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Abstract 

The major function of the testes is sperm production. Sperm morphology is incredibly 

diverse both within and across species, and this variation results in part from differences in the 

duration and patterns of cell division during sperm development, or spermatogenesis. To produce 

this diversity, testis architecture may evolve in correlation with sperm morphology, as for 

example, sperm length is correlated with the evolution of thicker epithelia of the seminiferous 

tubules in birds. In this study, I examined relationships between sperm morphology and testis 

size and architecture in a group of 18 species of Anolis lizards from the Dominican Republic and 

Puerto Rico. Using cryosectioned testis tissues, I measured the cross-sectional area (CSA) of 

each testis, the seminiferous tubules within the testis, and the lumina of the tubules, and used the 

latter two measures to calculate the CSA of the epithelium. Moreover, I used a grid to identify 

the proportions of cells belonging to the lumen, epithelium, and interstitial space. Lastly, I 

obtained measures of sperm head, midpiece, and tail lengths for each species (Kahrl 2017, PhD 

dissertation, University of Virginia). After controlling for body size, I found that species with 

larger testes had larger tubules with larger lumina (not epithelia) and that larger testes produced 

sperm with longer heads. Additionally, seminiferous tubules with larger lumina and thicker 

epithelia produced sperm with longer tails. Lastly, I found that the proportion of epithelial cells 

within the testis was not associated with any measure of sperm length or testis size or 

architecture. These results show that future studies of sperm morphology should consider 

measurements of sperm tail, midpiece, and head lengths (instead of only studying overall sperm 

length), as these components show differing relationships with testis architecture, and that the 

evolutionary relationships between testis architecture and sperm morphology differ between 

birds and lizards. 
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Introduction 

An Overview of Sexual Selection 

 Sexual organisms often exhibit enhanced traits that have evolved to increase their 

likelihood of reproductive success. In many taxa, organisms choose mates based on traits that 

reflect overall fitness or genetic quality (reviewed by Andersson & Simmons 2006). These 

traits—which include sexual behaviors, physiology, and morphology—are involved in each 

portion of the reproductive process, from courtship to mate acquisition, through copulation and 

fertilization. In some taxa, animals compete against one another for access to mates (intrasexual 

selection; generally male-male competition for females). Further, some individuals choose their 

mates from among the pool of available mates (intersexual selection; generally females choosing 

males). Intrasexual selection with respect to the male can be further broken down: In addition to 

male-male competition occurring before copulation (precopulatory sexual selection), it also plays 

a role after copulation in polyandrous species via sperm competition (postcopulatory sexual 

selection). Thus, there are many traits at play when examining sexual selection; males may 

evolve larger bodies or weaponry such as sharp teeth or horns to enhance their ability to win in 

male-male combat, or they may evolve elaborate ornamentation such as colorful feathers or 

songs to stand out and be chosen by a female. Moreover, genitalia may evolve characteristics 

that enhance female stimulation or allow sperm to be deposited closer to the female’s ova, and 

sperm may evolve specialized morphology to improve swimming speed or strategy in the face of 

sperm competition. Additionally, female cryptic choice, a poorly understood mechanism by 

which a female influences paternity after copulation, may drive the selection of those pre- or 

postcopulatory traits. Finally, because sperm develop in the testes, selection on sperm 

morphology may also have implications on testis composition.  
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 The complex nature and variety of modes by which sexual selection can act on a set of 

traits, as well as how those traits are related to each other (e.g., via energetic tradeoffs), will be 

explored in this Introduction. However, the core of this thesis assesses the evolutionary 

relationship between testis composition and sperm morphology in a group of Anolis lizard 

species. This is the first study to consider these relationships using multiple components of 

sperm length, and how each of these measures may have independent relationships with various 

aspects of testis composition. 

 

Precopulatory Sexual Selection and Associated Phenotypes  

Sexual Size Dimorphism 

Precopulatory sexual selection occurs across animal taxa and can be driven by male-male 

competition or female-female competition, female or male mate preference, or some 

combination of these factors. In male-male competition, a form of intrasexual selection, the 

reproductive success of the male may be determined by a single characteristic or a suite of traits 

that allows him to outcompete other males. Similarly, such traits may attract a potential female 

mate. Body size is one of the traits most strongly associated with precopulatory competition 

(reviewed by Andersson 1994), and selection for enhanced body size often leads to male-biased 

sexual size dimorphism (mbSSD; male body size is greater than female body size) across a 

variety of taxa (e.g. mammals: Linderfors et al. 2007; birds: Szekely et al. 2007; lizards: Cox et 

al. 2007; amphibians: Kupfer 2007). Andersson (1994) presented several scenarios in which 

mbSSD is advantageous: physical male-male combat (e.g. lizards: reviewed by Stamps 1983; 

mammals: Lindenfors et al. 2007), forceful matings, in which males mount and subdue a female 

to copulate (e.g., insects: Sih & Krupa 1992; birds: McKinney et al. 1983), and endurance 
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activities, in which males that copulate longer have greater paternity success (mammals: Higham 

et al. 2010). In male-male combat, mbSSD can also aid in territory defense. When mating 

success is determined by territory ownership and defense, larger males that are better able to 

defend their territory also have greater opportunities to reproduce (e.g., American rubyspot bird: 

Serrano-Meneses et al. 2007).  

However, females can also exhibit enhanced sexual size dimorphism (female-biased 

SSD; fbSSD). In females, egg production generally increases directly with female body size 

(e.g., insects: Thornhill & Alcock 2014; non-insect invertebrates: Ridley & Thompson 1979; 

fish: Perrone 1978; amphibians: Tilley 1968) because of an increased volume of internal storage 

space (e.g., Williams 1966) or a greater availability of stored energy. A model for this 

relationship between size and fecundity was first introduced by Darwin (1874; critiqued by Shine 

1988) and later bolstered by evidence showing that the capacity for increased energy storage is 

favorable because it compensates for size-related metabolic demands (e.g., Millar and Hickling 

1990). In brief, larger females may also be better at parenting and obtaining food and territory. 

Thus, the phenomenon of fbSSD can also be advantageous to reproductive success, as seen 

throughout most invertebrates and some vertebrates (e.g., baleen whales: Sears & Perrin 2009; 

rabbits: Lindenfors et al. 2007; horned lizards: Zamudio 1998; spiders: Foellmer & Moya-Larano 

2007), but can be disadvantageous in other taxa (yellow-pine chipmunks: Schulte-Hostedde et al. 

2002).  

