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Music Genre Classification with Neural Networks: An

Examination of Several Impactful Variables

Jingqing Yang

Abstract

There have been several attempts to classify music with content-based machine learning

approaches. Most of these projects followed a similar procedure with a Deep Belief Network.

In this project, we examined the performance of convolutional neural networks (CNN) and

recurrent neural networks (RNN) as well as other components of a classification architecture,

such as the choice of dataset, pre-processing techniques, and the sample size. Under a

controlled environment, we discovered that the most successful architecture was a Mel-

spectrogram combined with a CNN. Although our results fell behind the state-of-the-art

performance, we outperform other music classification studies that use a CNN by a large

margin. By performing binary classification, we also discovered individuality across genres

that caused inconsistent performance.
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Chapter 1

Introduction

Music genre classification is sometimes deemed a subjective matter. Genre tags of musical

tracks are often marked by the artist or users. Although there have been commercialized

e↵orts to automatize this procedure using collaborative filtering on user preferences, much

fewer attempts have been made using machine learning.

Machine learning research is at an all-time high with exceptional success in image recog-

nition tasks. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an an-

nual contest for visual object recognition, classification and localization. The breakthrough

in solving the ILSVRC in 2012 is often considered the beginning of the AI revolution in

the 2010s. The winning programs classification error was 28.2% in 2010, but in the latest

ILSVRC 2017, 29 out of 38 participating teams achieved an error below 5%, which is the

estimated human performance.[10] The success in image recognition is what inspired this

thesis project. Music genre classification poses as a similar problem but in the realm of

music or audio in general. While recommender systems like collaborative filtering exploits

external information such as user preferences, we seek to classify music with a content-based

approach using neural networks.

1
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1.1 Previous Work

There has been a lot of work done in the field of music information retrieval (MIR) and

audio classification.

Lee et al. applied a convolutional Deep Belief Network (CDBN) to unlabeled auditory

data and evaluated the learned features on several classification tasks.[6] The tasks included

speaker identification, speaker gender classification, phoneme classification, music genre

classification, and music artist classification. In order to learn unsupervised features, they

first trained on unlabeled datasets and extracted two layers of CDBN features. For the

task of music genre classification, the dataset was from the 2004 ISMIR Audio Description

Contest. (TODO: ref) The audio data was first represented as spectrograms of 20 ms

window size with 10 ms overlaps. After PCA-Whitening to reduce the size of each sample,

the data was then fed into the CDBN as input. Lee et al. then evaluated the learned features

with a five-genre classification task and achieved 73.1% test accuracy (the baseline was 20%).

The five genres were classical, electric, jazz, pop, and rock. Their study showed that the first

layer of CDBN features outperformed raw spectrogram, Mel-frequency cepstral coe�cients

(MFCCs), the second layer of CDBN features, and the combination of both layers of CDBN

features.

Later, another group once again approached audio feature learning with Deep Belief

Networks.[4] Similar to [6], it first extracted unsupervised features by training a DBN on

unlabeled data. The source of its data came from the Tzanetakis dataset, which was consists

of ten genres. The audio data was processed through a discrete Fourier transform before

being fed into the DBN. It then compared the DBN learned features with the MFCCs by

evaluating them on a non-linear support vector machine classifier. The result showed that

the DBN features were more e↵ective than the MFCC, with a test accuracy of 84.3% (the
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baseline was 10%).

Aforementioned studies all shared one similarity: they relied on pre-train feature ex-

traction using DBN. But there are not many studies on other NN models’ performance on

music genre classification.

One of the few audio classification studies with CNN was research by Li et al.[7] It

used three convolutional layers to extract auditory features through supervised training.

The preprocessing method they chose was MFCCs. With the GTZAN dataset, training

was done in groups of three genres to preserve the accuracy while accelerating convergence.

Then trained filters were used as features for a classifier. The study showed comparable

performance on the training set, but the validation set had significantly inferior result of

below 30%.

The lack of studies on the task of music genre classification with other NN structures

inspired this project. In nature, convolutional neural networks and Deep Belief Networks

share many similar features. We also believe in the advantages brought by CNN or RNN

structure will benefit auditory data classification. With the goal to testing as well as

improving performance using other NN models, we started this thesis project.

1.2 Background Knowledge

1.2.1 Pre-processing

The raw format for audio files is usually the waveform, as commonly seen in audio editing

softwares such as Audacity. An example raw waveform of a 0.1 second clip is shown in

Figure 1.1. The x-axis represents time and the y-axis represents the amplitude. When

reflected as data, the waveforms are stored as one-dimensional arrays. Although neural

networks can be used as universal function approximates, a well-represented dataset can
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Figure 1.1: Waveform of a 0.1 second clip

greatly benefit the performance. Audio-related researches usually performs pre-processing

on raw waveforms so that the auditory features are emphasized. The common approaches

for pre-processing includes short-time Fourier transform (STFT), Mel-spectrogram, and

Mel-frequency-cepstral-coe�cients (MFCC).[2] The fundamental mechanics for these audio

preprocessing methods rely on Fourier Transform, whose definition follows.

f̂(⇠) =

Z 1

�1
f(x)e�2⇡ix⇠

dx (1.1)

In the above equation, f is the original function of time where x represents time. f̂ is the

transformed function of frequency where ⇠ represents frequency.

