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Abstract

Inorganic-organic hydrogels based on methacrylated star polydimethylsiloxane (PDMSstar-MA) 

and diacrylated poly(ethylene glycol) (PEG-DA) macromers were prepared via solvent-induced 

phase separation (SIPS). The macromers were combined in a dichloromethane (DCM) precursor 

solution and sequentially photopolymerized, dried and hydrated. The chemical and physical 

properties of the hydrogels were further tailored by varying the number average molecular weight 

(Mn) of PEG-DA (Mn = 3.4k and 6k g/mol) as well as the weight % (wt%) ratio of PDMSstar-MA 

(Mn = 7k g/mol) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels fabricated 

from aqueous precursor solutions, SIPS produced hydrogels with a macroporous morphology, a 

more even distribution of PDMSstar-MA, increased modulus and enhanced degradation rates. The 

morphology, swelling ratio, mechanical properties, bioactivity, non-specific protein adhesion, 

controlled introduction of cell-adhesion, and cytocompatibility of the hydrogels were 

characterized. As a result of their tunable properties, this library of hydrogels is useful to study 

material-guided cell behavior and ultimate tissue regeneration.
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1. Introduction

In tissue engineering, the properties of the three dimensional scaffold guide cell behavior 

and ultimate tissue regeneration.[1-5] Physical properties of scaffolds known to impact cell 

behavior include modulus [6-9] and morphology (e.g. porosity).[10-19] In addition, scaffold 

chemical properties influence cell behavior including bioactivity,[20-22] chemical 

functionality,[23] hydrophobicity,[24-26] and related hydration (i.e. swelling).[6, 27] 

Therefore, a library of scaffolds having precisely tunable physical and chemical properties 

over a broad range would be a valuable tool to probe material-guided cell behavior and 

enable the regeneration of functional tissues.

Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are extensively utilized as scaffolds 

for the regeneration of numerous types of tissues.[28-34] Their resistance to protein and cell 

adhesion in the absence of cell adhesive ligands makes them particularly useful to study cell-

material interactions.[28-29, 35-37] Thus, changes in cell behavior may be related to an 

associated material property change. However, PEG-DA hydrogels display a limited range 

of physical as well as chemical properties restricting their utility for such studies. For 

instance, the modulus of PEG-DA hydrogels may be tuned over a somewhat narrow range 

by altering the crosslink density (i.e. PEG-DA number average molecular weight, Mn) or the 

weight percent (wt%) concentration of PEG-DA in the aqueous precursor solution.[31, 38] 

However, these alterations simultaneously produce changes in swelling thereby restricting 

the ability to uncouple the effect of modulus and swelling on cellular response.[39] While 

morphological changes in general alter cell behavior,[40-42] a macroporous hydrogel 

morphology has shown particular utility in tissue regeneration.[18, 43-44] PEG-DA (Mn = 

3.4k and 6k g/mol) hydrogels fabricated by the photopolymerization of aqueous precursor 

solutions exhibit pores smaller than ~5-10 μm.[45] Several strategies have been explored to 

produce macroporous PEG-DA hydrogels, including: salt leaching,[46-47] gas foaming [48] 

and cryogelation.[49-50] However, difficulty leaching porogens (salt leaching), high 

temperatures or low pressures (gas foaming), and extremely low temperatures (cryogelation) 

[51] limits these techniques.

In general, the chemical nature of hydrogel scaffolds has been shown to have a significant 

impact on cell behavior.[52-56] Alterations to the chemical nature of PEG-DA hydrogels 

have been largely limited to those that increase the rate of degradation. For instance, 

polyester segments [57-58] and enzymatically unstable peptides [37, 59] have been 

introduced to enhance the otherwise limited degradation rate of PEG-DA hydrogels. The 

impact of chemical functionality incorporated into PEG-DA hydrogels on cell behavior has 

been explored only to a limited extent.[23] Previous studies have demonstrated that the 

incorporation of inorganic silicon-containing materials into organic scaffolds enhances their 

bioactivity.[20-21, 60] In addition, scaffold hydrophobicity has also been shown to influence 

osteogenic differentiation.[25-26, 61] In our prior report, hydrogels were formed by 

introduction of an inorganic, hydrophobic methacrylated star polydimethylsiloxane 

(PDMSstar-MA) into PEG-DA hydrogels.[62] The insolubility of the PDMSstar-MA in the 

aqueous precursor solutions produced hydrogels comprised of discrete PDMSstar-enriched 

microparticles distributed throughout the PEG-DA hydrogel matrix. PDMSstar-MA content 

altered mechanical behavior without significant changes to hydration. Furthermore, our 
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previous study showed that these PDMS-PEG hydrogel scaffolds demonstrated the ability to 

guide mesenchymal stem cells (MSCs) towards osteogenic differentiation with increased 

levels of PDMSstar-MA.[63]

Recently, we prepared PEG-DA hydrogels via solvent induced phase separation (SIPS) 

which involved photopolymerization of a dichloromethane (DCM) precursor solution 

followed by sequentially drying and hydration.[64] During SIPS, a solvent system is utilized 

which promotes phase separation of the growing polymer chain and network during cure.