Alternatively, fbSSD can arise from the prevalence of small males, just as mbSSD can be 

attributed to relatively small females. In the former, some species exhibit protandry, the state at 

which males emerge from development before females in an attempt to secure a mate. In this 

case, having a small body size allows for faster maturation and a greater chance at being the first 
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male to inseminate a female, when compared to larger males that take longer to mature (e.g., 

spiders: Maklakov and Bilde 2004). Similarly, in species with small females, smaller females can 

begin breeding after a shorter maturation period than that of larger females, as seen in female 

weasels Mustela nivalis, which are half the size of males (Erlinge 1979; Ralls & Harvey 1985).  

 

Ornamentation and Behavior  

Beyond sexual size dimorphism, a variety of other traits arising from sexual selection 

exists. Sexually selected traits are often condition-dependent, meaning that they develop in 

relation to an individual’s overall fitness; only males of highest health and condition, and thus 

with high quality genes, are able to dedicate resources to the development of secondary features 

(Williams 1996; Andersson 2006). Some exhibit hyper-sensitive responses to the organism’s 

nutritional and/or physiological state, such that in certain conditions, growth of secondary sexual 

features is exaggerated in comparison to non-sexual traits (rhinoceros beetles: Johns et al. 2014). 

This allows secondary sexual features to serve as a clear signal to potential mates about the 

fitness of the individual (Johns et al. 2014). 

Most secondary sexual traits are those directly associated with male phenotype or 

behavior, such as ornamentation (e.g., elaborate feather coloration), weaponry (e.g., horns or 

teeth), or song. Other sexually selected behavioral traits include those associated with 

athleticism, such as stamina or courtship dances. Athletic or acrobatic behaviors are those that 

utilize muscle movement patterns not typical of routine, non-sexual behaviors. For example, 

males of the golden-collared manakin perform strong muscle contractions that result in a loud 

snapping sound, a tactic used to both court females and compete with males (Fuxjager et al. 

2016). Moreover, males of some species build structures or elaborate nests that influence female 
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mate choice, and thus the quality of those structures also function as sexually selected traits. 

These external, architectural traits are seen across taxa, from hooded burrow entrances and 

pillars built by male fiddler crabs (Christy et al. 2002), to the bowerbirds bowers (reviewed by 

Marshall 1954), and sand craters made by some cichlid fish (Schaedelin & Taborsky 2010).  

 

Postcopulatory Sexual Selection 

 Copulation alone does not always guarantee reproductive success in polyandrous species, 

as paternity studies using molecular (DNA) data have long revealed (reviewed by Hughes 1998). 

Instead, there are a variety of female-mediated roadblocks that may inhibit sperm from reaching 

and fertilizing ova, thus influencing paternity outcomes after copulation. Several of these 

roadblocks and their associated implications in postcopulatory sexual selection are explored here. 

 

Cryptic Female Choice and Sperm Competition 

Many females can select which sperm they will use to fertilize their ova, although 

evidence for how paternity is determined is unclear—hence the phrase “cryptic female choice.” 

One mechanism through which cryptic female choice occurs involves accumulating sperm from 

multiple males before determining paternity. To do this, females of many species have developed 

sperm storage tubules within their oviduct (e.g., mammals: Racey 1979; birds: Birkhead & 

Moller 1993; turtles: Gist & Jones 1989; Anolis lizards: Sever & Hamlett 2002; teleost fish: 

Gardiner 1978) as a means to temporally separate the act of copulation from fertilization, 

perhaps to optimize fitness or increase genetic diversity in their offspring by creating a larger 

pool of potential sires.  
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Other studies have examined how the order of mating events influences sperm 

competition. For example, in a small marsupial species, the second male to mate sires the 

majority of the offspring, but when a female is near ovulation, the first male to mate has greater 

paternity success (Kraaijeveld-Smit et al. 2002). In other species, the most recent male to mate 

has a paternity advantage. Moreover, the duration of sperm viability while in the sperm storage 

ducts may provide more information to the female about the quality of the male (Eberhard 1998).  

Sperm competition is another pressure that drives the wide variability in sperm shape, 

size, and quantity across sexual organisms (Pitnick et al. 2009). Sperm competition occurs when 

sperm must compete against other males’ sperm for storage positions or access to fertilization 

once inside the female. Possible mechanisms of sperm competition operate alongside cryptic 

female choice. For example, organisms with internal fertilization exhibit some degree of spatial 

separation between the ejaculate deposit site and the site of fertilization (Eberhard 1985), where 

sperm must move in order to reach the site of fertilization or secure a place in a sperm storage 

tubule (e.g., mammals: Suarez & Pacey 2006; birds: Birkhead & Moller 1993; spiders: Austad 

1984). This presents the opportunity for faster sperm to reach the fertilization site or sperm 

storage tubules first. Other mechanisms involve direct or indirect displacement of sperm from 

sperm storage tubules (e.g., Gack & Peschke 1994). For example, dragonflies have evolved 

genitalia that can scoop or snag sperm from previous mates and either displace them to a site less 

likely to be used in fertilization or remove them completely (Cordoba-Aguilar et al. 2003), 

crickets use their own ejaculate to flush out sperm from previous mates (Ono et al. 1989), and 

certain sharks and rays use seawater to rid the cloaca of competitors’ sperm (reviewed by 

Eberhard 1985). Another mechanism is sperm stratification, in which each sperm storage tubule 

contains only sperm from a single male, with the sperm from the last male to mate residing in the 
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sperm storage tubule closest to the site of fertilization (e.g., King et al. 2002). Regardless of the 

actual mechanism at play, cryptic female choice and/or sperm competition are strong selective 

pressures on male postcopulatory phenotypes.  

The relationship between sperm design and function has been the focus of many studies. 

In investigating how the degree of sperm competition effects sperm design, Immler et al. (2008) 

found that high levels of sperm competition are associated with low intramale variability in 

sperm morphology, compared to high variability in species that face little sperm competition. 

This trend suggests that in species with strong postcopulatory sexual selection, there may be an 

optimal sperm design, resulting in stabilizing selection and reduced variation in sperm 

morphology within and among species. Moreover, relative testis size is greater in taxa that 

exhibit sperm competition (e.g., mammals: Harcourt et al. 1981; birds: Moller 1991). 

