPD GABD Growth LPXD NRDAx1 PLSC R0001 SPEE XAPAx4

ARGG DAPE GABP HISA LPXK NRDAx2 PNCA R0002 SRLA1 XAPAx5

ARGH DAPF GABT HISB LYSA NRDB PNUC R0003 SRLD XAPAx6

AROA DCD GADA HISBx1 LYSP NRDD PNUCx1 R0004 SUCA XAPB

AROB DCTA GALE HISC MANA NRDDx1 PNUE R0005 SUCC XYLA

AROC DCUA GALK HISD MANX NRDDx2 POTA R0007 TALB XYLAx1

AROD DCUAx1 GALP HISE MDH NRDDx3 POTE R0013 TDCC XYLB

AROE DCUB GALPx1 HISF MELA NTPA POXB R0014 TDH XYLE

AROF DDLA GALT HISG MELB NUOA PPA R0017 TDHx1 XYLF

AROK DEOA GALU HISI META NUPG PPSA R0018 THRA YRBH

AROP DEOB GAPA HISJ METB NUPGx1 PROB R0023 THRAx1 ZWF

ARTP DEOBx1 GATA HISM METC NUPGx10 PROC R0024 THRB

ASD DEOC GATD HPT METD NUPGx11 PROW R0026 THRC

ASNA DFP GATY HTRB METF NUPGx2 PRR R0027 THYA

ASNB DFPx1 GCVH ICDA METH NUPGx3 PRSA R0029 TKTA

ASPC DGKA GDHA ILVA MGLA NUPGx4 PSD R0030 TKTAx1

ATPA DLD GLGA ILVB MRAY NUPGx6 PSSA R0031 TMK

ATPM DLDx1 GLGC ILVC MTLA NUPGx7 PSTA R0032 TNAB
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