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The Effect of Freespace Properties on Unilateral Stiffness Classification

Emma Treadway1 and Kristian Journet1

Abstract— Virtual environments rendered through kines-
thetic haptic devices have frequency-dependent dynamic prop-
erties that affect perception. Previous studies on the perception
of virtual walls have suggested that the properties not only
of the wall, but also of the freespace with which it is paired,
influence the perceived wall stiffness (bias) and discrimination
thresholds. In this work, two experiments were undertaken to
examine the effect of mass and damping properties in freespace
on virtual wall stiffness classification. The results suggest that
there may be alterations to classification performance under
large changes in freespace conditions, but that small changes
in mass and damping do not appear to significantly affect
performance. These results suggest that additional study is
needed to fully understand the effects of freespace properties on
wall stiffness classification, which may differ from their effects
on discrimination or bias.

I. INTRODUCTION

The dynamics of a virtual environment (VE) rendered with
a haptic device are necessarily influenced by the underlying
mechanics of the device used to display the VE to the user.
The controller’s goal is to attempt to enforce transparency
[1] despite this, such that the rendered environment matches
the desired VE dynamics. When rendering freespace, the
physical properties of the device should be compensated for
as much as possible, and the device should be designed to be
as light as possible to enable this; however, when rendering
a virtual wall, we should seek to maximize the magnitude of
the force that the user feels. Fundamental control limitations
put these two goals at odds with one another, and in practice
tradeoffs must be made in selecting both the device hardware
and the controller.

Across the frequency spectrum, the dynamic response
displayed to the user may be thought of as a combination
of effective impedance primitives such as effective stiffness,
damping, and mass [2]. Thus, the study of the perception of
rendered VEs is in essence the study of human perception of
combinations of these mechanical primitives. Understanding
how the hardware and controller properties show up in
the rendered dynamics is critical because of the frequency-
dependent nature of human perception of combinations of
these primitives [3]. A brief summary of some of the most
relevant recent work in this area is given in Table I.

The effects of the presence of some mechanical primitives
on the perception of others may be quantified in a number of
different ways. Among the most common is the measurement
of thresholds such as the just-noticeable difference (JND),
often expressed as a Weber fraction (ratio of the detectable
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change to the base value): notably, recent work by Fu et
al. suggests a frequency-dependent Weber’s law for mass-
spring-damper systems [3], [4]. These widely-used threshold
measurement approaches are capable of measuring the ef-
fects in terms of the resolution of the human sensory system,
but are prone to issues of response bias [5]. In addition to
altering the thresholds at which differences can be felt, the
presence of combined mechanical primitives in a system can
create bias in the level of the property of interest; in [6],
van Beek et al. explored the effects of added damping either
inside a virtual object or globally (both inside and outside
the virtual object), and found that damping in the presence
of a contact transition decreases perceived hardness in either
case, but to a greater degree when the damping is global.

While JND quantifies what level of difference can be
discerned in an immediate comparison and bias reveals infor-
mation about how the perceived level of a property might be
skewed, many applications of haptic sensing require an abil-
ity to remember differences between physical properties—
for example, a dentist or surgeon distinguishing healthy
and unhealthy tooth or tissue, or a shopper identifying a
ripe avocado. These activities rely not only on the ability
to distinguish a change in physical property, but also the
ability to remember and identify it. An alternative measure,
the outcome of which is influenced by both the resolution
of the human sensory system and memory limitations, is
classification performance, which measures not only how
well users can tell the difference between VEs, but how well
they can remember and identify them [5].

Contact transitions in unilateral virtual environments like
virtual walls can excite the higher frequencies at which unin-
tended device behaviors influence perception; classification
of stiffness was shown to be impaired by contact transitions
in two previous experiments [9], [7]. Both experiments also
examined the effects of rendering the VEs with high or low
transmission ratio devices—in [9], this created a significant
effect on classification performance; in contrast, no such
effect was seen in [7]. It was postulated that this may have
been due to a mismatch between the damping and mass

(a) Generic device schematic (b) Equivalent Model

Fig. 1. (a) Generic schematic for a 1-dimensional haptic interface. (b) The
device and motor parameters (reflected through the gear ratio) are lumped
in model parameters Mh and Bh. Reproduced with permission from [7].
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TABLE I
A BRIEF SUMMARY OF RECENT WORK ON PERCEPTION OF COMBINATIONS OF MECHANICAL PRIMITIVES