 

Genitalia 

 In many species, male genitalia are ultimately responsible for delivering male gametes to 

the female, therefore genital morphology can play a critical role in determining paternity. In fact, 

male genitalia are one of the fastest evolving traits (reviewed in Eberhard 1985, Klaszco 2016) 

and exhibit high variability, even among closely related species that are otherwise nearly 

identical. There are several selective forces that can drive the evolution of highly specialized 

genitalia, for example: the coevolutionary arms-race between male and female genitalia in an 

attempt to control reproductive outcomes, female preference for males that are good stimulators, 

or female preference for males of high fitness. The former occurs in the face of forced 

copulations, where female genitalia rapidly evolve to obstruct insemination from males of poor 

quality, as exemplified by waterfowl ducks’ spiral, maze-like vagina. From the female ducks’ 
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perspective, only males with a similarly spiraled penis will be capable of penetrating far enough 

to ensure fertilization, thus deeming him fit enough to produce similarly fit offspring (Brennan et 

al. 2007). Indeed, the male waterfowl penis has been a focus of studies in sexual selection for its 

impressive and unusual cork-screw shape and explosive eversion mechanism (e.g., Brennan et al. 

2010). A similar relationship occurs among seed beetles, where the degree of potential harm the 

males’ spiked penis could cause to the female is positively related to the degree of protective 

reinforcement along the females’ copulatory duct (Ronn et al. 2007).  

  

Developmental and Energetic Trade-Offs Arising from Sexual Selection 

The development and maintenance of any one organismal trait is limited by the resources 

and energy available to it. Thus, the enhancement of one trait may come at the expense of 

another. Indeed, many studies have examined this phenomenon among neighboring somatic 

tissues: for example, butterfly larvae of Precis coenia develop disproportionately large adult 

forewings relative to their body size when the precursor hindwing discs are surgically removed 

prior to their development (Nijhout and Emlen 1997), thoracic horned beetles present a tradeoff 

between horn and wing size (Kawano 1995), and head horned beetles exhibit tradeoffs between 

horn and eye size (Nijhout and Emlen 1997). Studies that have examined this phenomenon in 

non-neighboring tissues have found similar patterns; for example, some bat species exhibit 

increased testis mass at the expense of brain size when mated with promiscuous females (Pitnick 

et al. 2006). 

Tradeoffs among precopulatory and postcopulatory sexual traits—that is, resource 

allocation strategies dedicated to either obtaining mates or succeeding in fertilization—have also 

been investigated, but are much more complex. Mathematical theory supports the possibility of 
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developmental tradeoffs between costly sexual traits (Parker et al. 2013). However, across taxa, 

only males that employ female monopolization strategies are candidates for tradeoffs between 

these two categories of traits (Lüpold et al. 2014). For example, in the leaf-footed cactus bug, the 

natural loss of a sexually selected precopulatory weapon leads to greater investment in the testes 

(Joseph et al. 2018) and in horned beetles, experimental restriction of horn development also 

yields greater testes size (Simmons & Emlen 2006). There are also tradeoffs between sexual size 

dimorphism (SSD) and relative testis size among promiscuous species (acanthocephalan worms: 

Poulin & Morand 2000; snakes and lizards: Kahrl et al. 2016) and harem breeders (pinnipeds: 

Fitzpatrick et al. 2012). Other tradeoffs occur between spawning coloration and sperm density 

(Salvelinus alpinus fish: Liljedal et al. 1999), breeding coloration and testes mass 

(Pomatoschistus minutus fish: Kvarnemo et al. 2010), and plumage ornamentation and sperm 

quantity (red-backed fairy-wren bird: Rowe et al. 2010), in addition to a host of other related 

tradeoffs (see Table 1 in Kvarnemo & Simmons 2013). These relationships illustrate the 

importance of considering any one trait as it may relate to other traits within the whole of an 

organism. 
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Introduction to this Thesis 

Sperm Development in the Testes  

The details of sperm development (spermatogenesis) differ across taxa, however, 

amniotes (reptiles, birds, and mammals) exhibit a general testis morphology and spermatogenic 

pattern that is distinct from nonamniotes (fish and amphibians). For amniotes, sperm 

development takes place within the highly convoluted seminiferous tubules within the testis. 

Specifically, spermatogenesis occurs within the seminiferous epithelial tissue that lines the walls 

of the tubules, beginning along the periphery and progressing inward as sperm mature. Mature 

sperm (spermatazoa) accumulate in the lumen and are eventually transported into the epididymis 

via the efferent ductuli where they are stored until ejaculation. This outline of events in the 

process of sperm development and excretion is conserved across amniotes, while more minute 

details vary across taxa (reviewed by Gribbins & Rheubert 2014). One critical difference among 

amniotic taxa lies in the mode of sperm development: Lizards (along with amphibians and other 

reptiles) exhibit temporal germ cell development, where germ cells develop as a single 

population, while birds and mammals exhibit spatial germ cell development, where germ cells 

occupy specific layers in the epithelium based on their stage of development (reviewed by 

Gribbins & Rheubert 2014). 

Because this thesis focuses on Anolis lizards, here I describe an overview of what is 

currently known about the germ cell cycle in lizards. Within the lizard germinal epithelium, pre-

meiotic spermatagonia function as precursor cells that replicate via asymmetric mitotic divisions 

to both maintain a population of germ stem cells and produce differentiable daughter cells. The 

daughter cells then undergo symmetric mitotic expansion before entering the meiotic stage of 

spermatogenesis, where the dividing spermatocytes are easily identified by their stage of meiosis. 
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The haploid daughter cells (spermatids) undergo the final stage of spermatogenesis 

(spermiogenesis) to form mature sperm. Spermiogenesis is characterized by acrosome formation 

followed by elongation and then spermiation of mature sperm into the lumina. Developing sperm 

cells are supported by the nutrient-supplying Sertoli cells in the seminiferous epithelia (reviewed 

by Gribbins & Rheubert 2014).  

Many (but not all) lizards are seasonal breeders. Spermatogenesis generally begins near 

the end of the summer breeding season (in temperate, seasonally breeding species) after most of 

the sperm stored in the epididymis is depleted. At that point, and throughout the rest of the non-

breeding season, the testis works to replenish its store of spermatocytes that will then continue 

developing when temperatures rise in the spring. By the start of the summer breeding season, 

spermiation events begin to occur and males are ready for copulation. Sertoli cells and the pre-

meiotic spermatagonia cells, however, are consistently present in the seminiferous epithelium, 

regardless of seasonal changes (reviewed by Gribbins & Rheubert 2014). 

Because lizards are seasonal breeders, they exhibit an increase in both testis size and 

seminiferous tubule size (but not seminiferous epithelial size) during the summer breeding 

season (Gribbins et al. 2011). Although, seminiferous epithelium width varies with season and 

the stage of spermatogenic cycle (Gribbins & Rheubert 2014). However, no studies have yet 

investigated how testis size and tubule size vary across taxa during the summer breeding season. 