[65-66] Compared to PEG-DA hydrogels fabricated from an aqueous precursor solution, 

hydrogels were macroporous and exhibited increased modulus values and enhanced 

degradation rates. Herein, we report the introduction of variable levels PDMSstar-MA into 

PEG-DA hydrogels fabricated via SIPS to produce bioactive, macroporous PDMSstar-PEG 

hydrogel scaffolds with enhanced modulus values and degradation rates. In contrast to 

PDMSstar-PEG hydrogels fabricated from an aqueous solvent, the improved solubility of 

PDMSstar-MA in the DCM fabrication solvent enables its more homogeneous distribution 

throughout the hydrogel. A series of PDMSstar-PEG hydrogels were prepared via SIPS (i.e. 

from DCM precursor solutions) at 10 wt% total macromer concentration but with variable 

wt% ratios of PDMSstar-MA (7k g/mol) to PEG-DA (3.4k and 6k g/mol) [0:100, 1:99, 10:90 

and 20:80]. The effect of hydrogel composition on physical and chemical properties, 

including equilibrium swelling (i.e. hydration), morphology, compressive modulus, 

degradation, bioactivity, protein resistance, controlled introduction of cell adhesion and 

cytocompatibility were assessed. Properties of PDMSstar-PEG hydrogels fabricated via SIPS 

were compared to analogous hydrogels fabricated from an aqueous precursor solution.

2. Materials and Methods

2.1. Materials

Pt-divinyltetramethyldisiloxane complex (Karstedt’s catalyst, 2 wt% in xylene), 

tetrakis(dimethylsiloxy)silane (tetra-SiH), and octamethylcyclotetrasiloxane (D4) were 

obtained from Gelest. Allyl methacrylate, acryloyl chloride, triflic acid, 2,2-dimethyl-2-

phenyl-acetophenone (DMAP), 1-vinyl-2-pyrrolidinone (NVP), triethylamine (Et3N), 

MgSO4, K2CO3, hexamethyldisilazane (HMDS), N3013 Nile Red (Nile Blue A Oxazone), 

NaOH, and solvents were obtained from Sigma Aldrich. HPLC grade toluene, CH2Cl2, and 

NMR grade CDCl3 were dried over 4Å molecular sieves. Poly(ethylene glycol) (PEG) 

[PEG-6000; MW = 5000-7000 g/mol and PEG-3400; MW = 3000-3700 g/mol per 

manufacturer’s specifications] were obtained from BioChemika. The Mn of PEG-3400 

(3371 g/mol) and PEG-6000 (6072 g/mol) were back-calculated from 1H NMR end-group 

analysis of the corresponding diacrylated products. Phosphate buffered solution (PBS, pH = 

7.4, without calcium and magnesium), HEPES, Dulbecco’s Modified Eagle Medium 

(DMEM), fetal bovine serum (FBS), PSG solution (10,000 U/mL penicillin, 10000 mg/L 

streptomycin, and 29.2 mg/mL L-glutamine), and PSA solution (10,000 U/mL penicillin, 

10,000 mg/L streptomycin, and 25 mg/L amphotericin) were obtained from Mediatech. 

Peptide RGDS was obtained from American Peptide. Acryloyl PEG-succinimidyl valerate 

(acryloyl-PEG-SVA, 3.4 kDa) was obtained from Laysan Bio Inc. Mouse smooth muscle 

precursor cells (10T1/2) were obtained from American Type Culture Collection (ATCC).
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2.2. PDMSstar-MA Synthesis

PDMSstar-MA was prepared as previously reported.[67] First, D4 (29.9 g, 100.8 mmol), 

tetra-SiH (1.1 g, 3.3 mmol), triflic acid (60 μL), and HMDS (0.15 g, 0.93 mmol) were 

reacted. In this way, PDMSstar-SiH (24.9 g, 80% yield) was obtained as a colorless liquid, 

Mn/Mw = 7600/18,800 g/mol, PDI = 2.5. 1H NMR (δ, ppm): 0.064-0.113 (bm, 1174H, 

SiCH3), 4.7 (m, 4H, SiH). IR (ν): 2125 cm-1 (Si-H). Next, PDMSstar-SiH (7.0 g, 0.92 

mmol), allyl methacrylate (0.26 g, 2.1 mmol), toluene (30 mL), and Karstedt’s catalyst (100 

μL) were reacted to obtain PDMSstar-MA (6.37 g, 88% yield) as a colorless liquid, Mn/Mw = 

8300/22,000 g/mol, PDI = 2.6. 1H NMR (δ, ppm): 0.045-0.127 (bm, 1673H, SiCH3), 0.559 

(m, 8H, -SiCH2CH2CH2), 1.67 (m, 8H, -SiCH2CH2CH2), 1.92 (m, 12H, -C(CH2)CH3), 4.10 

(m, 8H, -SiCH2CH2CH2), 5.57 (m, 4H, -C(CH2)CH3), 6.11 (m, 4H, -C(CH2)CH3). IR (v): 

no Si-H peak.

2.3. PEG-DA Synthesis

PEG-DA (3.4k and 6k g/mol) were prepared as previously reported.[62] PEG-3400 (23.5 g, 

7.0 mmol), Et3N (1.95 mL, 14.0 mmol) and acryloyl chloride (2.27 mL, 28.0 mmol) were 

reacted to obtain PEG-DA (15.2 g, 63% yield). 1H NMR (δ, ppm): 3.62 (s, 297H, -

OCH2CH2), 5.81 (dd, 2H, J = 10.5 and 1.2 Hz, -CH=CH2), 6.13 (dd, 2H, J = 17.4 and 10.5 

Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 and 1.5 Hz, -CH=CH2). By 1H NMR end-group 

analysis, Mn of PEG-DA (3.4k g/mol) was determined to be 3393 g/mol (∼3400 g/mol). 

