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Creating a Semantic Graph from Wikipedia

Ryan Tanner

Abstract

With the continued need to organize and automate the use of data, solutions are needed

to transform unstructred text into structred information. By treating dependency grammar

functions as programming language functions, this process produces “property maps” which

connect entities (people, places, events) with snippets of information. These maps are used

to construct a semantic graph. By inputting Wikipedia, a large graph of information is

produced representing a section of history. The resulting graph allows a user to quickly

browse a topic and view the interconnections between entities across history.
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Chapter 1

Introduction

This thesis is an attempt to construct a semantic graph of entities (people, places, and

things) from a large data source in an efficient and effective manner. Accomplishing this

goal requires a solution which is broken down into several components: grammatical pars-

ing, semantic interpretation, and graph construction. Together these three disparate parts

produce a semantic graph which can be quickly traversed to extract relationships and con-

nections between its constituent entities.

In real-world terms, this is an attempt to visualize Wikipedia in a fashion which allows

one to quickly find and examine connections between the people, places and things described

in Wikipedia.

Other attempts have been made to produce similar visualizations based on the link

structure of Wikipedia—the graph formed by user-produced hyperlinks between Wikipedia

articles. These solutions, while effective, do little to add context or reasoning behind their

connections. The WikiViz project [2] is one such attempt.

While interesting, such an approach ignores the rich quantities of information included

in Wikipedia. Over four million articles in the English language edition alone—26 million

1
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across all languages—and without a solution based upon natural language processing the

information contained as written word goes unused.

This solution uses natural language processing to produce context and justification for

the connections in the resulting graph. This forms a central aspect of this thesis: the

treatment of dependency functions as first-class functions. Essentially, the “language” of

dependency grammars is treated as a functional language, borrowing several aspects from

programming language theory.



Chapter 2

Problem Statement

This thesis is an attempt to tackle the problem of extracting facts and connections from

written text. Massive quantities of text are produced daily and methods for quickly getting

relevant information out of that text are needed. Furthermore, within these large bodies of

text lie the semantics underpinning human knowledge. Extracting these semantics is as of

yet a largely unsolved problem though many attempts have been made.

The internet consists largely of unstructured information. That is, information written

in ordinary language to be read by humans. Structured information is organized in a fashion

computers can trivially utilize such a database of election results or weather information.

Data of this nature has some form of a schema attached which aids computers in deciphering

and putting to use an information source. While we can read and infer a great deal from

unstructured information, computers can do much less.

The most obvious solution to this problem is that presented by Google in the form of its

search engine. This uses what structure is available (the hyperlink nature of the internet)

and does its best to categorize and index available information. While very effective—none

of us can imagine a day without Google anymore—this approach does not fundamentally

3
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try to extract information but merely ranks and scores it.

Tim Berners-Lee, inventor of the world wide web, refers to the current state of the

internet as a “web of documents” and hopes to see the rise of the “web of data”—documents

annotated with semantic metadata. His goal is a system in which any type of data can be

organized and hyperlinked creating a global graph spanning numerous disparate sources

and categories [3].

The field of information extraction revolves around this problem. Many approaches

focus on a small subset of information such as extracting political news from newswire

reports. Others have a generic approach and some of these techniques are used in this

project including named entity recognition and coreference resolution.

2.1 Extracting properties defined in a massively large body

of text

For a semantic graph of this nature to be constructed methods are needed which can extract

the necessary properties from large bodies of text. This is the core problem in creating a

semantic graph of a source like Wikipedia.

Much of the difficulty comes from determining what such properties should convey. If

one makes them too generic the graph will be of little use as connections will lack the

context needed to understand why such a connection makes sense. If the properties are

too specific the construction of the graph becomes hopelessly complex. A balance must be

struck which allows for an algorithmic approach while still providing the necessary context.

Because a single fact can be conveyed in a virtually countless number of ways in the En-

glish language, any solution must be able to cope with extracting a fact in many ways. The

twin fields of natural language processing and information extraction are heavily involved
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in this but this problem still poses a significant challenge. My use of dependency grammars

is an attempt to work around this problem by first transforming sentences into a consistent

structure before extracting any properties. In this way different sentences become the same

when viewed as their representative dependency trees.

2.2 Motivation

This project can be divided into two broad sections and their motivations will be dealt with

separately.

First, the language processing component. The use of dependency grammar over the

more widely-used constituent grammar was motivated by a desire to test the possibility of

applying functional (programming) language concepts to natural language. More colloqui-

ally, I wanted to scratch an intellectual itch. Treating grammatical functions as computation

functions and modeling them as such appealed to me as an elegant proposition. I freely

admit that I had no basis for this approach. Building this project seemed the best way to

test my hypothesis.

The second motivation was the desire to construct a semantic graph which could visualize

a topic. Such a graph would be navigable by the user such that one could find connections

between people, places and events related to a topic and see their connections and the

reasons justifying those connections.



Chapter 3

Other Approaches

3.1 Semantic Web

Large amounts of data have been quantified and indexed in efforts to construct the “semantic

web.” “Data is seamlessly woven together from disparate sources, and new knowledge is

derived from the confluence. This is the vision of the semantic web,” [4] and this vision has

been largely realized over the past half-decade. These efforts center around structuring data

in a meaningful and predictable fashion such as Google’s map API which provides such a

structure for geographical information. Other sources include LinkedIn’s API which gives

users access to social graph information, a related field, and Freebase, a semantic database

providing a graph of data on a wide range of topics such as art, sports and government.

Some of these sources are community driven, such as Freebase, allowing a wide range

of users to collaborate in producing a structured source of data. Others, like LinkedIn,

are powered by social networks. This notion allows actions already performed by users for

other tasks (such as connecting with friends or searching for jobs in the case of LinkedIn)

to become the data backing a social graph, quantifying the relationships and connections

6
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between users. A third category of data within the semantic web is statistics and tabular

information. Google Fusion Tables is a product aimed at annotating and organizing such

information.

Fusion Tables helps developers organize, visualize and publish data from multiple sources.

A pioneering user of this service is The Texas Tribune, a media organization focusing on

public policy in the state of Texas [5]. One such example is their use of Fusion Tables to

visualize the set of journalists killed in Mexico [6] [7]. Importantly, Fusion Tables allows

users to rapidly combine disparate datasets.

These and other efforts to build the semantic web provide a far simpler means of access-

ing and utilizing data but at the up-front cost of time and effort in building these datasets.

Many are compiled by hand or consist of data that is naturally amenable to such quantifi-

cation such as LinkedIn’s social graph. Others are composed of sets of statistics released by

governments and research organizations in computer-friendly formats. While appropriate

for some data sources, these techniques are difficult to automate and must be explicitly

tailored for their specific source.

A principle challenge of this approach is the problem of free text—text which is com-

pletely unstructured. The automatic or semi-automatic annotation of such text is still not

a reliably practical.

3.2 Other NLP Work with Wikipedia

While a great deal of work regarding natural language processing, information retrieval and

Wikipedia has been done, I have not found any research directed towards the same end

result as my own. The following is a sample of work done in related arenas:

Ruiz-Casado et al [8] used Wikipedia to automatically assign articles to concepts in a
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lexical or semantic network in order to extend the synsets used by Wordnet. A synset is

a set of synonyms [1]. Notably their work uses the Simple English version of Wikipedia

in order to simplify their solution. They found that their approach was significantly more

accurate than the previous state-of-the-art for word sense disambiguation.