Gribbins and Rheubert (2014) proposed that tubule size may become larger due to an increase in 

the size of the lumina, rather than the seminiferous epithelial tissue, possibly because of an 

accumulation of fluids in the lumina during this season (mammals: Zhou et al. 2001). Beyond 

this, little else is understood about Anolis testis architecture, especially as it relates to sperm 

morphology. 
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As reviewed earlier, there are many ways that postcopulatory sexual selection can act on 

sperm morphology (e.g., modes of cryptic female choice, sperm competition). Not yet discussed 

is how germ cell development strategies contribute to variation in sperm morphology. Germ cell 

development strategies are also highly variable and can differ greatly from one group to another.  

Currently, little is known about germ cell development strategies in lizards (especially in anoles), 

let alone how spermatogenesis is associated with sperm morphology in this taxon. Ramm and 

Schärer (2014) reviewed a variety of germ cell development strategies. For example, if ejaculates 

composed of high levels of mature sperm are associated with greater reproductive success, then 

that selective pressure will be reflected in rates of cell division during spermatogenesis. 

Moreover, changes in female reproductive anatomy may select for specialization in sperm 

morphology, such as tail length, that in turn require sperm to spend more time in the elongation 

stage of spermiogenesis. Furthermore, the outcome of spermatogenesis may vary based on the 

number of spermatagonia germ cells present at the start of sperm development, the number of 

mitotic cells produced, or the rate of both asymmetric and symmetric cell divisions (Ramm & 

Schärer  2014).  

 

Trends in Testis Architecture and Sperm Morphology in Other Taxa 

In birds, sperm length is positively correlated with the size of seminiferous tubules 

(Lüpold et al. 2009).  Moreover, sperm output per unit of time is greater in those individuals with 

larger testes (e.g., invertebrates: Schärer  et al. 2004). However, several studies have shown that 

testis size is not an appropriate proxy for sperm-producing tissue: in rodents with similar testis 

size and sperm output, seminiferous volume varied from 33-92% across individuals within the 

study (Russell et al. 1990); and in birds, seminiferous tissue comprised 88-96% of tubule volume 
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even when there were significant differences in measures of testis morphology across the study 

sample (Lüpold et al. 2009).  

To better understand how testis morphology is implemented in the evolution of sperm 

design and production, Lüpold et al. (2009) measured the testicular cross sectional area, 

seminiferous epithelial thickness, testicular interstitial area, and the thickness of the outer lining 

of the testis, as well as sperm overall length in two families (28 species total). Among these 

traits, they found no relationship between absolute testis size and seminiferous tubule size, but 

found positive relationships between seminiferous tubule size and sperm length, as well as 

between seminiferous epithelial thickness and relative testis size (testis size corrected for body 

size). Moreover, there was a positive relationship between seminiferous epithelial thickness and 

both sperm length and tubule size, but no relationship between lumen area and sperm length or 

tubule size. The authors concluded that the size of seminiferous tubules is more closely linked 

with sperm length than the overall size of the testis. Because the authors used relative testis size 

as a proxy for sperm competition, they also concluded that increased sperm competition is 

positively associated with increased thickness of sperm-producing tissue (i.e., seminiferous 

epithelial tissue). In other words, testis size may be a good proxy for the strength of 

postcopulatory selection, but it is not the only measurement that should be examined in studies of 

postcopulatory sexual selection. 

 

Anoles Lizards: A Model for Sexual Selection 

The genus Anolis is an especially speciose group of lizards, with hundreds of species 

occupying a variety of habitats across a large geographical range (Losos and Schneider 2009). 

Anole species vary greatly in a number of sexually dimorphic traits, including morphology, 
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coloration, and behavior, and are a particularly useful study group for this thesis because they 

exhibit both pre- and postcopulatory sexual selection. Males perform a variety of visual display 

behaviors, including push-ups, head-bobs, and extension of a colorful throat fan called a dewlap, 

that typically precede physical combat and are a central component in courtship. While these 

behaviors—and associated characteristics like dewlap color—are implicated in male mating 

success, male body size may be a predominant predictor of success in aggressive male 

interactions, mate acquisition, and female choice (Cox & Kahrl 2014; but see Bush et al. 2016). 

The degree of male-biased sexual size dimorphism across species of anoles varies greatly, where 

some species’ males have snout-vent-lengths (SVLs) that are up to 50% longer than their female 

counterparts, while some have females with SVLs that are 20% longer than males (Cox et al. 

2007). Further, there is a widespread tradeoff between SSD and testis size across anoles and 

other squamates (Kahrl et al. 2016).  

 Anoles are also polygamous; males exhibit sperm competition, females have specialized 

sperm storage tubules that can store sperm for over a year (Birkhead & Moller 1993; Holt & 

Lloyd 2010), and females produce clutches of multiple paternity (Calsbeek et al. 2007). In 

experiments with sequential mating schemes, females show paternity bias towards the first 

fertilization (Duryea et al. 2013), yet it is unclear if this outcome is due to cryptic female choice, 

sperm competition, or both. To quantify rates of evolution among testis size and sperm 

morphology in Anolis lizards, Kahrl et al. (unpublished) collected testis volume, and sperm head, 

midpiece, and tail measurements of 15 mature sperm cells per male for 18 species (2-20 males 

per species, average = 15 individuals per species). They found that the sperm midpiece evolves 

2-3 times faster than the sperm head or tail, while testis size evolves 10-30 times faster than any 

one measure of sperm morphology. They concluded that increased postcopulatory sexual 
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selection (i.e., sperm competition) may select for larger testes and therefore greater sperm 

production, rather than sperm morphology. 

 The relationships among testis composition, spermatogenesis, and sperm morphology 

remain poorly understood in lizards. Lizards are no exception to the widespread pattern of highly 

diverse sperm morphology, yet it is unclear what postcopulatory sexual selection mechanism 

drives such diversity in this group. Further investigation is needed to better understand how the 

machinery responsible for sperm production may influence the evolution of sperm morphology, 

or vice versa. In this thesis, I examine the relationships between SSD, absolute and relative testis 

size, testis composition, proportions of testicular cell types, and three components of sperm 

morphology to gain a greater understanding of 1) resource allocation strategies in the adult male 

and 2) the mechanism by which postcopulatory sexual selection acts on male reproductive 

features. Specifically, I aim to test whether some aspects of testis composition are more strongly 

associated with testis size than others, whether three components of sperm morphology (i.e., 

sperm head, midpiece, and tail lengths) are independently associated with different measures of 

testis composition, and whether there is a tradeoff between the proportion of spermatogenic cells 

and sperm length.  