First author Perception of... In the presence of... Findings
Rank [8] Bilateral damping Stiffness or mass Damping JND increased by stiffness or mass
Colonnese [2] Bilateral stiffness &

damping
Damping generated by delay or
filtering

Effective impedance decomposition predicts which properties’ percep-
tion is altered

van Beek [6] Unilateral stiffness Damping (local or global) Damping decreases perceived hardness, with larger effect when global
Fu [4], [3] Bilateral stiffness,

damping, or mass
Stiffness, damping, and/or mass Extended Weber’s Law predicts spring, mass, & damper JNDs for

single frequency interactions
Treadway [9], [7] Unilateral stiffness Damping and mass (level) Classification performance impaired by contact transitions
Treadway [10] Bilateral stiffness Damping (predictability) Classification performance likely impaired by unpredictable damping

Fig. 2. Closed-loop impedance controller. Black solid arrows and outlines represent physical quantities, while blue dashed lines indicate signals and
systems within the computer. The transitions from solid black to dashed blue indicate the presence of sensors (e.g., load cells and encoders), and dashed
blue to solid black is the motor. Figure reproduced with permission from [7].

properties inside and outside the unilateral spring in [9] that
was not present in the experiment of [7].

This study therefore seeks to understand the effect of
changing only the freespace VE on the perception of the
stiffness of unilateral virtual springs, measured in terms
of participants’ ability to classify virtual walls of different
stiffness. We expect that altering the mass and damping
properties of the freespace VE will alter unilateral spring
classification performance for two reasons: first, local and
global damping are known to have different effects on
stiffness perception bias [6]—along with possible similar
effects from local and global mass, this means that we expect
perception to be different when mass and/or damping are
local to the virtual wall or global. Second, unpredictable
damping properties appear to make stiffness discrimination
more difficult [10]; participants might perceive the altered
mass or damping at the transition from freespace into the
wall as an unexpected change in the mass or damping of the
“tool” with which they are exploring springs, which would
impair discrimination.

II. MODELING AND APPARATUS

A 1-dimensional kinesthetic haptic device can be modeled
as shown in Fig. 1. The device has impedance Zh =
Mhs+Bh, consisting of the mass Mh and damping Bh that
include reflected properties from the motor acting through
the gear ratio. Under impedance control [11], [12], the user’s
displacement of the device is measured, and a loop is closed
to respond with a force applied by the motor as shown in
Fig. 2. Its driving-point impedance response is

Z(s) = Fu

ẋ
= ZV E + Zh/(1 + C(s)). (1)

In this work, closed-loop (CL) proportional control with
C(s) = Cp and open-loop (OL) Cp = 0 control are
employed. A spring VE is rendered with

ZV E(s) = KV E/s. (2)

Described in terms of its effective impedances [2], the
closed-loop driving point impedance (1) while rendering
a spring (2) has an effective stiffness (ES) of KV E at
low frequencies. As frequency increases, ES is reduced
until it can no longer be rendered, and an effective mass
(EM) appears instead, approaching Mh

1+Cp
(up to the Nyquist

frequency where continuous approximation of the discrete
dynamics break down). An effective damping (ED) of Bh

1+Cp

is also present across all frequencies.
An ideal damping VE is described as ZV E(s) = BV E .

In practice, though, position is measured via an encoder and
velocity must be estimated from the measured position. With
a first-order lowpass-filtered velocity estimate with corner
frequency ω0, the implementation becomes

ZV E(s) = BV E
ω0

s+ ω0
. (3)

Rendering this VE, the driving point impedance response (1)
results in effective damping and mass

ED = BV E +Bh/(1 + Cp)

EM =Mh/(1 + Cp),
(4)

though the ED reverts to Bh/(1 + Cp) above the corner
frequency of the filter.