Mülcer and Gurevych [9] examined the use of Wikipedia to improve solutions to the

problem of synonymy (a concept represented by different terms). Using Wikipedia and

Wiktionary as knowledge bases for semantic relatedness their research showed increases in

mean average precision in monolingual applications and significant increases in precision

for bilingual applications. In other words, their research provided the means to establish a

relation between two terms across multiple languages.

Gabrilovich and Markovitch [10] also explored the potential for Wikipedia in computing

semantic relatedness. In their paper they propose a method of representing the meaning of

texts derived from Wikipedia termed Explicit Semantic Analysis. Using Wikipedia articles

as concepts, machine learning was used to map fragments of text to a sequence of topics.

Their work shares a similar goal with my own work but differs greatly in approach.

3.3 Information Extraction with Dependency Grammars

Garcia and Gamallo [11] used a rule-based approach for relation extraction using depen-

dency parsing in order to extract the structure of a sentence. Using dependency grammars

as a solution to remove extraneous elements from a sentence such that the sentences “Nick

Cave was born in the small town of Warracknabeal” and “Nick Cave was born in Warrackn-

abeal” produce the same relationship, their solution is able to extract a relation like “Nick

Cave hasBirthplace Warracknabeal” regardless of the exact sentence structure. This ap-

proach is also used in my work in order to account for the many writing styles of the myriad



9

contributors to Wikipedia. Their motivation lies in the difficulty in obtaining high-quality

training data which often renders machine learning techniques fruitless. Furthermore their

technique is applicable to many languages whereas a machine learning approach must be

retrained for each language.



Chapter 4

Importance of the Problem

Why is a semantic graph a useful concept? Such a graph not only allows humans to

more easily browse information—it also helps provide structure to that information to aid

computers in utilizing it.

Furthermore this graph provides a means to quantify relationships between entities.

For instance, if I have the string “But the western Allies rejected China’s request, instead

granting transfer to Japan of all of Germany’s pre-war territory and rights in China,” I,

a person, can read this string, recognize that it is an English sentence and know what

action the Allies took in response to China’s request. However, structuring that knowledge

requires a far more complex set of instructions than is required by humans—though one

could argue that in fact we require the more complex set of instructions.

A semantic graph provides such a structure. The challenge is in building the graph.

Wikipedia contains nearly four million English-language articles and almost 27,000,000

total pages. Almost none of this is accessible to computers or in any automated form. The

potential is astounding: the largest compendium of knowledge yet compiled and its uses in

information extraction and related fields have only begun to be explored.

10
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Tim Berners-Lee considers the transition from web to graph as important as that from

the net to the web. In his view, the graph is the next abstraction from the web. Or, “it’s

not the documents, it is the things they are about which are important.” Links on the

web represent connections between documents whereas his proposed “Giant Global Graph”

connects things and concepts instead [12].

Berners-Lee’s vision of the semantic web is predicated on the production of semantic

graphs. While new content is often produced alongside semantic graph representations

(LinkedIn is a prime example of an open semantic graph) these efforts are limited in their

application to existing data. Wikipedia, as described earlier, is probably the largest single

source of information not yet organized into a semantic graph.

Furthermore, what source could possibly be a better candidate? The usefulness of a

semantic graph of World War II or biomedicine or any of a number of other topics is

obvious. The ability to logically browse and trace connections within and across topics

opens up myriad applications. Indeed this is a prime example of if-you-build-it-they-will-

come.



Chapter 5

Approach to Solving the Problem

Most approaches to this problem rely on extracting as much information as possible from

a given input. My approach comes at the problem from the opposite direction and tries to

extract a little bit of information very quickly but over an extremely large input set. My

hypothesis is that by doing so a large collection of texts can be quickly processed while still

yielding useful output.

5.1 Treating grammatical dependencies as functions

This approach is based on the hypothesis that dependency grammar relations can be treated

as functions and modeled as such. Furthermore, I hypothesize that these functions can

be curried, just as in a functional language. In a dependency grammar, every word in a

sentence, save for the head, is dependent upon another word and each of these dependencies

has a type. This structure forms a tree. By doing a depth-first traversal of this tree and

recursively composing each individual dependency function into a curried function, we end

with a function specific to that sentence.

12
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In this approach, dependency functions are short operations which extract properties

from the given relation. These functions take two nodes of a tree as input, the governor

and the dependent. Based on the part-of-speech tags of the tokens in each node a partial

or full property is added to the accumulator map and returned up the tree. This map

is comprised of entities mapped to properties representing pieces of information extracted

from the relationship. More about properties can be found in section 7.2 on page 36.

5.2 Mapping the governors and dependents of those depen-

dencies to textual aliases and named entities

Using the coreference resolution functionality of the Stanford NLP library, properties and

entities can be mapped together. In addition, this function of this library solves the problem

of resolving ambiguous nouns like “it” or “they” by resolving them to a representative

alias. A representative alias provides the “end result” value for ambiguous nouns and

pronouns. For example, the pronoun “he” may resolve to the representative alias “President

Washington.”

Within a document, entities are mapped to aliases by a simple inclusion test. That

is, entities (as defined by the parse tree algorithm) are mapped to aliases by testing if an

entity’s tokens are contained by an alias. In essence this collapses the tree, providing a

rough form of deduplication within a document by eliminating these ambiguous pronouns.

If an entity is contained within a non-representative alias, it maps not to that immediate

alias but to that alias’s representative form.
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5.3 Reducing a set of input documents to find connections

between those aliases and entities based on their common

properties

In order to connect entities which appear in separate documents, a simple string matching

algorithm has been devised which checks for the existence of another representative alias

After a document has been processed, every entity found in that document is checked against

the global set of entities. Any matches are then appropriately collapsed into the global

map of entities to properties by concatenating the new list of properties to the existing.

Furthermore, when these lists are combined, duplicate properties are also combined to form

stronger properties, creating a weighted graph in which the weight of an edge is the number

of occurences of that property in the input set.

5.4 Visualizing this graph

Visualizing this graph takes a two-pronged approach: a graph-traversal interface is provided,

allowing users to see a node and all its connections and traverse the graph, and an interactive

map is provided, taking those entities for which physical locations can be determined and

displaying them on Google Maps with their connections.

5.5 Why a functional language?

This thesis was implemented in Scala. Scala was chosen for two reasons: its combination

of functional and object-oriented concepts and its extensive list processing capabilities—

similar to those found in most functional languages. The latter was vitally important as
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much of the data processing in this solution consists of manipulating lists. The former reason

is more conceptual in nature. As previously discussed, part of this thesis is the treatment of

grammatical functions as programmatic functions. Scala allows for this without excessively

working around language limitations.

For instance, as will be discussed in section 7.1, dependency functions have a hierarchy

of types much in the same fashion as types in a programming language. Whereas every

class in Java inherits from Object, every dependency function inherits from dep. These

relationships are trivially modeled in Scala in an elegant, readable fashion. Much of the

algorithm used here is written in a map-reduce fashion and Scala lends itself well to such

implementations. The Stanford NLP library is written in Java and as such integrates well

with my solution given that both languages run on the JVM.

A map-reduce algorithm is one in which items in an input set are divided and processed

and then combined to produce a result. A trivial example of a map-reduce algorithm is the

word frequency problem: how many times does a specific word appear in a set of documents?

A map-reduce solution to this problem might split the set of documents into chunks, count

the number of occurrences of the given word in each set and then add up the result of each

set upon completion. While this approach may seem unduly complicated compared to the

simpler sequential solution, this approach is trivially parallelizable and distributable. For

instance, each chunk in the “map” step could be dispatched to a new thread or a different

machine.