   

Hypotheses 

Based on previous literature, I expect that the evolution of testis size and composition is 

associated with the evolution of sperm morphology across species. First, because it has been 

shown that both testis size and seminiferous tubule size increase during the summer breeding 

season (Gribbins & Rheubert 2014) most likely due to the accumulation of seminal fluids in the 

lumina, as seen in mammals (Zhou et al. 2001), I predicted that absolute testis size is exclusively 
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driven by seminiferous lumen size. However, I anticipated a different relationship when 

analyzing relative testis size. Because this aspect of testis size in relation to testis composition 

has not been explored in lizards, I based my prediction on the trend found in birds: that relative 

testis size is more strongly associated with seminiferous epithelial area (as opposed to 

seminiferous tubule size; Lüpold et al. 2009), such that males that invest more energy into 

developing larger testes relative to their body size have a greater capacity to produce sperm. 

Moreover, I expected to see a greater proportion of epithelial cells within the seminiferous 

epithelium in those individuals with larger relative testis size, since sperm production can be 

traced back to the number of germ cell divisions per spermatogenic cycle (Ramm &  Schärer  

2014). Based on the principle that there is a tradeoff between germ cell frequency and sperm 

length, I hypothesized that sperm length would be negatively associated with the proportion of 

testis epithelial cells within the testes. Lastly, I also expected to see a positive relationship 

between the size of the seminiferous epithelium and sperm length, since the development of 

longer sperm may require a thicker epithelium.  (See Table 1 for a summary of these 

hypothesized relationships). 

 

Table 1. Anticipated evolutionary relationships among morphological measurements of testes 

and sperm morphology. Predictions based on previous literature are denoted by footnotes, while 

relationships not found in the literature are my own hypotheses. Predictions of directionality are 

indicated by + or -. Question marks indicate that no clear predictions were made. 

 Seminiferous 

Tubule Size 

Seminiferous 

Epithelial Size 

Seminiferous 

Lumen Size 

Proportion of Testis 

Epithelial Cells 

Sperm 

Length 

Absolute 

Testis Size + ^ No ^ + ** ? ^ ? ^ 

Relative 

Testis Size 
No ^ + * ? ^ + ^ ? ^ 

Sperm 

Length + * + * No * - ^ --- 

*birds: Lüpold et al. 2009; **mammals: Zhou et al. 2001; ^This study 
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Material and Methods 

Specimen collection and tissue processing 

In this study, 18 species of Anolis lizards from Puerto Rico and the Dominican Republic 

in 2010-2015 (Table 2) were collected for further examination. Lizards of each species were 

captured by noose or hand during the anole summer breeding season (May-July). In the field, a 

clear plastic ruler was used to measure snout-vent length (SVL) of 5-20 adult males and adult 

females per species to the nearest 1mm, and a Pesola spring scale was used to measure the mass 

of collected males to the nearest 0.1g. Within 2-3 days of capture, sperm samples were collected 

and a subset of males of each species (average = 7.9; Table 2) were transported to Trinity 

University in San Antonio, Texas where they were immediately euthanized via rapid 

decapitation. Following euthanasia, a midline incision was made in the abdomen, and before 

removing the testes from the body cavity, both the width and length of the right testis were 

measured with digital calipers (Mitutoyo; Kawasaki, Japan) to the nearest 0.1mm. Both testes 

were then surgically removed, flash-frozen on dry ice, and stored at -80°C until further 

processing. Each pair of testes was cryosectioned at 20µm in four alternate series on SuperFrost 

Plus microscope slides (Fisher Scientific; Hampton, New Hampshire USA) and stored at -80°C. 

One series for each individual was stained with hematoxylin and eosin (H&E). 
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Table 2. Capture sites and number of individuals collected for this study per each Anolis species. 

Country Species n Coordinates 

Dominican Republic 

A. chlorocyanus 13 18.525, -70.510 

A. christophei 8 19.042, -70.535 

A. cybotes 10 17.96, -71.19; 18.062, -71.111 

A. distichus 10 18.232, -70.347; 18.386, -70.442 

A. etheridgei 2 19.034, -70.542 

A. insolitus 2 19.041, -70.518; 18.386, -70.442 

A. longitibialis 10 17.836, -71.450 

A. marcanoi 8 18.386, -70.442 

A. olssoni 4 18.232, -70.347 

A. semilineatus 3 18.825, -70.689 

Puerto Rico 

A. cristatellus 11 18.342,-65.826 

A. evermanni 10 18.321,-65.820; 18.333,-65.817 

A. gundlachi 10 18.333,-65.817 

A. krugi 9 18.333,-65.817 

A. occultus 5 18.453,-66.597 

A. poncensis 10 26.949,-66.876 

A. pulchellus 9 18.321,-65.820; 18.331,-65.824 

A. stratulus 10 18.342,-65.826 

 

 

Testis Volume and Gonadosomatic Index Calculations 

 I calculated testis volume for each individual by converting measurements of testis width 

and length into the radii of the width and length (a, b, respectively) and solving via the formula 

for an ellipsoid:  

𝑉𝑜𝑙𝑢𝑚𝑒 =
4

3
𝜋𝑎2𝑏 

 

The average testis volume for each species was then log10 transformed for statistical analyses. I 

calculated gonadosomatic index (GSI) by first transforming testis volume into testis mass 

through the density equation, where the density of lizard testes is approximately one: 

𝑇𝑒𝑠𝑡𝑖𝑠 𝑚𝑎𝑠𝑠 =
𝑉𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3)

1 
𝑚𝑔

𝑚𝑚3

  

 

Then, testis mass and body mass were used to calculate GSI: 

𝐺𝑆𝐼 =  
𝑡𝑒𝑠𝑡𝑖𝑠 𝑚𝑎𝑠𝑠

𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠
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Finally, individual GSI measurements were used to calculate species averages.  

 

Histological Data Collection 

Cross-sectional area of testis 

I measured testis cross-sectional area by identifying the three largest, most histologically 

intact right and left testis sections for each individual with a Nikon SMZ18 stereomicroscope 

with a SHR Plan Apo 0.5x lens at 3x-8x magnification (determined by the size of each testis 

section). I used the area measurement tool in NIS-Elements (Nikon) to trace around the border of 

each selected section, for a total of six cross-sectional area measurements per individual. These 

measurements were then averaged to produce a single testis cross-sectional area value for each 

lizard. Individual data for each species were averaged together to create a single species average 

(Appendix).  