PEG-6000 (24 g, 4.0 mmol), Et3N (1.12 mL, 8.0 mmol) and acryloyl chloride (1.30 mL, 

16.0 mmol) were reacted to obtain PEG-DA (31 g, 63% yield). 1H NMR (δ, ppm): 3.61 (s, 

547H, -OCH2CH2), 5.81 (dd, 2H, J = 10.4 and 1.5 Hz, -CH=CH2), 6.13 (dd, 2H, J = 16.8 

and 10.5 Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 and 1.5 Hz, -CH=CH2). By 1H NMR end-

group analysis, Mn of PEG-DA (6k g/mol) was determined to be 6143 g/mol (∼6000 g/mol).

2.4. NMR
1H NMR spectra were obtained on a Mercury 300 300 MHz spectrometer operating in the 

Fourier transform mode. Five percent (w/v) CDCl3 solutions were used to obtain spectra. 

Residual CHCl3 served as an internal standard.

2.5. Hydrogel Preparation

PDMSstar-PEG hydrogels formed via SIPS were prepared from DCM-based precursor 

solutions and analogous hydrogels were prepared from aqueous precursor solutions at the 

same concentrations for comparison. First, PEG-DA (3.4k or 6k g/mol) was added to either 

DCM or DI-H2O at 10 wt% total concentration in solvent. PDMSstar-MA (7k g/mol) was 

then added at the following wt% ratios of PDMSstar-MA to PEG-DA: 0:100, 1:99, 10:90 and 

20:80. 10 μL of photoinitiator solution (30 wt% solution of DMAP in NVP) was 

subsequently added per one mL of the precursor solution. Solutions were vortexed for one 

minute following each addition. Planar hydrogel sheets (1.5 mm thick) were prepared by 

pipetting the precursor solution between two clamped microscope slides (75 × 50 mm) 

separated by Teflon spacers and exposing the mold to longwave UV light (UV-

Transilluminator, 6 mW/cm2, 365 nm) for a total of 6 min with rotation to the alternate side 

after 3 min. After removal from the mold, the water-based hydrogel sheets were rinsed with 
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DI water and soaked in a Petri dish containing DI water (60 mL) for 2 days with daily water 

changes to remove impurities. The DCM-based sheets were rinsed with DCM then air dried 

for 30 min to permit evaporation of DCM and subsequently placed in a Petri dish containing 

DI water (60 mL) to remove impurities and any remaining DCM. During the first hour of 

soaking, the water was changed every 15 min and thereafter daily for 2 days. All hydrogels 

were permitted to soak in DI water for 72 hr prior to testing.

2.6. Sol Content

Three discs (13 mm diameter) were punched from a single hydrogel sheet with a die. After 

air-drying (30 min), each disc was placed in an open scintillation vial and dried at room 

temperature (RT) in a vacuum oven (14.7 psi, 24 hr). Dried discs were then weighed (Wd1), 

placed in a new vial and 10 mL DCM was added to each. The vials were capped and placed 

on a rocker table (250 rpm) for 48 hr to remove sol (i.e. uncrosslinked material). The discs 

were subsequently removed, air dried for 30 min, placed in an open vial, dried again at RT in 

a vacuum oven (30 in. Hg, 24 hr) and finally weighed (Wd2). Sol Content is defined as: sol 

content = [(Wd1 - Wd2)/Wd1] x100.

2.7. Morphology

2.7.1. Scanning Electron Microscopy—Water-swollen hydrogels discs (13 mm 

diameter) were flash frozen in liquid nitrogen for 1 min and immediately lyophilized for 24 

hr (Labconco Centri Vap Gel Dryer System). Specimen cross-sections were subjected to Pt-

sputter coating and viewed with a field emission scanning electron microscope (FEI Quanta 

600 FE-SEM) at an accelerated electron energy of 10 keV.

2.7.2. Confocal Laser Scanning Microscopy (CLSM)—For a given hydrogel, a disc 

(8 mm diameter, 1.5 mm thickness) was punched from a hydrogel sheet with a die. A Nile 

Red solution was prepared as follows: 75 μL of a Nile Red solution (20 mg per mL of 

methanol) was dissolved in 8 mL of DI water and combined with 120 mL of PBS. Each 

hydrogel disc was sequentially soaked for 24 h in 60 mL of the aforementioned Nile Red 

solution and then soaked for 3 days in 60 mL of PBS (exchanged daily). With each disc 

placed on a glass microscope slide and DI water dropped onto the disc to maintain 

hydration, images were captured with CLSM using a Leica TCS SP5 confocal microscope 

(Leica Microsystems, Bannockburn, IL; excitation filter of 488 nm and emission filter 

490-570 nm). Images were obtained from 3 μm sections in the z-direction. Images were 

assigned green for contrast.