Note that map-reduce should not be confused with MapReduce, a software framework

from the Apache Foundation.



Chapter 6

The Process

Taking the raw database dump from Wikipedia and producing a semantic graph involves

transforming this data several times over. An outline of the process follows:

1. Import SQL dump from the Wikimedia Foundation into a local database.

2. Strip Wiki markup from the articles while retaining the necessary information.

3. Distribute these articles across a set of machines for parsing with the Stanford library.

4. Parse the output from the Stanford library using the algorithm developed here.

5. Store these results in a structured manner.

6. Traverse the resulting graph and produce user-presentable output.

6.1 Importing from Wikipedia

The Wikimedia Foundation, the organization responsible for the caretaking of Wikipedia,

periodically releases exports or “dumps” of Wikipedia [13]. The dump used for this research

16
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is that of November 22, 2011. These dumps are released as compressed XML files which can

be imported into a SQL database. This specific release measured 7.3 GB compressed and 31

GB uncompressed and contains only the most recent revisions of articles. Notably the May

5, 2011 complete dump, consisting of all articles and all their past revisions and edits as

well as user history, is 364.7 GB compressed and approximately 7 terabytes uncompressed.

Fortunately this dump is unnecessary for my purposes.

Interestingly, the export process for Wikipedia often produces incorrect or broken data.

Given the shear size and scope of their efforts, this is not surprising. Many of their exports

fail. Each year only a handful of complete exports are successfully completed.

Using the dump provided by Wikipedia is also fraught with difficulties. Few XML

parsers are built to handle 31 GB of data at a time. Several open-source efforts have

been developed to deal specifically with Wikipedia database dumps. The solution used

here involves a tool known as MWDumper [14] which takes XML dumps from MediaWiki

installations and imports them into others. A clean installation of MediaWiki was set up

using a MySQL instance on Xena21 as the database server. Approximately 250,000 articles

were successfully imported.

6.2 Stripping Wiki markup

Because MediaWiki uses its own markup language the input text must be stripped of this

before being parsed. However, this is not a simple matter of stripping out extraneous

symbols with regular expressions. Much of the markup is needed and is useful. Using the

Bliki engine [15] each article (stored in the database as XML) was rendered to a plain text

representation similar to that seen when editing a Wikipedia article.

A series of regular expressions were then used to convert Wiki markup links to their



18

correct representation. For example, a link could be represented as such:

[[Second Sino-Japanese War|at war]]

which would render as at war but link to the page titled “Second Sino-Japanese War.”

Both forms are useful but given the primary goal of this thesis—testing the usefulness of

dependency grammars—only the latter form was kept. This is unlike most other efforts

to create semantic data from Wikipedia, most of which consider hyperlinks to provide

extremely valuable context. That point of view is correct but ancillary to the effort put

forth here.

6.3 Parsing using the Stanford Library

Once an article is in an appropriate form, stripped of all Wiki markup and XML, it is

parsed using the Stanford NLP library [16]. This parser includes a wide range of NLP

capabilities, many of which are utilized here. Specifically, tokenization in Penn Treebank

form by sentence, part-of-speech tagging, lemma annotation, named entity recognition,

constituent and dependency grammar representation production and coreference resolution.

Penn Treebank tokenization is a common form of tokenization in language process-

ing. Punctuation is split from adjoining words and contractions are split. For instance,

children’s is split to become the two distinct tokens children and ’s. This allows each

component morpheme to be handled separately. This is especially important when dealing

with noun-verb contractions such as We’re which is split into it’s components We and ’re

which maps to the verb are.

Lemma annotation allow a token like are to be mapped to its canonical form, in this

case the verb “to be.” Using lemma annotation greatly simplifies the task of handling the

semantic meaning of verbs by reducing the number of cases to be accounted for.
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Part-of-speech tagging categorizes each word as one of noun, verb or adjective (though

far more types are actually used and are much more specific). The Stanford tagger is a

maximum-entropy tagger which uses a machine learning model by training from a pre-

tagged corpus in order to predict part-of-speech tags in an arbitrary text [17]. Every token

in the input text is tagged.

Named entity recognition tags sequences of tokens with a class such as person, orga-

nization or location. A seven class classifier was used providing time, location, organi-

zation, person, money, percent and date classifications. This classifier uses the Message

Understanding Conference (MUC) dataset sponsored by DARPA. This dataset consists of

annotated named entities from American and British news sources. [18]. Each token is

tagged with either a 0 or named entity classification. A sequence of tokens with a non-0

classification represent a single named entity.

The following is an example demonstrating the previously-discussed capabilities of the

Stanford NLP library. This is a substring from the string “World War II, or the Second

World War (often abbreviated as WWII or WW2), was a global military conflict lasting from

1939 to 1945, which involved most of the world’s nations, including all of the great powers:

eventually forming two opposing military alliances, the Allies and the Axis.” Tokens from

the sentence fragment “1939 to 1945” are shown in figure 6.1.

Each token is given an ID. Both the original word and its lemma are given regardless

of any difference. In this example each token is identical to its lemma and this is generally

true of most non-verbs. Lemmas are most often given for verbs as well as singular versions

of plural nouns and regular forms of possessives. In the case of verbs, the infinitive form

is given. Character offsets are simply the indexed boundaries of a particular token. The

part-of-speech tag of each token is given. Figure 6.1 shows tokens with the tags cardinal

number (CD) and to (TO). The Stanford parser uses the Penn Treebank set of tags.
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1 <token id="29">

2 <word>1939</word>

3 <lemma>1939</lemma>

4 <CharacterOffsetBegin>121</CharacterOffsetBegin>

5 <CharacterOffsetEnd>125</CharacterOffsetEnd>

6 <POS>CD</POS>

7 <NER>DATE</NER>

8 <NormalizedNER>1939/1945</NormalizedNER>

9 </token>

10 <token id="30">

11 <word>to</word>

12 <lemma>to</lemma>

13 <CharacterOffsetBegin>126</CharacterOffsetBegin>

14 <CharacterOffsetEnd>128</CharacterOffsetEnd>

15 <POS>TO</POS>

16 <NER>DATE</NER>

17 <NormalizedNER>1939/1945</NormalizedNER>

18 </token>

19 <token id="31">

20 <word>1945</word>

21 <lemma>1945</lemma>

22 <CharacterOffsetBegin>129</CharacterOffsetBegin>

23 <CharacterOffsetEnd>133</CharacterOffsetEnd>

24 <POS>CD</POS>

25 <NER>DATE</NER>

26 <NormalizedNER>1939/1945</NormalizedNER>

27 </token>

Figure 6.1: Example of Tokens in output from the Stanford NLP Library
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1 <parse>(ROOT (S (NP (NP (NNP World) (NNP War) (NNP II)) (, ,) (CC or) (NP (NP (DT

the) (NNP Second) (NNP World) (NNP War)) (-LRB- -LRB-) (NP (CD 1)) (-RRB-

-RRB-) (-LRB- -LRB-) (ADJP (RB often) (JJ abbreviated) (PP (IN as) (NP (NNP

WWII) (CC or) (NNP WW2)))) (-RRB- -RRB-)) (, ,)) (VP (VBD was) (NP (NP (DT a)

(JJ global) (JJ military) (NN conflict)) (VP (VBG lasting) (PP (IN from) (NP

(NP (CD 1939) (TO to) (CD 1945)) (, ,) (SBAR (WHNP (WDT which)) (S (VP (VBD

involved) (NP (NP (JJS most)) (PP (IN of) (NP (NP (DT the) (NN world) (POS

’s)) (NNS nations)))) (, ,) (PP (VBG including) (NP (NP (DT all)) (PP (IN of)

(NP (NP (DT the) (JJ great) (NNS powers)) (: :) (S (ADVP (RB eventually)) (VP

(VBG forming) (NP (CD two)) (S (VP (VBG opposing) (NP (NP (JJ military) (NNS

alliances)) (, ,) (NP (DT the) (NNS Allies)) (CC and) (NP (DT the) (NNP

Axis))))))))))))))))))) (. .))) </parse>

Figure 6.2: Parse Tree Output from the Stanford NLP Library

Note lines 7, 16 and 25 of figure 6.1. These tags indicate the named entity classification

of this sequence of tokens: “1939 to 1945.” Furthermore, lines 8, 17 and 26 resolve this

sequence to a simple date format: 1939/1945.