 

Seminiferous tubule, lumen, and epithelium measurements  

To create a high resolution, digital image of one tissue section per individual, I 

photographed one testis per individual using Nikon Eclipse Ni microscope with a Plan Fluor 

10x/0.30 objective lens. Our desired resolution restricted the testis area that could be viewed in a 

single frame, so I created a composite image by stitching together different positional frames of 

the testis using the “Grab Large Image Free Shape” tool in NIS-Elements.  

I acquired measurements of the cross-sectional area of seminiferous tubules by selecting 

only those tubules that were approximately circular—which indicates that the tubule was near 

perpendicular to the plane of sectioning—and excluding any tubules on the periphery of the 

testis, as they may have been obstructed during cryosectioning. I then measured the cross-
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sectional area of each tubule that met these criteria and the corresponding lumen (average = 8.3 

per lizard; Fig. 1). From these data, I also determined epithelial cross-sectional area, as the 

difference between tubule area and lumen area. Individual data for each species were averaged 

together to create a single species average for each measurement (Appendix).  

 
Figure 1. Traces of approximately circular seminiferous tubules (outer trace) and their lumina 

(inner trace) in a cross-section of an Anolis testis tissue (20um thick) at 10x magnification.  

 

Proportions of testicular tissue types 

To determine the relative distribution of each testicular cell-type, a colleague blind to the 

measured cell types cropped each composite image (the same images used to collect 

seminiferous tubule cross-sectional area) such that a 10x10 grid (1000µm x1000µm) could be 

positioned over the image (Fig. 2A). I then identified whether the grid point landed on a dark 

purple cell stained with hematoxylin, or the space in between cells stained light pink. The cell or 

100µm 
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space at each gridpoint was recorded as either interstitial (connective tissue between tubules), 

epithelial (tissue lining the walls of the tubule), or lumen (innermost hollow space typically filled 

with mature sperm) (Fig. 2B). The quantity of each testicular cell type per individual testis was 

averaged to yield the proportion of testicular cell types for each species. 

 

  
Figure 2. (a) “Stitched” 10x magnification image of an Anolis testis cross-section (20μm) 

underneath a 1mm x 1mm grid. (b) A closer look at the cell types identified under each gridpoint 

of a 9x8 grid. Each arrow points to an example of one type of cell identified in this study, either 

lumen, epithelial, or interstitial.  

 

Data Analysis 

The species averages for male and female SVL were used to calculate the average sexual 

size dimorphism of each species (SSD; [(length of larger sex/length of smaller sex) - 1]; Lovich 

et al. 1992). For all other traits, I calculated species averages from all individual data for analysis 

A 

KEY: 

Lumen 

Epithelial 

Interstitial 

B 
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in R (version 3.4.3; R Core Team 2017). The log10 transformed values for the following data 

were used in all statistical analyses: testis volume; cross-sectional areas (CSA) of testis, 

seminiferous tubule, lumen, and epithelia; SVL; and sperm head, midpiece, and tail lengths. 

Proportions of testis cell types were not transformed. To determine relationships among 

measures of testis architecture and sperm morphology, I used the Phylogenetic Generalized Least 

Squares (PGLS) function in the caper package in R (Freckleton et al. 2002) using the squamate 

phylogeny from Pyron et al. (2013) pruned to include the species in this study. Measures of size 

(SVL and testis cross-sectional area) were included as covariates when either was significantly 

related with the variable in question. For example, because testis CSA and SVL are strongly 

associated (p < 0.001), SVL was included as a covariate when examining the relationship 

between testis CSA (independent variable) and seminiferous tubule CSA (dependent variable).   

 

 

 

 

 

 

 

 

 

 

 

 



 

Hall 28 

 

Results 

Confirming GSI-SSD relationships in Anoles 

First, I assessed whether our study populations exhibited a negative relationship between 

gonadosomatic index (GSI) and sexual size dimorphism (SSD) as reported by Kahrl et al. (2016). 

This trend was present among our 18 species, although it was not significant (R
2
 = 0.10, F1,16 = 

2.91, p = 0.12; Fig. 3). I also showed that males of species with larger bodies (as determined by 

snout-vent-length; SVL) have larger testes (Table 3a).  

 

Figure 3. Negative relationship between sexual size dimorphism (male body size in relation to 

female body size) and gonadosomatic index (testis size relative to body size) across 18 species of 

Anolis lizards.  

 

Testis size and testis architecture 

 I found a trend towards a positive relationship between testis CSA (or testis volume) and 

seminiferous tubule CSA, as well as a strong relationship between testis CSA and lumen CSA, 

such that larger testes have marginally larger tubules and larger lumina (Table 3b; Fig. 4). 

However, these relationships were driven by the relationship between tubule CSA and lumen 
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CSA; when testis CSA was included as a covariate with tubule CSA, only tubule CSA was 

associated with lumen CSA (Table 3f). Similarly, SVL was not associated with tubule CSA 

when included as a covariate with testis CSA (Table 3c). From this, lumen CSA increases in 

association with tubule CSA only. 

 

Figure 4. Relationship between log10 transformed values of testis volume and cross-sectional 

area of seminiferous tubules (blue diamond) and seminiferous tubule lumina (red square) across 

18 species of Anolis lizards. 

 

Testis size and sperm morphology 

Testes with greater CSA were positively associated with sperm with longer heads (Table 

3b; this relationship is independent of body size: Table 3c; Fig. 5a). There were no relationships 

among absolute testis CSA and sperm midpiece or tail lengths (Table 3b). However, sperm 

midpiece length exhibited a nonsignificant trend towards a positive relationship with relative 

testis size (Fig. 5b), but not with any other measures of sperm length (Table 3d). 
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Figure 5. Relationship between log10 transformed values of (A) testis cross sectional area and 

sperm head length and (B) relative testis size and sperm midpiece length across 18 species of 

Anolis lizards. 

 

Testis architecture and sperm morphology 

 Sperm tail length was positively associated with tubule CSA (Table 3e), lumen CSA 

(Table 3g), and epithelial CSA (Table 3h; Fig. 6). No other measures of sperm morphology were 

associated with testis architecture. 
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Figure 6. Log10 transformed values of tubule cross sectional area (red square), epithelial cross 

sectional area (green triangle), and lumen cross sectional area (blue diamond) in relation to 

sperm tail length across 18 species of Anolis lizards.  

 

Testis epithelial cell proportion 

There was no significant relationship between the ratio of testis epithelial cells (Fig. 7) and any 

measure of sperm length (all p > 0.1). Moreover, larger epithelia do not necessarily have more 

epithelial cells (Table 3h).  

                    

Figure 7. Average proportions of interstitial (blue), epithelial (yellow), and lumen (red) tissues 

within the testes per species, as shown by the phylogeny (left).  