2.8. Equilibrium Swelling

Three discs (13 mm diameter) were punched from a single hydrogel sheet with a die. Each 

disc was placed in a sealed vial containing 20 mL DI water and placed on a rocker table (250 

rpm) for 48 hr at RT. Discs were then removed, blotted with filter paper to remove surface 

water, and weighed (Ws). Equilibrium swelling ratio (SR) is defined as: SR = (Ws - Wd)/Wd, 

where Ws is the weight of the water-swollen hydrogel and Wd is the weight of the vacuum 

dried hydrogel (30 in. Hg, 60 ºC, 24 hr).
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2.9. Dynamic Mechanical Analysis (DMA)

Three discs (13 mm diameter) were prepared as above. Storage modulus (G’) of each disc 

was measured in the compression mode with a dynamic mechanical analyzer (TA 

Instruments Q800) equipped with parallel-plate compression clamp with a diameter of 40 

mm (bottom) and 15 mm (top). A water-swollen disc (13 mm diameter) was blotted with a 

Kim Wipe, clamped between the parallel plates and silicone oil placed around the exposed 

hydrogel edge to prevent dehydration. Following equilibration at 25 °C (5 min), the samples 

were tested in a multi-frequency-strain mode (1 to 25 Hz).

2.10. Degradation

Six hydrogel discs (8 mm diameter) were prepared as above. After soaking in DI water for 3 

hr, an initial swollen weight (Ws) was recorded. Three discs were each placed into a well of 

a 24-well plate containing 1 mL 0.05M NaOH, the well plate covered with Parafilm and foil 

and maintained at 37 ºC on a rocker table at 50 rpm. The NaOH solution was exchanged 

every 12 hr. Swollen weights (Ws) were recorded at regular intervals until the hydrogel 

exhibited an increase in swelling with a corresponding loss in mechanical integrity. The time 

required for the disc to completely dissolve was also recorded. The remaining three hydrogel 

discs were vacuum dried (30 in. Hg, 60 ºC, 24 hr) and their weights recorded (Wd). Swelling 

ratio (SR) is defined as: SR = (Ws - Wd)/Wd.

2.11. Bioactivity

2.11.1. Hydrogel Preparation—A hydrogel sheet with 0:100 and 10:90 wt% 

PDMSstar-MA to PEG-DA (6 k g/mol) was prepared via SIPS as above. A disc (13 mm 

diameter) was punched from each sheet and each disc placed into a sealed centrifuge tube 

containing 40 mL of 1.5X simulated body fluid (SBF)[68] at 37 °C. After two weeks, the 

hydrogel discs were removed and prepared for SEM imaging as above.

2.11.2. X-ray Diffraction Spectroscopy—Powder X-ray diffraction data was 

collected on a Bruker D8 diffractometer fitted with LynxEYE detector (CuKa; 40kV, 40 mA; 

Bragg Brentano geometry; scan range: 5 - 70 degrees; step size: 0.05 degrees; step time: 1 

s).

2.12. Nonspecific Protein Adhesion

The adhesion of Alexa Fluor 555 dye conjugate of bovine serum albumin (AF-555 BSA; 

MW = 66 kDa; Molecular Probes, Inc.) onto hydrogels was studied by fluorescence 

microscopy. For a given hydrogel, three hydrogel discs (14 mm diameter, 1.5 mm thickness) 

were punched from a single hydrogel sheet and placed in PBS (15 min) to ensure hydration. 

Immediately prior to transferring to a 24-well plate, discs were gently blotted with filter 

paper to remove PBS on the surface. Of the three discs, two discs were each placed in wells 

containing 1.5 mL of BSA (0.1 mg/mL of PBS) and the third disc was placed in a well 

containing 1.5 mL of PBS. Hydrogel discs were maintained in the dark at RT for 3 h. Next, 

from both the top and bottom surfaces of the discs, the BSA solution was carefully removed 

via aspiration and both sides of the disc were rinsed with fresh PBS 3 times for 1 h each time 

to permit the diffusion of unadsorbed protein out of the hydrogels before imaging. No 
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measurable internal fluorescence signal was detected following rinsing. Each of these discs 

was returned to a well containing 1.5 mL of fresh PBS for imaging.

A Zeiss Axiovert 200 optical microscope equipped with an A-Plan 5X objective (Axiocam 

HRC Rev. 2), and filter cube (excitation filter of 546 ( 12 nm [band-pass] and emission filter 

575-640 nm [bandpass]) was used to obtain fluorescent images on three randomly selected 

regions of each hydrogel surface. The fluorescent light source was permitted to warm up for 

30 min prior to image capture. Linear operation of the camera was ensured and constant 

exposure time used during the image collection to permit quantitative analyses of the 

observed fluorescent signals. The fluorescence microscopy images were analyzed using 

ImageJ, which yielded the mean and standard deviation of the fluorescence intensity within 

a given image. For a given hydrogel composition, the average fluorescence intensity of the 

two discs exposed to AF-555 BSA was subtracted from that of the disc maintained only in 

PBS to ensure correction for of any fluorescence signal from the material itself. The 

background corrected fluorescence intensities for each hydrogel were then used to quantify 

AF-555 BSA levels adsorbed by comparison against a calibration curve constructed from the 

measured fluorescence intensities of AF-555 BSA standard solutions. Standard solutions 

were prepared at 0, 0.005, 0.01, 0.02, and 0.04 mg/mL AF-555 BSA in PBS and each placed 

into an individual well.