The library’s grammatical parsing capabilities are also used. The constituent grammar

parser provides phrase structure trees in the form shown in figure 6.2. The sentence used

in this example is “World War II, or the Second World War, often abbreviated as WWII or

WW2, was a global military conflict lasting from 1939 to 1945, which involved most of the

world’s nations, including all of the great powers: eventually forming two opposing military

alliances, the Allies and the Axis.”

Though not friendly to human eyes, the structure in figure 6.2 forms a tree emanating

from the root. Such a structure is provided independently for each sentence. Every clause

wraps its constituent clauses and tokens, each of which is tagged with its particular part-

of-speech. In a later step this will be parsed into its representative tree structure. Note

that many levels of the tree do not directly contain tags. These groups of nodes are clauses

in the sentence. For example, (NP (NNP World) (NNP War) (NNP II)) is one such clause.
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1 <dep type="nn">

2 <governor idx="3">II</governor>

3 <dependent idx="1">World</dependent>

4 </dep>

5 <dep type="nn">

6 <governor idx="3">II</governor>

7 <dependent idx="2">War</dependent>

8 </dep>

9 <dep type="nsubj">

10 <governor idx="26">conflict</governor>

11 <dependent idx="3">II</dependent>

12 </dep>

13 <dep type="det">

14 <governor idx="9">War</governor>

15 <dependent idx="6">the</dependent>

16 </dep>

Figure 6.3: Dependency Relations in the Stanford NLP Library

This is a noun phrase (NP) consisting of three singular proper noun (NNP) tokens.

Four dependency relationships are shown in figure 6.3. Each binary relationship has a

governor and dependent referenced by both token and token ID (these token IDs correspond

to those shown in figure 6.1)

Note that the token II governs both World and War. II is the head of this clause. Other

tokens which modify this noun phrase will act directly on this token though will in fact be

modifying the entire noun phrase. Such a modification is shown in the relationship between

conflict and II.

The first relationship in figure 6.3 is a noun compound modifier dependency. In such

a relationship the dependent modifies the governor by qualifying it and creating a more

specific noun phrase. II on its own is useless, but the combination of this relationship and

the next creates World War II which is considerably more useful.

In order to reach that combination the next relationship must also be taken into account.
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1 nn(II-3,World-1)

2 nn(II-3,War-2)

3 nsubj(conflict-26,II-3)

4 det(War-9,the-6)

Figure 6.4: An Alternative Representation for Dependency Relations

This relationship is of the same type, noun compound modifier, and qualifies II with the

token War to produce the aforementioned compound noun phrase.

The third relationship is between two distant tokens at indices 26 and 3 respectively.

This is a nominal subject relationship between conflict and II. Such a relationship denotes

that the dependent is the subject of a clause in which the governor is the verb. In this ex-

ample, conflict is the head of this sentence’s dependency tree. Therefore this relationship

shows that the clause headed by II is the subject of the sentence though such a conclusion

can only be drawn by viewing the entire dependency tree and not merely this small exam-

ple. Note the distance of conflict and II. An advantage of dependency grammars is their

resolution of subjects, objects and actions regardless of distance in a sentence.

The final dependency relationship in this example shows the determiner of the noun

phrase World War II. This relationship is ignored for the purposes of my algorithm.

The dependency relations in figure 6.3 can also be represented in the style shown in

figure 6.4.

Note also that there is not a single type of dependency graph. The Stanford NLP library

provides three, each with its own properties. The style used is a collapsed dependency graph

preserving a tree structure. In a collapsed representation, prepositions and relative clauses

are collapsed. For instance, in figure 6.4 the preposition “in” is collapsed to a compound

relationship. This simplifies the use of these relationships later in this process.

This style was primarily chosen above others for its preservation of a tree structure. For
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the sake of simplicity this was deemed a desirable quality as there are no cyclic paths in

this dependency graph.

The final feature of the Stanford NLP library utilized here is coreference resolution. A

coreference is an expression which refers to another expression in a given body of text. The

pronouns “it” and “he” are commonly referent to another noun. Coreference resolution

determines which noun phrase an ambiguous clause refers to. An example of Stanford’s

coreference resolution can be seen in figure 6.4.

Figure 6.4 shows the resolutions of all ambiguous pronouns which resolve to the string

in the first sentence of this document consisting of the tokens between tokens [1..4] exclusive

which is headed by token 3. This “mention” is marked as representative indicating that it

is the set of tokens which other mentions is this set refer to.

In this case, the tokens at this position form the string “World War II.” Note that these

coreferences span the entire document—mentions from numerous sentences are included

here. Each mention includes its sentence, start and end tokens and the token which heads

the noun phrase indicated. For a given coreference only one mention will be marked as

representative.

Note that the second mention overlaps the first, consisting of tokens [1..22] while the

first consists of tokens [1..4] of the same sentence. The sixth mention in this example shows

how an ambiguous pronoun like “it” can be resolved to a specific entity. This mention

includes only one token, the first word of the second sentence of this document.

6.3.1 Distributing this task across a set of machines

Using the Stanford NLP parser requires a great deal of both CPU time and memory. The

official documentation recommends a minimum of 512 MB of heap space but in my tests

better performance was found with larger amounts. Performance tests can be seen in
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1 <coreference>

2 <mention representative="true">

3 <sentence>1</sentence>

4 <start>1</start>

5 <end>4</end>

6 <head>3</head>

7 </mention>

8 <mention>

9 <sentence>1</sentence>

10 <start>1</start>

11 <end>22</end>

12 <head>3</head>

13 </mention>

14 <mention>

15 <sentence>1</sentence>

16 <start>17</start>

17 <end>20</end>

18 <head>17</head>

19 </mention>

20 <mention>

21 <sentence>1</sentence>

22 <start>17</start>

23 <end>18</end>

24 <head>17</head>

25 </mention>

26 <mention>

27 <sentence>1</sentence>

28 <start>23</start>

29 <end>61</end>

30 <head>26</head>

31 </mention>

32 <mention>

33 <sentence>2</sentence>

34 <start>1</start>

35 <end>2</end>

36 <head>1</head>

37 </mention>

38 <mention>

39 <sentence>2</sentence>

40 <start>3</start>

41 <end>9</end>

42 <head>6</head>

43 </mention>
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44 <mention>

45 <sentence>5</sentence>

46 <start>1</start>

47 <end>3</end>

48 <head>2</head>

49 </mention>

50 <mention>

51 <sentence>17</sentence>

52 <start>1</start>

53 <end>3</end>

54 <head>2</head>

55 </mention>

56 <mention>

57 <sentence>18</sentence>

58 <start>1</start>

59 <end>4</end>

60 <head>3</head>

61 </mention>

62 <mention>

63 <sentence>26</sentence>

64 <start>5</start>

65 <end>7</end>

66 <head>6</head>

67 </mention>

68 <mention>

69 <sentence>58</sentence>

70 <start>22</start>

71 <end>24</end>

72 <head>23</head>

73 </mention>

74 </coreference>

Figure 6.4: Coreference Resolution in the Stanford NLP Library. Excerpted from output
from the parse results for the Wikipedia article on World War II.
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Task Time in ms