 

Table 4. Statistical relationships among traits associated with the evolution of pre- and 

postcopulatory sexual selection in Anolis lizards. 
Independent Variable (+covariate) 

Dependent Variable 

Covariate 

 

Adjusted R
2
 

 

F-statistic* 

 

 

p-value 

a. SVL  

Testis Size 

Testis CSA 

Sperm Head 

Sperm Midpiece 

Sperm Tail 

 

0.54 

0.59 

0.009 

-0.055 

-0.008 

 

21.01 

25.15 

1.15 

0.11 

0.86 

 

<0.001 

<0.001 

0.30 

0.74 

0.37 

b. Testis CSA 

Seminiferous Tubule CSA 

Lumen CSA 

Epithelial CSA 

Sperm Head 

 

0.12 

0.24 

0.03 

0.20 

 

3.27 

6.37 

1.58 

5.20 

 

0.089 

0.02 

0.23 

0.037 
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Sperm Midpiece 

Sperm Tail 

Proportion of Epithelial Cells 

-0.05 

0.07 

0.04 

0.20 

2.2 

1.78 

0.66 

0.16 

0.20 

c. Testis CSA + SVL 

Seminiferous Tubule CSA 

Testis CSA 

SVL 

Lumen CSA 

Testis CSA 

SVL 

Sperm Head 

Testis CSA 

SVL 

 

0.06 

 

 

0.24 

 

 

0.19 

 

1.54 

 

 

3.74 

 

 

3.03 

 

0.25 

0.32 

0.92 

0.048 

0.46 

0.31 

0.078 

0.048 

0.36 

d. GSI (Relative Testis Size) 

Seminiferous Tubule CSA 

Lumen CSA 

Epithelial CSA 

Sperm Head 

Sperm Midpiece 

Sperm Tail 

Proportion of Epithelial Cells 

 

-0.06 

-0.06 

-0.06 

0.075 

0.12 

-0.056 

0.027 

 

0.003 

0.06 

0.003 

2.38 

3.30 

0.097 

1.47 

 

0.96 

0.82 

0.96 

0.14 

0.088 

0.76 

0.24 

e. Tubule CSA 

Lumen CSA 

Epithelial CSA 

Sperm Head 

Sperm Midpiece 

Sperm Tail 

 

0.83 

0.95 

-0.01 

-0.06 

0.31 

 

83.03 

330.2 

0.81 

0.03 

8.68 

 

<0.001 

<0.001 

0.38 

0.86 

0.009 

f. Tubule CSA + Testis CSA 

Lumen CSA 

Tubule CSA 

Testis CSA 

Sperm Tail 

Tubule CSA 

Testis CSA 

 

0.84 

 

 

0.27 

 

45.9 

 

 

4.17 

 

<0.001 

<0.001 

0.15 

0.036 

0.045 

0.72 

g. Lumen CSA 

Sperm Head 

Sperm Midpiece 

Sperm Tail 

 

-0.02 

-0.05 

0.24 

 

0.69 

0.19 

6.26 

 

0.42 

0.67 

0.024 

h. Epithelial CSA 

Sperm Head 

Sperm Midpiece 

Sperm Tail 

Proportion of Epithelial Cells 

 

-0.01 

-0.06 

0.27 

0.005 

 

0.76 

<0.001 

4.17 

1.085 

 

0.40 

0.99 

0.036 

0.31 

*F-statistic for df = 1, 16 unless covariate included, then F-statistic for df = 2, 15 
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Discussion 

Most lizards are seasonal breeders that exhibit an increase in testis size and seminiferous 

tubule size during the breeding season. Beyond this, no details on the relationship between testis 

size and architecture in lizards are available. In this thesis, I show that seminiferous lumen size, 

rather than epithelial size, is associated with absolute testis size (Table 4). In birds, Lüpold et al. 

(2009) showed not only that testis size and seminiferous tubule size are not related, but that 

epithelial size is responsible for an increase in tubule size, while a study on mammals showed 

that lumina within the male reproductive tract increase in size in response to fluid accumulation 

(Zhou et al. 2001). Because lizards are phylogenetically more closely related to birds than 

mammals, this finding suggests that birds may have evolved this feature of their reproductive 

morphology separately from other amniotes. 

 

Table 4. Summary of hypotheses presented in Table 1 (top row of each cell) with results in bold 

indicated by + (positive relationship), - (negative relationship), or no (no relationship).  

 

*birds: Lüpold et al. 2009; **mammals: Zhou et al. 2001; ^This study 

 

Further, I found that at least one aspect of sperm morphology was correlated with each 

measure of testis size or architecture (Table 4). First, sperm tail length was strongly associated 

 Seminiferous 

Tubule Size 

Seminiferous 

Epithelial Size 

Seminiferous 

Lumen Size 

Proportion of Testis 

Epithelial Cells 

Sperm 

Length 

Absolute 

Testis Size 
+ ^ 

+ 

No ^ 

No 

+ ** 

+ 

? ^ 

No 

? ^ 

+ (head) 

Relative 

Testis Size 
+ ^ 

No 

+ * 

No 

? ^ 

No 

+ ^ 

No 

? ^ 

+ (mid) 

Sperm 

Length 
+ * 

+ (tail) 

+ * 

+ (tail) 

No * 

+ (tail) 

- ^ 

No 

--- 
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with seminiferous tubule, epithelial, and lumen size, indicating that there is a strong evolutionary 

relationship between these reproductive traits. Moreover, because only one measure of tubule 

size was significantly correlated with absolute testis size, while no measures of tubule size were 

correlated with relative testis size, it may be that sperm tail length is a stronger predictor of 

seminiferous tubule size, seminiferous epithelial size, and lumen size than any measure of 

absolute or relative testis size. Additionally, sperm head length correlated with absolute testis 

size, while sperm midpiece length correlated with relative testis size. Together, these findings 

suggest that there is selection for the evolution of testis size and morphology as a function of 

sperm length. The strength of this relationship may explain why there was no association 

between relative testis size and epithelial thickness, a relationship that has been previously 

described in the literature (Lüpold et al. 2009). Alternatively, it is possible that testis size is 

driven by the overall length of the seminiferous tubules, a feature that I could not measure, such 

that longer tubules require more space and thus a larger testis.  

Since sperm develop in a manner that is perpendicular to the thickness of the 

seminiferous epithelium, it makes sense that sperm tail length, the longest component 

contributing to overall sperm length, is positively associated with larger epithelia; longer sperm 

require a larger epithelium within which to develop. Moreover, longer sperm are also positively 

associated with larger lumina within the seminiferous tubules, a relationship not exhibited in 

birds (Lüpold et al. 2009). From this, it may be that sperm production is more important in birds, 

whereas sperm storage may be more important in lizards.  