2.13. Controlled Introduction of Cell Adhesion and Spreading

Hydrogel sheets were prepared with and without acrylate-derivatized cell-adhesive peptide 

RGDS in the DCM precursor solutions. RGDS-modified hydrogel sheets (50 × 40 × 1 mm) 

were fabricated at different wt% ratios of PDMSstar-MA to PEG-DA (3.4k g/mol) [0:100, 

1:99, 10:90 and 20:80] via SIPS as above but with 1 μmol/mL (post-swelling) of acrylate-

derivatized RGDS in the DCM precursor solutions. Acryloyl-PEG-RGDS was prepared by 

reacting acryloyl-PEG-SVA (3.4 kDa) with RGDS.[69] A PEG-DA hydrogel fabricated in 

water (“PEG Control”) was similarly formed with acrylate-derivatized RGDS from an 

aqueous precursor solution. The DCM-based sheets were first air dried for 24 hr. Both the 

water-based and dried DCM-based sheets were sterilized with two changes of ethanol/water 

(70/30; 24 h) and transferred into sterile Petri dishes where they were washed twice with 

sterile DI water (24 hr) and finally rinsed twice with Dulbecco’s PBS (pH = 7.2) 

supplemented with 1% PSA (24 hr). Four (8 mm diameter) discs were punched from each 

sample and transferred into a 48 well plate. 10T ½ cells were seeded onto the hydrogel 

surfaces at 10,000 cells/cm2. After being maintained for 24 hr at 37 °C with 5% CO2 in 

DMEM (without phenol red) supplemented with 10% heat-inactivated FBS and 1% PSG, 

cell adhesion and spreading was examined at 24 h using a bright field microscopy (Zeiss 

Axiovert).

2.14. Cytocompatibility

Hydrogel sheets prepared for cell adhesion and spreading studies were likewise prepared for 

cytocompatiblity tests. Hydrogel cytocompatiblity was assessed by measuring lactate 

dehydrogenase (LDH) levels released by 10T ½ cells 24 hr following cell seeding. 

Following the aforementioned sterilization protocol, four 8 mm hydrogel discs per sample 

type were transferred to separate wells of a 48 well plate. Harvested 10T ½ cells were 

Bailey et al. Page 7

Acta Biomater. Author manuscript; available in PMC 2019 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seeded onto the hydrogel surfaces at 6000 cells/cm2. After being maintained for 24 hr at 

37 °C as above, the media surrounding each specimen was collected for LDH measurements 

following manufacturer (Roche) protocol.

3. Results and Discussion

3.1. Hydrogel Fabrication

Fig. 1 shows the appearance of precursor solutions and the corresponding hydrogel. As was 

previously observed,[64] pure PEG-DA hydrogels fabricated via SIPS were similarly 

transparent compared to the corresponding PEG-DA hydrogel (i.e. fabricated from an 

aqueous precursor solution). Aqueous precursor solutions became hazy upon addition of 

hydrophobic PDMSstar-MA due to its water-insolubility [62] (Fig. 1). Due to the improved 

solubility of PDMSstar-MA in DCM, precursor solutions were less hazy and the 

corresponding hydrogels were not as opaque. To validate photocrosslinking efficacy, 

hydrogel sol contents were measured. Sol content values of PDMSstar-PEG hydrogels 

fabricated from DCM precursor solutions (~2-11%) and aqueous precursor solutions 

(~0.5-8%) were similarly low (Supplemental Table S1).

3.2. Morphology and Distribution of PDMS

Recently, we prepared macroporous PEG-DA hydrogels via SIPS by employing a DCM 

precursor solution.[64] During SIPS, macropores are produced by the separation of the 

growing polymer chains and network from the solvent into polymer rich and polymer lean 

domains (i.e. pores) that subsequently fill with water during hydration. Because pure PEG-

DA hydrogels formed via SIPS did not significantly collapse during prior freeze-drying, 

their morphology could be examined by SEM.[64] However, SEM images of PDMSstar-PEG 

hydrogels revealed that they had significantly collapsed (Supplemental Fig. S1). Thus, the 

porosity as well as PDMSstar-MA distribution of hydrated hydrogels was characterized with 

CLSM (Fig. 2). Regions of the hydrogels containing the hydrophobic PDMSstar-MA were 

stained by the hydrophobic dye whereas water-filled pores were unstained. With increased 

levels of PDMSstar-MA, hydrogel pore size increased and became macroporous at wt% 

ratios ≥ 10 wt%. Furthermore, the PDMSstar-MA is more uniformly distributed versus 

analogous PDMSstar-PEG hydrogels fabricated from an aqueous precursor solution in which 

discrete PDMS-enriched microparticles were observed.[62] Thus, SIPS is useful to achieve 

macroporous morphologies as well as a more uniform distribution of PDMS.

3.3. Equilibrium Swelling

Swelling of PDMSstar-PEG hydrogels formed via SIPS was lower than that of the 

corresponding PDMSstar-PEG hydrogels produced from aqueous precursor solutions (Table 

1, Fig. 3). For “water fabricated” PDMSstar-PEG hydrogels, PDMSstar-MA content did not 

substantially alter hydration, likely due to the discrete nature of the PDMS-enriched 

microparticles. Hydrophobic PDMSstar-MA is more soluble in DCM versus water and so 

becomes more evenly distributed throughout the hydrogels prepared via SIPS (Fig. 2). As a 

result, increased PDMSstar-MA content produced a systematic decrease in swelling. While 

the macroporous nature of PDMSstar-PEG hydrogels formed via SIPS is expected to increase 

swelling.[47, 65] PEG-DA hydrogels prepared via SIPS likewise did not exhibit enhanced 
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swelling versus PEG-DA hydrogels fabricated from aqueous precursor solutions [64] which 

may be due to reduced swelling of polymer-rich region. Thus, the distribution of water 

rather than total water uptake is changed by using SIPS to form PDMSstar-PEG hydrogels.