Initiating the Stanford parser with 2 GB Heap Space 18113
Initiating the Stanford parser with 1 GB Heap Space 18184

Initiating the Stanford parser with 512 MB Heap Space 26715
Parsing “World War II”, 2 GB Heap Space 41397
Parsing “World War II”, 1 GB Heap Space 41932

Parsing “World War II”, 512 MB Heap Space Fails

Figure 6.5: Performance of the Stanford NLP Library. Results shown are averages over five
runs. All tests run on a MacBook Pro (2.0Ghz Quad Core, 8 GB RAM)

figure 6.5. These results show diminishing returns for heap sizes above 1 GB but a significant

performance penalty for heap sizes below that size. Furthermore, with only 512 MB of heap

space the Stanford parser often fails to complete, exhausting the available heap space and

crashing.

Figure 6.5 shows that parsing a long article can take a significant amount of time. The

article used for these tests contains 1481 words and is approximately 9 kilobytes of text.

Given the size of the input data set, this tasks clearly requires some form of parallelization.

This was accomplished using a cluster of fifteen machines, each with 16 GB RAM and

dual quad-core Intel Xeon E5450 processors. Articles were divided evenly across the cluster

and each performed its operations independently.

Futhermore, the space requirements of the Stanford parser are also significant. The

article used in figure 6.5 results in an output of 1168 kilobytes from an input of 9 kilobytes.

Much of this is due to this library’s use of XML as its output format. Note in figure 6.1 that

a single word in the input data requires nine lines of output only for its token annotations.

6.4 Parsing Stanford output

Parsing the output of the Stanford library for a given article involves the following steps:
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1. Read a Stanford XML file into a collection of models.

2. Produce abstractions for named entities and locations.

3. Input these models into the algorithm developed for this thesis.

4. Store results in a database.

Each article is modeled as a Document containing a list of sentences and aliases. Most

of the models contained within a Document are strict mirrors of their XML representation

with some exceptions.

Sentences contain a list of Token objects and a map of token indices representing gover-

nors to their list of dependencies, modeled as Dependency objects. Sentences also contain

a model of the parse tree. A reference to the root is held and each node contains a part-

of-speech tag and either a token or list of child nodes. To avoid excessive traversals, a

map of token IDs to their corresponding parse node is also kept for constant-time lookup.

Sentences also contain a collection of entities modeled as a map from entities to a list of

their properties. A map of tokens to the properties they define is also kept.

Aliases are stored as a map with representative aliases as keys and a list of dependent

aliases as values. These are the aliases discussed in the coreference resolution section of 6.3.

6.5 Structuring Graph Storage

When I first began thinking about the storage tructure of this process’ output my initial

instinct was to use a binary blob to store the map of entities and properties. I felt that

this would be the simplest way to traverse the output at query-time. This approach would

likely have been disastrous. The resuling binary blob of even the small subset of World
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War II articles would have been several hundred megabytes, an untenable size to store in

an unstructured form.

By using a relational database I can ensure data consistency, easily query my dataset

and take advantage of the portability of SQL databases.

A key advantage is the SQL language itself. This language eliminated the need to write

my own query system. Such a system would have consisted of a series of complex list pro-

cessing functions which likely would have yielded significantly worse performance than the

SQL solution used here. Not only would any sort of searching capability been prohibitively

slow, the inability to search by any sort of ID number—without in effect recreating a rela-

tional structure—would have incurred a steep performance penalty. Through the judicious

use of fulltext indices and other standard SQL tools, queries can be completed in under

a second whereas tests on an in-memory solution showed queries of comparable function

requiring several times as long, in some cases as high as 10x.

Originally the semantic graph produced by this process was stored in a PostgreSQL

database. This choice was driven largely but the desire to learn more about PostgreSQL

(trial by fire, if you will) but ultimately storage was moved to a MySQL database. This

allowed me to not only use the existing MySQL instance running on the department ma-

chines courtesy of Dr. Massingill but also take advantage of MySQL’s more user-friendly

fulltext search capabilities. The use of Squeryl [19] as an intermediary layer between my

objects and the database itself allowed me to transition between databases seamlessly.

Much of the data kept in the database is from the Stanford NLP output. Each sentence

is stored as its own row with a distinct ID and relations to the document it originated from.

Documents are stored as simple numeric IDs and names and the named-entity recognition

output is also kept.

Aside from data gathered through the Stanford library, a table of “entity keys” is kept.
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This table represents the key structure of the semantic map constructed using this process.

When entities are inserted into the table, every matching and near-matching key is resolved

into a table of “entity keys.” In this way, every key containing the word “Britain” can be

trivially and quickly queried without resorting to a costly fulltext search of every entity in

the database. By selecting the row with a corresponding value of “Britain” from the table

of entity keys, every related entity is quickly returned as a set of relations.

Resolved locations are also stored. A short script was written to resolve entities to

real-world locations and coordinates using Google’s geocoding API [20]. Entity values are

queried through the geocoding API and positive results (those entities for which a location

could be determined) are stored to enable a mapped visualization of this graph.

Properties were stored with relations to the entities which produced them.

6.6 Traversing the Graph and Producing Output

The use of SQL allowed for very terse and readable queries which could yield a wealth of

information about a specific vertex or edge. For instance, figure 6.6 shows the SQL query

used to find entities related to a specific property. This query takes one input: a string

representing a property (@property). Every property which matches that string is selected

and then joined with the entities from that property using the one-to-many relationship

of entities to properties. Figure 6.7 shows a sample execution on the string “In 1939,

in all Polish universities and colleges, there were about 50,000 students.” This output,

truncated for the sake of space, shows three of the attributes selected on an entity-property

relationship: entity ID, the string value of the entity and its relevancy score. This score is

determined by the number of occurrences of a given sentence in defining an entity. Higher

scores indicate a stronger connection.
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1 SELECT *, COUNT(entity.id) FROM

2 (SELECT * FROM Property

3 WHERE value LIKE (@property)) AS property

4 INNER JOIN Entity AS entity

5 ON property.entityId = entity.id

6 GROUP BY entity.id;

Figure 6.6: Finding entities related to a property

ID Value Relevancy Score

12320 Warsaw University of Life Sciences 4
14505 three technical colleges - Warsaw University of

Technology , Lww Polytechnic , and Krakws
AGH University of Science and Technology , es-
tablished in 1919 , also one argicultural univer-
sity - Warsaw University of Life Sciences

1

15486 Krakws AGH University of Science and Technol-
ogy , established in 1919 , also one argicultural
university - Warsaw University of Life Sciences

9

17057 Krakws AGH University of Science and Tech-
nology

3

17079 1919, also one agricultural university - Warsaw
University of Life Sciences

6

18168 three technical colleges - Warsaw University of
Technology

2

Figure 6.7: Sample Output of Figure 6.6 (edited for brevity)

By using this query and others like it, related entities can be extracted from the graph

and their connection justified.

Traversing the graph begins by selecting an entity—that is, a node. More precisely an

entity key is selected and its corresponding entities are used to find all connections from

the given set of nodes. For the sake of readability connections are shown as the sentence

their property is found in. This query takes all the corresponding entities for a given entity

key and groups them by the sentence the entity was originally defined in and counts the



32

number of occurrences of each sentence. This count is used to rank the connections and

give weights to the edges of the graph.