Moreover, since both sperm head and midpiece lengths were associated with testis size 

while sperm tail length was not, it is critical to consider each of these measures separately. 

Previous studies have only used overall length as a measure of sperm morphology and 
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consequently may have missed different relationships for each component of sperm length. 

While it is not yet clear what mechanisms link certain aspects of sperm length to different 

features of testis size and architecture, it is evident that sperm head, midpiece, and tail lengths 

should be recognized as individual measures of sperm morphology. 

As described by Ramm and Schärer (2014), spermatogenesis can yield two broadly 

different types of sperm: shorter sperm that are present in the ejaculate in higher quantities, or 

longer sperm that are present in lower quantities, where quantity reflects the number of cell 

divisions that took place during spermatocytogenesis. For this reason, I hypothesized that there 

would be a negative relationship between sperm length and the proportion of testis epithelial 

cells, however this was not the case (Table 4). There are several possible explanations for why 

there was no relationship among the proportion of testis epithelial cells and either sperm length 

or the thickness of the seminiferous epithelium across species. First, there are many different cell 

types within the epithelium, and thus it may have been inappropriate to lump all cells residing in 

the epithelium into a single category for statistical analysis. For example, Lüpold et al. (2011) 

examined the density of sperm cells at each stage of spermatogenesis, in addition to Sertoli cells, 

and found that round spermatids in particular varied significantly across ten species of birds. By 

focusing on this one cell type, Lüpold et al. found strong, positive relationships between the 

proportion of round spermatids/Sertoli cells and both residual testis mass and sperm length. 

Conversely, these authors found that as the ratio of elongated sperm cells/round spermatids 

increased, both relative testis mass and sperm length decreased. While ratios of various germ cell 

stages and Sertoli cells in relation to testis size and sperm length are beyond the data available in 

this thesis, this study highlights the possible directions for future study in the evolutionary 

relationship between testis composition and sperm morphology. 
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Second, it is possible that the overall proportion of testis cells residing in the 

seminiferous epithelium does indeed correspond with sperm morphology or testis composition, 

but that the methodology used for sampling the proportions of different cell types within each 

testis in this study could be improved. While it was easy to identify individual cells via the 

unmistakable bright purple hematoxylin stain, distinguishing cell types along the periphery of 

each tubule proved to be somewhat challenging, and thus some traces of interstitial cells may 

have been included in the total number of epithelial cells (and vice versa) for each individual. To 

improve upon this point of uncertainty in the continuation of this study, I suggest utilizing a 

much higher magnification. As a follow up to this study, I propose to use methodology similar to 

that of Lüpold et al. (2011)--the optical dissector method--in order to clearly visualize and count 

both Sertoli cells and spermatogenic germ cells within the epithelium, as well as accurately 

identify cell types along the border of each tubule. However, it is likely that even at high 

magnifications, the H&E stain is too general a stain to confidently distinguish epithelial cells 

from peritubular and/or interstitial cells along the periphery, and thus other histological methods 

must be considered. One possible alternative visualization method is transmission electron 

microscopy, an approach that involves an entirely different protocol for tissue preparation, but is 

excellent for high resolution images of testis cells (Rheubert et al. 2015). 

Lastly, it is also possible that, as my data show, there truly is no relationship between the 

thickness of the seminiferous epithelium and the proportion of epithelial cells to other testis cells. 

This finding suggests that the germ cell development strategy in anoles is more complicated than 

what this thesis is able to address, and may require a higher resolution analysis of germ cell 

development as seen in Lüpold et al. (2011). 
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Conclusion 

 In Anolis lizards, the evolution of testis size and architecture, rather than germ cell 

density, is associated with the evolution of three components of sperm morphology. Specifically, 

sperm tail length is associated with seminiferous tubule, epithelium, and lumen size, while sperm 

head length is associated with absolute testis size. Absolute testis size is also associated with 

larger tubules and tubule lumina, which indicates that testis size may be more indicative of sperm 

storage, rather than production. On the other hand, relative testis size is not associated with any 

measure of testis architecture, and only exhibits a trend towards a positive relationship with 

sperm midpiece length. Ultimately, these findings provide previously unknown information on 

how postcopulatory sexual selection operates on two key morphological and physiological 

components of reproduction in lizards. Further, these findings indicate that subsequent studies 

should implement the use of multiple measures of sperm length (tail, midpiece, and head), as to 

not miss relationships with head and midpiece length that may be masked by only considering 

overall sperm length.  
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Appendix 

Appendix. Mean and standard deviation of four cross-sectional area (CSA) measurements (mm
2
) 

of Anolis testis size and architecture 
 Testis CSA Lumen CSA Tubule CSA Epithelium CSA 

A.chlorocyanus 10.5±3.12 0.038±0.013 0.094±0.026 0.055±0.014 

A.christophei 5.12±0.98 0.044±0.010 0.115±0.023 0.070±0.016 

A.cristatellus 7.97±1.35 0.050±0.013 0.133±0.029 0.084±0.020 

A.cybotes 13.34±2.12 0.068±0.018 0.172±0.043 0.104±0.028 

A.distichus 9.69±1.40 0.053±0.012 0.148±0.0312 0.094±0.021 

A.etheridgei 4.72±0.06 0.025±0.008 0.085±0.015 0.061±0.007 

A.evermanni 13.22±4.25 0.059±0.012 0.160±0.024 0.101±0.014 

A.gundlachi 9.19±1.00 0.053±0.012 0.161±0.033 0.107±0.025 

A.insolitus 5.69±0.41 0.041±0.006 0.098±0.004 0.057±0.002 

A.krugi 5.13±0.86 0.041±0.011 0.113±0.031 0.072±0.021 

A.longitibialis 13.68±2.24 0.071±0.023 0.200±0.044 0.129±0.025 

A.marcanoi 11.46±2.33 0.067±0.030 0.185±0.067 0.118±0.038 

A.occultus 4.95±1.32 0.041±0.008 0.119±0.022 0.078±0.015 

A.olssoni 3.64±0.87 0.050±0.017 0.139±0.032 0.089±0.016 

A.poncensis 4.58±0.65 0.043±0.007 0.139±0.021 0.097±0.017 

A.pulchellus 4.35±1.44 0.046±0.010 0.139±0.028 0.093±0.020 

A.semilineatus 4.68±0.40 0.038±0.007 0.089±0.012 0.051±0.005 

A.stratulus 10.32±0.94 0.046±0.012 0.132±0.025 0.086±0.016 
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