3.4. Modulus

Hydrogel stiffness was quantified in term of the compressive storage modulus (G’) obtained 

by DMA (Fig. 4). As previously reported for PED-DA hydrogels,[31, 70] G’ of 

PDMSstarPEG hydrogels prepared via SIPS increased with higher crosslink density (i.e. 

lower PEG-DA Mn). G’ was substantially higher for hydrogels fabricated via SIPS 

compared to the corresponding hydrogels fabricated from aqueous precursor solutions. 

There are two contributing factors to this observation. First, for a given composition, 

PDMSstar-PEG hydrogels prepared via SIPS exhibited reduced swelling (Fig. 3) which is 

typically associated with enhanced rigidity.[27] Second is the effect of the macroporous 

morphology of the hydrogels prepared via SIPS (Fig. 2). Indeed, despite minor changes in 

swelling, pure PEG-DA hydrogels prepared via SIPS were macroporous and exhibited a 

pronounced increase in G’ versus when fabricated in water.[64] For hydrogels formed via 

SIPS, the associated thicker pore walls may be the source of the increase in G’.

3.5 Degradation

Hydrolytic degradation of PDMSstar-PEG hydrogels was measured under accelerated (basic) 

conditions (Fig. 5). Degradation was quantified in terms of the time to reach maximum 

swelling before loss of mechanical integrity as well as the time for complete dissolution.[58] 

For aliphatic polyesters, the rate of hydrolytic degradation increases with larger pore size 

and hence greater pore wall thickness [17] as well as film thickness [71] due to an 

autocatalytic effect of more slowly diffusing acidic degradation products. Under basic 

conditions, macroporous PEG-DA hydrogels formed via SIPS likewise degraded faster than 

the corresponding hydrogel fabricated from aqueous precursor solutions.[64] For PEG-DA-

based hydrogels, hydrolysis of ester bonds releases poly(acrylic acid) (PAA) kinetic chains 

[72] capable of inducing autoacceleration if diffusion is limited. However, under basic 

conditions, the increased degradation rate may be largely attributed to the limited diffusion 

of hydroxide ions through thicker pore walls which proceed to catalyze bond cleavage. 

Likewise, the observed increased degradation rate of PDMSstar-PEG hydrogels fabricated 

via SIPS versus the corresponding hydrogel fabricated in water is attributed to the former’s 

increased pore size and thicker pore walls. As expected, degradation rate increased for 

hydrogels prepared with 6k g/mol PEG-DA versus from 3.4k g/mol PEG-DA due to the 

former’s lower crosslink density. The effect of Mn was similarly observed for PDMSstar-

PEG hydrogels fabricated from aqueous precursor solutions (Supplemental Fig. S2). 

Incorporation of PDMSstar-MA into hydrogels formed via SIPS led to an increased 

degradation time but did not necessarily coincide with PDMSstar-MA content. For these 

hydrogels, as PDMSstar-MA content increases, the degradation rate is influenced by both the 

increased hydrophobicity that reduces degradation [73] and the increased pore size that 

enhances degradation. Given the limited susceptibility to hydrolysis of PEG-DA-based 

hydrogels, their fabrication by SIPS to produce enhanced degradation rates as well as the 

ability to further increase degradation rates through the incorporation of PDMSstar-MA 
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provide useful mechanisms to enhance the utility of PEG-DA hydrogels for tissue 

engineering.

3.6. Bioactivity - Hydroxyapatite Formation

Bioactive materials chemically bond to bone via formation of a biological active 

hydroxyapatite (HAp) layer.[74] Calcium apatites such as HAp have also been shown to 

promote differentiation of mesenchymal stem cells (MSCs) to osteoblasts (i.e. are 

osteoinductive).[75] Since inorganic, hydrophobic materials are associated with bioactivity 

[20-22], we anticipated that PDMSstar-PEG hydrogels prepared via SIPS would be bioactive. 

The degree of formation of HAp upon immersion into SBF is a qualitative indication of the 

level of scaffold bioactivity and has been correlated to the ability to bond to bone in vivo.

[76] Thus, the extent of formation of HAp following SBF exposure was compared for a 

PDMSstar-PEG (3.4k g/mol) hydrogel (10:90 wt% ratio) versus the pure PEG-DA (3.4k g/

mol) control (i.e. no PDMS) and PDMSstar-PEG (6k g/mol) hydrogel (20:80 wt% ratio) 

versus the pure PEG-DA (6k g/mol) control (i.e. no PDMS) (Fig. 6). SEM images revealed a 

significant level of HAp on the PDMSstar-PEG hydrogel but its absence on the PEG-DA 

hydrogel. X-ray diffraction was performed on these hydrogel compositions to verify HAp 

formation and characteristic HAp peaks of 31.7, 45.5, and 56.5 were noted. These peaks 

indicate reflections from 112, 222, 004 crystal planes respectively and correspond to Bragg 

reflections of HAp (Fig. 7).[77] In our previous study, PDMSstar-PEG hydrogels prepared 

from aqueous precursor solutions demonstrated increased stimulation of osteogenic 

differentiation of encapsulated MSCs.[63] On the basis of these studies, PDMSstar-PEG 

hydrogels prepared via SIPS are bioactive and may increase the osteogenic potential of 

associated MSCs.