In this work, a reproduction of the haptic device described
in [7] was used. A Maxon RE65 motor is connected to
the motion of a Del-Tron HPS3-4 linear slide via a 1-inch
capstan. Position is measured via a US Digital encoder (E2-
1024-315-IE-H-D-B), while forces applied at the small 3D
printed handle are measured with a Transducer Techniques
LSP-10 load cell, with control and sampling at 1 kHz
via Simulink Desktop Real-Time. System identification via
manual excitation and least-squares fitting (methods also
described in [7]) was performed in two trials. Both trials
yielded Mh = 1.60 kg. Bh was more variable, measuring
21.1 Ns/m and 13.5 Ns/m; an average value of 17.3 Ns/m is
used for theoretical calculations.
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Fig. 3. Modeled behavior for the environments used in experiment 1: (a)-(b)
Magnitude and phase responses inside the walls (virtual springs) and in the
four freespace conditions, and (c)-(d) Effective impedance decompositions
of the responses for the wall and freespace VEs.

III. EXPERIMENT 1

A. Methods

A forced-response classification task was employed, with
three different virtual walls modeled as unilateral virtual
springs of stiffness KV E ∈ {1000, 1200, 1400} N/m, all
rendered with OL impedance control (Cp = 0) and no
damping (BV E = 0) as shown in Fig. 3a and 3c. In order to
understand the effects of compensation in freespace for either
mass or damping, these unilateral springs were paired with
a freespace VE that varied in each experimental condition.
Four conditions with high and low levels of EM (1.6 or 0.8
kg) and ED (17.3 or 8.65 Ns/m) in freespace were as follows;
the low levels were selected to feel very different from the
OL mass and damping (differences well beyond the Weber
fraction, and tested with a small pilot experiment). Required
levels of BV E and Cp for each condition follow from (4):

1) High Damping/High Mass (HBHM ): OL freespace,
with Cp = 0, BV E = 0.

2) Low Damping/High Mass (LBHM ): Cp = 0 with
negative virtual damping BV E = −8.65 Ns/m.

3) High Damping/Low Mass (HBLM ): Cp = 1 with
positive virtual damping BV E = 8.65 Ns/m to com-
pensate for device mass only.

4) Low Damping/Low Mass (LBLM ): Cp = 1 to com-
pensate for device mass and damping, BV E = 0.

For the velocity used to render the virtual dampers, a
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Fig. 4. Virtual wall and freespace experimental responses for experiment
1 VEs, as driving point impedances along with coherence between the
input and output measurements (a-b) and effective impedances (c-d), all
generated using a 10000-point Hann window. Virtual wall (a & c) results
match very well with theoretical predictions across the excited frequency
spectrum (up to about 10 Hz), except for ED, which varies with frequency.
For the freespace (b & d), the viscous damping of Fig. 3d does not perfectly
capture the response; however, the damping in the HBHM and HBLM
conditions match reasonably well across the frequency spectrum, as do the
damping in LBLM and LBHM .

corner frequency of ω0 = 200π (100Hz) was employed1.
The predicted driving point impedance in each freespace
VE can be seen in Fig. 3b and 3d. It should be noted,
however, that because viscous damping is not a perfect
model of the friction in the device, it is unlikely that the
damping values match perfectly in practice between the
two high or two low damping conditions. Additionally, the
discrete implementation means that the continuous responses
predicted in Fig. 3 will break down as the Nyquist frequency
(500 Hz) is approached. Experimental responses are shown
in Fig. 4.

Nine participants (mean age 21.8 years, all right-handed,
5 female) including both authors participated under an ex-
perimental procedure approved by the Trinity University
Institutional Review Board. Due to COVID-19 precautions,
recruitment was limited to individuals already participating
in research in the lab; however, most were naive to the details
of the experiment at the time they participated, and all were
naive to the order of conditions during the experiment.

During each trial, participants wore noise-cancelling head-
phones playing pink noise to block auditory cues, and sat
at the device with a divider blocking their view of the

1This is well above both the frequency range humans can excite and the
range observed in [7] when tapping on a virtual wall.



Fig. 5. Participants’ view was blocked by a divider, and pink noise was
played through noise-canceling headphones as the randomized walls were
presented during the experiment.

device and their hand, as shown in Fig. 5. Participants were
instructed to grasp the handle with the thumb and forefinger
of their dominant hand and to tap on the virtual walls (pulling
towards themselves), always feeling them by transitioning
from freespace to the wall; participants’ strategies were
otherwise unconstrained2. At the beginning of each trial,
participants were exposed to the three different virtual walls
rendered along with the condition’s particular freespace VE:
the soft, medium, and stiff walls were presented in order
and identified to the participants at least twice, and the
participants could request to feel them as many more times
as they wished before starting the trial. Then, 46 randomized
walls were presented3, and participants verbally reported
their identification of each as soft, medium, or stiff. The
order of trials was randomized for each participant.