Chapter 7

Algorithm in Detail

7.1 Dependency Functions

The grammar dependencies used here are those described in the Stanford typed dependen-

cies manual [21]. Currently 53 grammatical relations are defined for the English language.

Each of these has a corresponding function in this algorithm. Though the specifics of each

function differ, all follow the same simple pattern. Dependency functions take two pa-

rameters, a governor and a dependent, and return a map of tokens to a list of properties.

Furthermore, these grammatical relations have a typed hierarchy where relations can inherit

from other relations. Each function therefore can use its supertype’s own function and only

add the minimum processing necessary for its specific relationship.

These functions were arrived at by first considering their meaning in the context of

English grammar and their definitions within the Stanford parser and then through a process

of trial-and-error. Figure 7.1 shows an example of such a function.

This example handles nominal subject relationships (“nsubj”), a “noun phrase which is

the syntactic subject of a clause” (stanford). An example is the sentence “Clinton defeated

33
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1 class nsubj extends subj {

2 override def apply(gov: ParseTreeNode, dep: ParseTreeNode):

Map[Token,List[Property]] = {

3 val props = super.apply(gov,dep)

4

5 val nns = (new NounProperty(dep.word) /:

6 (props.getOrElse(dep.word,List[Property]())

7 filter { _.getClass == classOf[NounProperty] }

8 map { np:Property => np match {

9 case np2: NounProperty => np2

10 case _ => throw new ClassCastException

11 } }

12 ) ) { (np:NounProperty,nn:NounProperty) => nn ++ np }

13

14 val newProps = add(props,

15 dep.word,

16 nns,

17 { p:Property => p.getClass == classOf[NounProperty] })

18

19 return add(newProps,gov.word,new Subject(nns))

20

21 }

22 }

Figure 7.1: An Example of a Dependency Relation Function
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Dole” in which “defeated” governs “Clinton.” This function adds “Clinton” adds “defeated”

as a property of “Clinton”.

We will now trace this function step by step.

Line 1 shows the inheritance relationship of nsubj to subj, the supertype, utilized in

line 3 where the gov and dep are first processed by subj and its supertypes returning a map

consisting of key-value pairs in which the key is an entity found in this relationship and the

value is a list of properties of that entity.

Note that this algorithm is head-recursive: every relationship function ultimately ex-

tends dep which calls the relationship functions stored by the dependent. In effect this is a

depth-first traversal of the dependency tree representing a given sentence.

Lines 5-12 show the map-reduce function used for nsubj in which partial noun properties

belonging to the nominal noun found in the dependent are folded into a single noun property.

Types are used to distinguish partial and full properties as shown in lines 7-10. Line 12

combines these items.

Lines 14-17 create a new properties map with the addition of nns from lines 5-12 as a

property of the dependent word while also removing the partial properties handled in this

function. This is done in line 17.

Finally the new property is added as a subject of the governing word and this map is

returned up the tree.

7.1.1 Function Inheritance

Given that dependency functions have some concept of inheritance, many functions are

implemented as simple augmentations of their parent type. For instance, conj_or is a

conjunctive “or” relationship and extends the parent conj conjunctive function. conj_or

simply adds an AlternativePhrase property to the properties map.
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7.2 Properties

In defining the properties used here the ultimate goal was balance. If the properties are too

generic the connections they form will lack context and make little sense. If the properties

are too specific construction of the graph will be untenable.

Each property is essentially a string with a type. Unlike other forms of semantic graphs,

this approach does not try to use properties to define specific facts or attributes. Doing

so while also trying to encompass a corpus as large as Wikipedia is impractical. Instead,

properties are sequences of words which do convey a fact or attribute about an entity but

only loosely type the relationship.

For instance, one property of World War II extracted by this process is “the deadliest

conflict in human history.” The only other information about this property is that it is a

property of the entity “World War II.” No other information is kept yet this still clearly

conveys a valid attribute of World War II.

Another entity is “Nazi-Soviet agreements” which has the properties of being related to

“Germany”and “continental Europe.” These properties do retain more information in the

form of their type: these are modeled as Relation properties.

Other property types include AlternativePhrase, such as “the Chancellor of Germany”

holding the AlternativePhrase property of “Adolf Hitler”—essentially recognizing that these

two phrases represent the same entity. Both are then connected to the property “He abol-

ished democracy, espousing a radical, racially motivated revision of the world order and soon

began a massive rearmament campaign.” Notably this property contains neither “Chancel-

lor of Germany” or “Hitler” but my algorithm is able to recognize the link between these

three sequences of tokens.
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7.2.1 Full vs. Partial Properties

Given that a property may not be fully defined by a single grammatical relation, this solution

provides for “partial properties” to be returned by dependency functions. This can be seen

as a loose form of delayed message-passing. Dependency functions which begin a partial

property add it to the map entry of the governor’s token. Conversely, dependency functions

which can use a partial property to create a full property check for the existence of such

partial properties in the map returned by child nodes. As we use a depth-first traversal

child nodes are processed before parent nodes, allowing partial properties to be in effect

passed from child to parent and then filtered by the parent before returning the result map.

7.3 Compiling Connections from a Document

After a document is parsed by the Stanford library and its properties map is constructed

the connections represented by the document must be extracted.

The process begins by taking the list of named entities returned by the Stanford parser

and resolving those entities to their respective sentences. This is done in order to give

context to these entities when ultimately displayed. Each sentence in the document is then

connected to its properties and these two sets of sentences are then joined.

Aliases are then mapped to the properties defined by their respective sentences. The

resulting maps are then reduced to form a master map containing all the aliases of a given

document and the properties defined by each of those aliases across the entire set of sen-

tences.

In figure 7.2, A is the set of aliases {a0 . . . an} in D such that ai is a map from αi to

{αi0 . . . αij} and αi is a representative alias and maps to its set of dependent aliases and S

is the set of sentences in D and P is the set of properties of each of these sentences such
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Let D = (A,S, P ) where

A = {a1 = α1 → {α11, α12, α13}, a2 = α2 → {α21, α22}}
S = {s1, s2, s3}
P = {sp1, s

p
2, s

p
3}

Figure 7.2: A Document Model

Aflat = {α1, α11, α12, α13, α2, α21, α22}
Aprops = {αi → {p ∈ P} ∀ αi ∈ Aflat }

Aconnections = {αi → (αj ∈ A ∀ αi,j ,

p ∈ P ∀ psentence = αisentence)}

Figure 7.3: Transforming Aliases to Produce Connections

that spi corresponds to the properties conveyed by that sentence.

These sets are operated on to produce a master map representing this document. The

end result is a map from representative aliases to their dependents and the properties which

connect them.

Figure 7.3 shows these transformations. Aflat is the flattened transformation of A

producing a single set of aliases. From this Aprops is produced as a map of every alias to its

properties.

This map is augmented to only use representative aliases as keys. Related aliases are

shifted to act as values. In effect this is a map with a single key leading to two values:

its dependent entities and the properties which connect them as seen in Aconnections, so

named because it represents connections between aliases and the properties which define

that connection.



Chapter 8

Input Data

Two principle sets of input data were used in large-scale testing of this algorithm: first, a

collection of several thousand articles from Wikipedia and second, the article on World War

II and those immediately linked by it. The motivation behind this decision is two-fold:

In the first place, processing the entirety of Wikipedia is not practical without a great

deal of manual “massaging” in order to get the input documents into an acceptable form.