3.7. Nonspecific Protein Adhesion

Because cell behavior is altered by adsorbed proteins (e.g. from serum),[37, 78] scaffolds 

useful to study materials-guided cell behavior must be significantly protein resistant. The 

adsorption of BSA onto PDMSstar-PEG hydrogels prepared via SIPS was compared to that 

of the corresponding PEG-DA hydrogels (Table 1). BSA adsorption on PEG-DA hydrogels 

has been shown to increase with reduced hydration.[79] As noted above, swelling was 

reduced with increased PDMSstar-MA content for PDMSstar-PEG hydrogels prepared via 

SIPS. When based on 6k g/mol PEG-DA, PDMSstar-PEG hydrogels formed via SIPS 

exhibited somewhat similar BSA adsorption versus the pure PEG-DA control. BSA 

adsorption was somewhat higher for hydrogels based on 3.4k g/mol PEG-DA versus the 

PEG-DA control. This may be due to the lower hydration of hydrogels based on 3.4k g/mol 

versus 6k g/mol PEG-DA. However, for all PDMSstar-MA:PEG-DA hydrogels, protein 

adsorption levels were within the range reported for PEG-DA hydrogels.[79] Furthermore, 

BSA adsorption was similar for PDMSstar-PEG hydrogels prepared by SIPS versus that of 

analogous hydrogels prepared in water, despite the former’s reduced swelling. The increased 

pore size of PDMSstar-PEG hydrogels prepared by SIPS may enhance protein diffusion 

thereby reducing its adsorption.
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3.8. Controlled Introduction of Cell Adhesion and Spreading

PEG-DA hydrogels’ resistance to adsorption of bioactive serum proteins renders them 

“biological blank slates” as cells are subsequently unable to adhere and spread.[35] Defined 

levels of cell adhesion may be introduced by covalent incorporation of acrylate-

functionalized cell adhesive peptide RGDS into PEG hydrogels.[36, 80-81] While we 

observed minor changes in protein adsorption, maintenance of the biological blank slate 

nature for PDMSstar-PEG hydrogels was assessed by evaluating cell adhesion onto 

hydrogels prepared with and without acrylate-RGDS (Fig. 8). PDMSstarPEG hydrogels 

based on 3.4k g/mol PEG-DA were prepared via SIPS both with and without 1 μmol/mL of 

acrylate-derivatized RGDS. A PEG-DA hydrogel fabricated in water similarly prepared with 

and without RGDS served as a control (“PEG Control”). Incorporation of low levels of 

RGDS has been observed to cause only a minute change in hydrogel swelling.[82] As with 

the PEG control, cells did not adhere and spread in the absence of RGDS. However, 

modification of all hydrogels with RGDS did cause cell adhesion and spreading. Thus, as for 

“water fabricated” PEG-DA hydrogels, PDMSstar-PEG hydrogels prepared via SIPS permit 

the controlled introduction of cell adhesion and spreading which is critical for their utility to 

study cell-material interactions.

3.9. Cytocompatibility

Low cytotoxicity of PDMSstar-PEG hydrogels prepared via SIPS is essential for their utility 

as tissue engineering scaffolds. Cytocompatiblity was assessed by measuring LDH levels 

released by 10T½ cells 24 hr post-seeding onto RGDS-modified hydrogels based on 3.4k 

g/mol PEG-DA as a representative series (Fig. 9). LDH is a soluble cytosolic enzyme that is 

released into the culture medium following membrane damage due to apoptosis or necrosis.

[83] Thus, differences in the normalized levels of exogenous LDH across cell-laden 

hydrogels are indicative of the amount of cell death induced by the hydrogel composition. At 

all levels of PDMSstar-MA, the relative LDH activity associated with PDMSstar-PEG 

hydrogels prepared via SIPS were similar to pure PEG-DA hydrogels prepared via SIPS as 

well as PEG-DA hydrogels fabricated from aqueous precursor solutions. Thus, at these 

levels of PDMSstar-MA, PDMSstar-PEG hydrogels maintain the low cytotoxicity of PEG-DA 

hydrogels.

4. Conclusions

Hydrogels which maintain the useful properties of PEG-DA hydrogels but extend their 

physical and chemical properties would be useful for controlled cell-material interaction 

studies. In this study, PDMSstar-PEG hydrogels were fabricated via SIPS to produce 

macroporous morphologies and a more even distribution of bioactive PDMS versus when 

fabricated from an aqueous precursor solution. Hydrogel properties were tuned by adjusting 

the wt% ratio of PDMSstar-MA:PEG-DA (0:100, 1:99, 10:90 an 20:80) as well as PEG-DA 

Mn (3.4k or 6k g/mol). A pronounced increase in hydrogel stiffness (G’) was observed for 

PDMSstar-PEG hydrogels fabricated via SIPS versus the corresponding hydrogel fabricated 

from an aqueous precursor solution and was shown to increase with PDMSstar-MA content. 