The Fourier transform was largely inspired by study of Fourier series, which decompose

a complicated function into sums of simple waves. The result of a Fourier transform is

multiple frequency bins with their corresponding magnitudes. In form of data, this would
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be a one dimensional array, where the frequency information is carried by the indices and

magnitude information carried in the numbers. A popular way of using Fourier transforms

is called the short-time Fourier transform (STFT). It applies a Fourier transform to small

windows from a waveform and combines the results into a two-dimensional array. With

a proper sampling rate, a long audio file can be broken into several chunks and each can

be transformed separately. The combined matrix shows the time-frequency relationship,

with the values in each grid representing the magnitude of a certain frequency at a certain

time. The result of a STFT is called a spectrogram. With audio data, especially music,

a popular upgrade to spectrogram is the to use a mel-scale, instead of a linearly spaced

frequency scale. A mel-scale is based on pitch comparisons. As frequency increases, equal

mel-intervals require larger and larger frequency leaps. A formula to convert f (Hertz) to

m (Mel) is

m = 2595log10(1 +
f

700
) (1.2)

[9] With mel-scales, the mel-spectrogram emphasizes lower frequencies and compresses

higher ones. This approximates human auditory perception.

Another common preprocessing technique is to use mel-frequency cepstral coe�cients

(MFCC). Given a mel-spectrum and a number of selected mel-frequencies, a common prac-

tice takes the logs of the powers at each of the mel-frequencies, and then takes the discrete

cosine transform at the mel log powers. The amplitudes of the resulting spectrum are

MFCCs.[11][14] They are often used to extract features out of audio data.

1.2.2 Neural Networks

Neural networks are the core of this project. The history of neural networks in artificial

intelligence can be traced back to the 1940s, but their performance only became significant
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Figure 1.2: A single neuron in a neural network

in the past twenty years.[8] Among many models of neural networks, convolutional neural

networks (CNN) and recurrent neural networks (RNN) are used in this project. Any kind

of neural network consists of neurons (nodes) and edges. During the learning stage, neurons

of the first layer take the inputs, put them through an activation function, and output the

results into the next layer.

�(x) =
1

1 + e

�x

(1.3)

An activation function usually maps the input value into a certain range to indicate

its potential to ”activate” the next neuron. An example activation function is a sigmoid

function, shown in Equation 1.3, which maps the input into [0, 1]. Although sigmoid is a

popular choice for activation function, it su↵ers from the vanishing gradient problem. As

the input becomes larger, the first order derivative of the sigmoid function becomes smaller.

Our models mostly used the rectified linear unit (ReLU) for activation function. It has the

advantage of reducing the vanishing gradient problem as well as introducing sparsity into

the network. Its equation follows.



7

f(x) =

8
>><

>>:

0 ifx > 0

x ifx � 0

(1.4)

The mechanism for a single neuron is shown in Figure 1.2. Neurons of the next layer

then take the weighted sum of the previous layer’s outputs and repeats the same procedure

until it reaches the final output layer. For a classification network, the number of neurons

in the last layer is equal to the number of categories, meaning that each output neuron

represents the possibility of a category.

Then, a loss function compares the predicted values with the ground truth and pro-

duces a non-negative value indicating deviance from the truth. For classification tasks, the

ground truth usually consists of one-hot-encoded vectors representing the labels. Taking

the derivative of the loss function with respect to all weights and biases in the network

creates a gradient. This gradient suggests what changes in the weights and biases can cause

the loss function to increase the most. The core mechanic of neural networks is backprop-

agation, which takes the opposite direction of the gradient on the output layer to modify

the previous layer, and repeats the process until it reaches the inputs (the first layer). the

aforementioned steps describe the training process with one sample. The network repeats

this process with all training samples.

Convolutional Neural Networks

Traditional multilayer perceptron models are fully connected and work fairly well with

image recognition tasks. However, they do not scale well with high resolution images due

to the restriction of computing power. In addition, multilayer perceptrons do not take

into account the spatial structure of visual patterns, and thus distant pixels can have the
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Figure 1.3: General form of a CNN model

same impact in recognition of an area as a closer pixel. CNNs overcome this problem by

implementing 3D layers that are only connected to a small region of the previous one and

filters in the same layer share the weights and biases. Therefore, the number of parameters

in one convolutional layer is given by

(n2 ⇤ x)⇥ 2

, where n is the side length for one small region and x is the number of filters in this layer.