While the Wikimedia Foundation does provide dumps of their database, it is not perfect and

correctly reassembling that database is a tricky process. Of the roughly 1.5 million articles

contained in the dump used here, only about 250,000 were suitable for tagging. Of those,

some contained malformed markup or other anomalies which rendered them unsuitable for

tagging with the Stanford library. While the resulting set of documents is still large, it is

by no means complete.

This problem led to the two-pronged approach of also testing with a small but closely-

related set of documents: those known to be relevant to the subject of World War II. World

War II was chosen as the basis for this test for several reasons. Firstly, it is a topic which

spans (quite literally) the entire world, providing a robust test to the geolocation aspects
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of this project. Secondly, Wikipedia’s body of text on the subject is sufficiently large to

challenge the algorithm used here. Third, this topic is well-known to any reader or user and

therefore allows the user to quickly see the usefulness and relevancy of the approach taken

here.

451 articles about World War II were chosen. Along with the article directly on World

War II, every article linked to from that article was also used. This dataset proved far more

useful in analyzing the effectiveness of the process described in this paper. Given the nature

of the first data set used, the graph produced was too sparse to prove useful. Too many

important articles were missing leading to large gaps in the graph or a graph with many

disjoint areas.

The use of a smaller input set also allowed for faster iteration as a complete pass over

this set required only three to four hours whereas a pass across the full set required far

longer. Parallelization allows this set to be processed in a matter of minutes but a fully

parallel solution was not satisfactorily completed for technical reasons (see section 9.1).

8.1 Difficulties Parsing Wikipedia

In the course of parsing articles from Wikipedia problems arose at every step.

In importing data from Wikipedia only approximately 250,000 articles were successfully

imported. The reason for this is still unknown. At the time, a successful import of Wikipedia

was a known difficult problem and the Wikimedia Foundation provided several options

with the caveat that none were guaranteed to succeed. Given this problem and lack of

workaround, I decided to move forward with only a this 250,000 article subset. I decided

that this would still be a large-enough input set to sufficiently test my thesis.

Further problems were uncovered upon parsing these articles with the Stanford NLP
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library. If a document contains malformed sentences the Stanford parser will, in some

instances, fail to parse the document and crash. Successfully parsing such a large input set

would require manually augmenting articles to fix whatever problem caused the crash. This

was infeasible given my resources.

Not all crashes were due to poor grammar. In investigating the problem I realized that

my method of stripping Wiki markup was not perfect and led to extraneous section which

confused the Stanford parser and caused it to crash. My combination of the Bliki engine’s

Wiki-to-plain-text conversion and regular expressions sometimes incorrectly stripped an

article of its Wiki markup. Problems especially arose in handling templated sections of

articles—those sections which, ironically, provided structured data.

I was unable to devise a scheme which could successfully strip a majority of articles of

their markup and yield a usable document. Once again, my decision was to abandon those

articles which I could not successfully parse.

Ultimately I had a set of approximately 25,000 documents which I could analyze. This

was several orders of magnitude from the millions of documents I expected to use and

caused significant problems in building a semantic graph. Primarily, the resulting graph

was too sparse to be of any use. Nodes had too few connections to other nodes. Some nodes

were only connected to other nodes produced from the same document because no other

document in that category had been included.

This posed a significant problem for my thesis as I could not build an adequate graph

without adequate data and I did not have the time to manually clean these articles. This

led to my decision to use a focused subset of Wikipedia which I could manually clean and

parse in a reasonable amount of time.
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8.2 World War II

The World War II subset was chosen by fetching every article linked to by the primary

“World War II” article. A script was written to download each article from Wikipedia

and parse them with the Stanford parser. This yielded 451 suitable articles and a usable

semantic graph.



Chapter 9

Difficulties

Most of the difficulties with this project have been covered elsewhere. This section covers

those difficulties not covered elsewhere.

9.1 Parallelization

Parallelizing this process, while theoretically trivial, proved technically difficult. An orig-

inal attempt was made using Scala’s parallel collections library. Parallel collections can

perform higher-order operations on themselves in a parallel fashion without requiring ex-

plicit instructions regarding multithreading or concurrency. In theory this approach should

allow the JVM to determine the appropriate number of threads for the given operation and

execute that operation across the entire set.

In my tests, this failed to work. When trying to process the World War II dataset, the

parallel collections approach failed after approximately sixty articles. This is likely due to

the fact that my operations involve IO, both reading from the input XML files and writing

to a database. Scala’s parallel collections are not designed to work correctly when a function
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has any side effects.

9.2 Sparseness

The principal problem with the output of this project in its current state is the sparseness

of the graph. While the use of the World War II set of articles alleviates this problem to a

certain extent, it will only be fully solved by improving the manner in which properties are

both defined and extracted. Proposed solutions are covered in chapter 11 and will not be

discussed here.

The principle problem of a sparse graph is what I term the “balkanization” of a graph.

Due to missing links, the graph devolves into subgraphs with suboptimal links between

sections. This makes traversals difficult due to the need to find a valid path to a “bridge”

in order to connect to another section even if that difficulty should be easy.



Chapter 10

Results

The semantic graph built by this algorithm can provide extremely useful results and a

logical traversal between entities. At times, however, its connections are illogical at best.

Though this method holds promise, improvement is needed for this to be a practical method

of information extraction.

10.1 Example Output

Note that connections are shown as full sentences. Because connections consist of short

snippets, the sentence which contains a connection is shown to provide context.

In the examples used in this section, oval shapes represent entities (nodes) and rounded

rectangles represent connections (edges).

In figure 10.1 we see three edges of the node for the entity “Great Britain.” As explained

earlier, when analyzed a connection consists of a key-value pair between an entity and a

property. Here we see the sentences these properties emanate from in order to provide con-

text. Each property connects “Great Britain” with another entity as seen in this diagram.
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Note that this is not a complete diagram. For the sake of space, only a small number of

connections and entities were included.

This example shows how connections between entities are justified. Moreover, these

connections can be ranked. The leftmost connection in the diagram is used 66 times to

connect two entities, the middle connection 24 times and the rightmost 22.

Interestingly, this semantic graph can be viewed in two forms, first as entities connected

by properties and second as properties connected by entities. While the diagram in this

figure uses the former view, the latter is equally valid. Viewing the graph through this

lens uses connections as nodes and entities as edges. For instance, this view shows how the

expulsion of the Soviet Union from the League of Nations in the leftmost property can be

linked to Western commercial ventures in the rightmost property via Great Britain. Paths

can be mapped between distant events, concepts and other properties.

While the word “Britain” does appear in each of these sentences, not every connection

in this graph relies on such a match. For instance, “Britain” also has a vertex leaving it

with the sentence “As agreed with the Allies at the Tehran Conference (November 1943)

and the Yalta Conference (February 1945), the Soviet Union entered World War II’s Pacific

Theater within three months of the end of the war in Europe.” This link arises from a

property found elsewhere which states that the entity “Britain” is a constituent part of the

entity “Allies” which also maps to “Western Allies” among other forms. This connection is

a prime example of the potential power of this process.

One of the connections formed by the above vertex is to the entity “the Molotov-

Ribbentrop pact”—the non-aggression pact formed by the Soviet Union and Germany prior

to World War II, later broken by Germany’s invasion of the Soviet Union. Another con-

nection is formed to the entity “Romania” which is one of the countries Germany and the

Soviet Union secretly agreed to divide in their pact.
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Great 
Britain

In expelling the Soviet Union, 
the League broke its own rule: 
only 7 of 15 members of the 
Council voted for expulsion 

[Great Britain, France, 
Belgium, Bolivia, Egypt, 
South Africa, and the 

Dominican Republic], short of 
the majority required by the 

Covenant.