In addition, the degradation rate was enhanced for hydrogels formed via SIPS. While PEG-

DA hydrogels did not demonstrate bioactivity (i.e. formation of HAp upon submersion into 
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SBF), PDMSstar-PEG hydrogels fabricated via SIPS were bioactive. This is attributed to the 

hydrophobic, inorganic nature of the PDMS. SIPS-produced PDMSstar-PEG hydrogels did 

substantially adsorb higher levels of BSA versus a PEG-DA hydrogel fabricated in water. As 

a result, cell adhesion and spreading onto PDMSstar-PEG hydrogels was observed only on 

hydrogels modified with the cell adhesive peptide RGDS. Thus, these PDMSstar-PEG 

hydrogels maintain the biological blank slate nature of “water fabricated” PEG-DA 

hydrogels. Thus, these new PDMSstar-PEG hydrogels formed by SIPS are useful to use, 

along with pure PEG-DA and PDMSstar-PEG hydrogels formed from aqueous precursor 

solutions, to study materials-guided cell behavior and tissue regeneration.
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Figure 1. 
Precursor solutions [top] and corresponding hydrogels [bottom] formed from an aqueous 

precursor solution (left) and via SIPS (right) (i.e. with a DCM precursor solution followed 

by subsequent drying and hydration) with 6k g/mol PEG-DA.
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Figure 2. 
CLSM images of hydrated PDMSstar-PEG hydrogels prepared with different wt% ratios of 

PDMSstar-MA:PEG-DA from a DCM precursor solution (i.e. via SIPS). PDMS-enriched 

regions stained with hydrophobic dye (Nile Red). (scale bars = 250 μm)
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Figure 3. 
Swelling ratio of PDMSstar-PEG hydrogels fabricated with 3.4k g/mol (left) and 6k g/mol 

(right) PEG-DA from a DCM precursor solution (i.e. via SIPS) or from an aqueous 

precursor solution. Statistical significance was determined by student’s t-test where (*): p < 

0.05 and (#): p > 0.05.
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Figure 4. 
Storage modulus (G’) of PDMSstar-PEG hydrogels fabricated with PEG-DA 3.4k g/mol 

(left) and 6k g/mol (right). Hydrogels fabricated from a DCM precursor solution (i.e. via 
SIPS) are denoted with “solid lines”. Hydrogel or from an aqueous precursor solution are 

denoted with “dashed lines”.
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Figure 5. 
Swelling ratio under basic conditions (0.05 M NaOH) of PDMSstar-MA:PEG-DA hydrogels 

fabricated via SIPS with 3.4k g/mol (left) and 6k g/mol (right) PEG-DA. [ ] = hours to 

complete dissolution and ( ) = hours to complete dissolution of analogous hydrogel (i.e. 

fabricated from aqueous precursor solutions).
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Figure 6. 
SEM images (following exposure to SBF for 2 weeks) of hydrogels fabricated with either 

3.4k (top) or 6k g/mol (bottom) PEG-DA from a DCM precursor solution (i.e. via SIPS) 

without PDMS (left column) and with PDMS (right column) and (scale bars = 50 μm).
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Figure 7. 
X-ray Diffraction of PDMS:PEG (3.4k and 6k g/mol) hydrogels soaked in SBF - revealing 

the formation of HAp within hydrogels when PDMS is incorporated (dotted line) and 

absence of HAp when no PDMS is incorporated (solid line).
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Figure 8. 
Cell spreading for PDMSstar-PEG hydrogels prepared without [top] and with [bottom] 

RGDS (cell-adhesive peptide). PEG Control = PEG-DA hydrogel (3.4k g/mol) prepared 

from an aqueous precursor solution. [Scale bars = 50 μm].
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Figure 9. 
Relative LDH activity (24 hr) of PDMSstar-PEG hydrogels fabricated with 3.4k g/mol PEG-

DA from a DCM precursor solution (i.e. via SIPS) with varying wt% ratio PDMSstar-

MA:PEG-DA. PEG Control = PEG-DA hydrogel (3.4k g/mol) prepared from an aqueous 

precursor solution. All formulations were statistically similar versus each other (ANOVA, p 

< 0.05).
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Table 1.

Hydrogel Swelling Ratio and Adsorption of BSA Protein

Hydrogel
formed
by SIPS

Swelling
Ratio

mg BSA
adsorbed per

cm2 (x 10−4)
b

Hydrogel formed

in water
a

Swelling
Ratio

mg BSA
adsorbed per

cm2 (x 10−4)
b

Mn = 3.4k g/mol (PEG-DA) Mn = 3.4k g/mol (PEG-DA)

PDMSstar-PEG wt% PDMSstar-PEG wt%

0:100 7.2 ± 0.01 2 ± 0.4 0:100 8.6 ± 0.02 5 ± 1

1:99 7.0 ± 0.04 25 ± 2 1:99 8.5 ± 0.03 14 ± 6

10:90 5.7 ± 0.04 10 ± 3 10:90 7.8 ± 0.02 6 ± 3

20:80 4.9 ± 0.09 19 ± 6 20:80 7.6 ± 0.09 19 ± 2

PEG Mn = 6k g/mol (PEG-DA) PEG Mn = 6k g/mol (PEG-DA)

PDMSstar-PEG wt% PDMSstar-PEG wt%

0:100 9.8 ± 0.09 10 ± 7 0:100 9.3 ± 0.2 12 ± 5

1:99 9.1 ± 0.10 16 ± 2 1:99 9.7 ± 0.1 15 ± 2

10:90 7.6 ± 0.06 11 ± 2 10:90 9.2 ± 0.1 13 ± 3

20:80 6.5 ± 0.13 19 ± 6 20:80 8.8 ± 0.1 10 ± 1

a
Prepared from an aqueous precursor solution

b
Data taken from ref 60.
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