Upon inspection of the results, it was discovered that two
participants (S6 and S7) had unusual artefacts (abrupt spikes)
in the recorded force data from their tests, which would have
influenced the rendered VE in the CL conditions. S7 was able
to come repeat the test in a session that did not display those
artefacts; S6 has been excluded from the analysis, so results
from N = 8 participants are presented.

B. Results

Performance on the classification task was evaluated with
two metrics. The percent correct answers gives an indication
of how well participants can identify springs throughout
the task. The information transfer (IT) measures how many
distinct levels of stimulus a participant can identify [5],
[13]. Both metrics are examined as they are complementary:
a participant could have perfect distinction between all 3
levels of stimulus, but have them all reversed, which would
yield low percentage correct but high IT. Conversely, a
participant’s percent correct could be artificially high because
they always guessed “stiff” and happened to be in a trial
where randomization presented many stiff springs, but IT
would be low.

Averaged results for each condition are shown in Fig. 6
as confusion matrices, with the percent correct answers and
the IT (in bits) for each condition reported above the matrix.
The confusion matrices indicate how frequently the answer

2Participants self-selected speed and number of times they felt each wall.
3At least 5(32) = 45 trials are required with stiffness three levels to

minimize bias in IT estimation [5].
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Fig. 6. Classification results for experiment 1, averaged across participants
(excluding S6). Average percent correct and IT are reported above each
averaged confusion matrix.
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Fig. 7. Experiment 1 classification metrics by participant: percentage of
walls correctly identified (top) and information transfer (bottom).

soft/medium/stiff (columns) was given when the true spring
(rows) was presented. Perfect performance would appear
as solid black squares (1.00) in the boxes which intersect
the columns and rows of the same name; all other boxes
would be white (0.00). The minor color variations seen in
these results between the diagonal and off-diagonal elements
indicate a large amount of confusion among the three springs
across all conditions.

Each participant’s individual performance is summarized
in Fig. 7. Subject-to-subject variations were stronger than any
trends across conditions. A 2-way between-subjects (repeated
measures) analysis of variance (RMANOVA) confirms that
there were no significant effects, either by damping or mass
level outside the virtual wall, and no significant interaction
effects (p > 0.3 with F (1, 7) ≤ 0.92 for each).

To investigate whether the freespace VE impacted the
exploration strategy, we calculated the wall contact velocities
(measured by filtering a first difference estimate with a first-
order 100 Hz cutoff frequency lowpass filter, and extracting
the instants at which the wall was crossed). Differences
in velocity have potential to influence the rate-hardness or
extended rate-hardness metrics that are tied to perception of
wall hardness [14], [15]. For each participant, the average
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and standard deviation of contact velocity were calculated
for each trial across all taps, and are shown in Fig. 8.
Two-way RMANOVA does not reveal significant effects by
damping (F (1, 7) = 4.19, p = 0.08), mass level (F (1, 7) =
0.35, p = 0.57), or interaction effect (F (1, 7) = 1.42, p =
0.27) for average speed; for speed variability, only damping
approaches significance (F (1, 7) = 5.07, p = 0.06), while
mass (F (1, 7) = 0.42, p = 0.54) and interaction effects
(F (1, 7) = 0.26, p = 0.63) did not significantly influence
the variability of contact velocity.

IV. EXPERIMENT 2
The lack of significant differences or recognizable trends

in the results of experiment 1 may have been due to one
of several reasons. First, spring constants may have been
chosen too close to the discrimination threshold, such that
poor performance overall washes out any trends. Second,
the stiffness values used in [9] and [7] were much higher;
it is possible that the effects of freespace conditions are not
significant in this stiffness range. Third, a larger difference
in mass and damping inside and outside the virtual wall
may be needed to affect classification performance. Or,
finally, mass and damping outside of a virtual wall may have
no significant effect on stiffness classification performance.
While no experiment can confirm the null hypothesis (last
possibility), we asked participants to return a second time
to perform a modified experiment addressing the first three
points. In order to widen the gap between the low and high
levels of mass and damping, closed-loop impedance control
was used in both cases, but with a negative gain in the high-
mass cases (as well as inside the unilateral spring VEs).