The Allies chose the Solomon 
Islands [a protectorate of 

Great Britain], specifically the 
southern Solomon Islands of 

Guadalcanal, Tulagi and 
Florida Island, as the first 

target.

Western nations, notably 
Great Britain, France, and 
the United States, had for 

long exhibited great interest 
in the commercial 

opportunities in China and 
other parts of Asia.

Soviet 
Union

Dominican 
Republic

South Africa

the League

Florida 
Island

Solomon 
Islands

The Allies

United 
States

commercial 
opportunities in 

China

France

Western 
Nations

Figure 10.1: Connections from “Great Britain”
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The entity “Britain” is connected to the entity “the Molotov-Ribbontrop pact” via a

sentence which contains neither phrase yet is a sound, historically-valid connection. Ger-

many’s violation of the pact led to the Soviet Union’s alliance with the Allied forces, of

which Britain was a key member, for the duration of World War II and two key events

brought about by this alliance were the Tehran and Yalta Conferences. This connection

makes perfect sense.

This example shows how my process can produce logical, sound connections without the

string forming an entity being present in said connections. While most connections are not

as strong or interesting as this, examples like this one show the promise of my solution.

Indeed, most connections do appear to be based on string matches, though this is not the

case. This stems from the heavy use of the Stanford NLP library’s coreference resolution,

used to provide context to the ambiguous pronouns which often form an entity. Doing

so has the side effect of creating connections due to the presence of a string. In effect, a

connection which likely would have been found regardless is made stronger by the presence

of such a token.

10.2 False Positive Examples

While this graph does contain many useful and interesting entities and connections, there

are also many strange connections for which I have not been able to find explanations. For

instance, the following sentence produces a property about Britain which bears no basis

in history: “Upon leaving the meeting, Mussolini was arrested by ‘carabinieri’ and spirited

off to the island of Ponza.” This sentence refers to the ousting of Mussolini immediately

before Italy’s surrender. While Britain is of course connected to this event, the textual

justification for this specific connection is incorrect.
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More evaluation is needed to determine the specific reasons for such false positives. In

small-scale testing, likely explanations fall broadly into two categories: incorrect coreference

resolution by the Stanford library and poorly-formed properties. The former problem cannot

be easily solved but the latter is likely due to a set of properties which does not sufficiently

encompass every needed possibility. That is, a property is being defined which, while needed,

is not specific enough and yields an ambiguous or strange result. A better-defined set of

properties is needed to alleviate this problem.



Chapter 11

Future Recommendations

During the course of my research I encountered several ideas which I eschewed for the sake of

simplicity. Having completed this thesis I realize now that this was a mistake and the ideas

presented in this section would, I believe, produce a far stronger result than my current

approach.

11.1 Higher Order Dependency Relations

In its current form, my algorithm only takes into account immediate dependency relation-

ships. Within the dependency tree of a sentence, only dependency relationships of nodes

and their immediate descendants are directly used. More research is needed to determine

the usefulness of what I term “higher-order dependency relations”—relationships which

“leap-frog” a node and act on a governor and its dependent’s dependents.

In figure A.1 this would manifest itself as a relationship between GAVE and MY. The

most obvious challenge concerns the exact type of the function used. In this instance the

relationship is a combination of direct object and possessive relationships. Furthermore, this
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increases the space of possible functions from approximately fifty to 1225 assuming that the

graph of possible combinations is complete. Manually defining such a large number of

functions is not feasible.

While this approach could produce interesting results, it is likely not practical.

11.2 Using the Simple English Wikipedia

Ruiz-Casado et al [8] used the Simple English edition of Wikipedia in their work. Such

an approach has several benefits: its simpler sentences would likely reduce problems in

successfully parsing articles and its clearer grammar is less likely to rely on nuance to

convey information. In their research the Simple English edition was chosen for the same

reasons. Simpler syntactic structures are much easier to handle.

11.3 Machine Learning

Were I to redo my research I would begin by using a machine learning approach. Rather

than manually programming dependency functions I would annotate a large set of sentences

with the properties conveyed by dependency functions or common compositions of functions.

Using machine learning these hand-annotated sentences would form the training corpus and

would potentially produce a more encompassing set of functions.

11.4 A Probabilistic Approach

Closely related to a machine learning approach, and indeed intertwined in many ways,

would be the inclusion of probability. Currently all properties produced are accepted at face

value—their weight comes from the number of times that property or a similar property
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is produced. While this allows for a rough approximation of probability, this could be

extended. For example, within dependency functions there is likely room to account for

the likelihood of a property being true based on the probability of what nearby relations

consist of.



Appendix A

Some Relevant NLP Concepts

A.1 Dependency Grammars

Dependency grammars are a class of grammatical theory not based on context-free gram-

mars but instead on the relations between words. (Jurafsky, 354). This class of theory was

first explored by early Greek and Indian linguists and regained popularity in the latter 20th

century.

Dependency grammars are quite simple: every word in a sentence is dependent upon

another word (save for the head or root word) and these relationships form a tree structure as

seen in the figure below. Furthermore, each relationship has a type. This structure abstracts

word order away, meaning that multiple sentences can map to the same dependency tree.

Various specific grammars exist for the English language; the grammar used here is that

employed by the Stanford library which defines 55 semantic relations.

In this sample sentence, “I gave him my address,” we can see how GAV E is the root

word of this sentence, that is it has no governor word. Every other word in the sentence is

a dependent of another word and each of these dependencies has a type. The relationship

53



54

< ROOT >

A
A
A

GAV E

�
�
�nsubj:

I

A
A
A

iobj:

HIM

@
@
@@

dobj:

ADDRESS

�
�
�

poss:

MY

Figure A.1: Dependency Graph for “I gave him my address” [1]

between I and GAV E is given as nsubj(gave − 2, I − 1), indicating a nominal subject

relationship between the tokens “gave” and “I” at indices 2 and 1, respectively.

A.2 Why dependency grammars?

Dependency grammars appealed to me for a number of reasons: functionalism, the simplicity

of representing a sentence as a tree and their potential for property extraction. This form

allows for verbs to be viewed as infix functions and identifies their arguments. Doing so helps

quickly extract statements of the type “Entityi modifies Entityi+1” and bind both these

entities and the type of modification to a given instance. Doing so establishes relationships

between entities and properties of those entities.

Essentially, dependency grammars help reduce complex sentences to less-complex rela-

tions, greatly simplifying the task of extracting these relationships from a document. While
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a tremendous amount of contextual information is lost, the tradeoff allows for a small set

of relatively simple functions to extract information from a wide range of input documents.



Appendix B

Tools Used

This appendix briefly enumerates the tools, languages and libraries used to complete this

thesis.

Scala The primary implementation language, described in section 5.5.

Java Glue code for interfacing with the Stanford NLP Library was written in Java.

SBT The Simple Build Tool, part of the Scala ecosystem, was used as the build and

dependency manager.

Play! Framework A web framework written in Scala, used for constructing a visual front-

end.

Stanford NLP Library Described extensively in section 6.3.

PostgreSQL Originally stored graph data in a PostgreSQl database but later transistioned

to MySQL.
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MySQL Used to store graph data for both its easier to use fulltext searches and availability

on department machines.

Squeryl A Scala library for interfacing with databases.

Bliki A wiki-markup library used to strip Wikipedia articles of their markup.
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