A. Methods
The experimental procedures were the same as in exper-

iment 1, but the conditions were modified. The controller
gain and VE damping values were adjusted in three of
the four experimental conditions to increase the differences
between the low and high values of mass and damping. These
conditions created high/low damping values of 34.6/8.65
Ns/m and high/low mass values of 3.2/0.8 kg, as shown in
Fig. 9. The freespace conditions are:

1) HBHM : Cp = −0.5, BV E = 0.
2) LBHM : Cp = −0.5, BV E = −25.95 Ns/m.
3) HBLM : Cp = 1, BV E = 25.95 Ns/m.
4) LBLM : Cp = 1, BV E = 0.

The three virtual walls were given stiffness values KV E ∈
{3000, 5000, 8333} N/m, matching those used in [9]4, and

4All stiffness values are still low enough to achieve passivity [16].
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Fig. 9. Freespace VEs for Experiment 2, as (a) driving point impedance
and (b) effective impedances.
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Fig. 10. Classification results for experiment 2, averaged across partici-
pants, as confusion matrices, percent correct, and IT.

were rendered with Cp = −0.5 to match the high mass and
damping values in the freespace conditions. Four participants
completed Experiment 2, including both authors (all experi-
ment 1 participants were invited to participate, excluding S6
and S7 who had already been invited back once as allowed
per our IRB-approved protocol).

B. Results

Summary results from experiment 2 are shown in Fig.
10. Overall, the levels of performance (both IT and percent
correct) are higher in this new experiment, indicating that we
were successful in making the task easier to avoid overall
task difficulty masking differences between conditions (or,
potentially, extra experience improved participants’ perfor-
mance, making this task easier the second time).

It is notable that the differences between conditions are
more pronounced in this second experiment. While our study
did not include a survey, some participants spontaneously
reported that certain conditions made them feel less confident
about their answers than others. Interestingly, though, some
of the effects seem to be different for different people, as
indicated by Fig. 11. A small but consistent trend across all
four participants is that percent correct in the HBHM con-
dition matched or exceeded percent correct in LBLM (blue
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Fig. 11. Experiment 2 performance metrics for each participant.

Fig. 12. Average contact velocity in each condition by participant for
experiment 2; error bars indicate ±1 standard deviation.

vs. purple). The trend in percent correct is also accompanied
by an increase in both wall contact speed and its variability
(larger standard deviation) in the low damping conditions as
compared to the high damping ones across all participants,
as seen in Fig. 12. Closer inspection of the data reveals that
trials with large variability (e.g., all of S3’s trials) tend to
include many “rebound” hits on the wall at lower speeds.

V. DISCUSSION AND CONCLUSIONS

Based on previous studies about perception of stiffness, we
expected that manipulating levels of mass and damping in the
freespace outside of a virtual wall would affect participants’
ability to classify virtual walls according to their stiffness.
In experiment 1, we found no significant differences in
performance caused by the freespace VEs; for most par-
ticipants, the classification performance across the different
freespace conditions was almost the same, particularly when
looking at IT. Based on these results, we conclude that if
the level of damping and mass outside of a virtual wall has
an impact on classification performance, its effect is small at
the levels present in this experiment (the device’s OL levels
vs. CL compensated levels). This motivated the design of
our second experiment, which was designed to widen the
gaps between conditions. The small sample size in experi-
ment 2 precludes statistical analysis; however, performance
differences between conditions were more pronounced than
in experiment 1. A small but consistent trend showed that
the percentage of correct answers was higher in the HBHM
case than the LBLM case, and increased variability in the
speed with which participants hit the wall in LBLM may be
responsible for this difference.

These trends suggest that further exploration of the effects
of mass and damping in freespace on wall stiffness percep-
tion is required before concluding that they do not impact
classification performance. This study investigated mass and
damping at or below the level inside the virtual wall; effects
may be more pronounced when these levels are reversed, or
when the gap between the low and high levels of mass and
damping are increased even more (the study in [6] used 5 and

30 Ns/m to study bias, which is a slightly larger gap than
in our experiment 2). Incorporation of a perceptual model
in the future may yield further insights into the levels of
mass and damping that will affect classification performance.
Additionally, a truer rendering of a viscous damper achieved
through a more complex controller than simple proportional
control may influence results.
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