A general model of a CNN is shown in Figure 1.3.
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Recurrent Neural Networks

Recurrent Neural Networks are often used for sequential data analysis (e.g. text prediction

and speech recognition). Units within a RNN are connected along a time sequence, where

each unit represents a new time step. There is one input and one output for each time step.

A simplified graph for a general RNN model is presented below.

Figure 1.4: Graph representation of a RNN model

The sequential structure is for visualization purpose. In practice, the model is usually

circular in nature. There is only one copy of the state, which keeps updating itself with a

combination of the previous input and hidden state.



Chapter 2

Methods

We experimented with di↵erent approaches to classify auditory data, and di↵erent combi-

nations of the approaches. All of our approaches involved a three-part procedure. The first

step was to find a dataset and split it into a training group, a testing group, and a hold-out

group. The second step was to transform the raw audio files into a form with clearer musical

features. We then train a neural network on pre-processed data to classify genres.

There were several components in the aforementioned procedure, including choices of

dataset, pre-processing methods, and neural network structures. For dataset selection,

we utilized the GTZAN dataset and the Million Song Dataset.[13][1] For pre-processing

methods, we tested a Fast-Fourier Transform, a mel-spectrogram and mel-frequency cepstral

coe�cients. As for the neural network model, we experimented with both convolutional

neural networks and recurrent neural networks. The results chapter will show that the

combination of the GTZAN dataset, mel-spectrograms, and convolutional neural networks

yielded the best result.

10
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2.1 Datasets

2.1.1 GTZAN Dataset

The first dataset we came across was the dataset collected by G. Tzanetakis and P. Cook,

often referred to as the GTZAN dataset.[13] This dataset was collected from various sources

including personal CDs, radio, microphone recording, and so on. It consists one hundred

half-minute audio clips in each of ten genres, totaling 1000 tracks. The ten genres are blues,

classical, country, disco, hip-hop, jazz, metal, pop, reggae and rock. The tracks are all

monaural and have a 22050 Hz sampling rate.

Genre Blues Classical Country Disco Hiphop Jazz Metal Pop Reggae Rock
Size 100 100 100 100 100 100 100 100 100 100

Table 2.1: GTZAN genres and sizes

The GTZAN has been widely used in music genre classification research since its release

in 2002. We chose this dataset as our starting point because it was well organized and

frequently cited by previous research we came across. This precedence gives it credibility as

well as o↵ering us a frame of reference for our network performance. There were, however,

a few drawbacks to using this dataset. The most limiting factor was its size. Although we

broke each track into six (five seconds each) to thirty (one second each) sub-clips, there

were still at most 30,000 samples in total. To compare the scales of magnitude, the n-

MNIST dataset of handwritten digits has 60,000 training samples and the ImageNet has

14,197,122 images in total.[5][3] The insu�ciency in our GTZAN dataset caused the network

to overfit, as shown in the results section. The diversity of the audio sources was also a

problem, because it introduced noise into the music. At the early stages of training, it could

have led the feature-learning astray.
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Genre Size

Rock 8478
Electronic 5865
Rap 1812
Reggae 1558
Metal 1452
Jazz 1335
Blues 1178
Country 844
Punk 559
Pop 522
Folk 517
RnB 510
World 286
Latin 268
New Age 87

Table 2.2: MSD genres and sizes

2.1.2 Million Song Dataset

The Million Song Dataset (MSD) is a freely available collection of audio features and meta-

data for a million contemporary tracks.[1] The dataset contains metadata and derived fea-

tures such as release year, artist, terms of the artist, similar artists, danceability, energy,

duration, beats, tempo, loudness, and time signature. The drawback of this dataset is that

it contains neither the audio excerpts nor genre tags. However, given the corresponding

IDs, MSD provided the code to fetch half-minute preview audio clips from 7digital, a music

and radio services platform. Due to availability issues on 7digital, only part of the one

million songs were successfully collected. Tagtraum industries provided genre annotation

to a subset of the Million Song Dataset.[12] As a result of the aforementioned insu�cien-

cies, the resulting number of usable tracks was 25,271. Table 2.2 shows genres and their

corresponding sizes, arranged descending in order of size.
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Tagtraum annotation includes the following genres: blues, country, electronic, folk, jazz,

latin, metal, new age, pop, punk, rap, reggae, RnB, rock, and world. Same as the GTZAN

dataset, the audio clips are monaural and have a sample rate of 22050 Hz.

Overall, the MSD provided a significant increase in the size of our data: about 25 times

the size of GTZAN. Moreover, the quality of audio data in the MSD is better, in contrast

to the noisy audio found in GTZAN. However, the MSD had its own drawbacks, the most

relevant one being inconsistent genre sizes. Although the total amount of tracks in MSD

was larger, the smallest genre, New Age, only contained 87 tracks, smaller than GTZAN

genres. We considered 1000 tracks per genre a significant upgrade from the GTZAN dataset,

where there are 100 tracks per genre. However, only seven genres in MSD have at least

1000 tracks: blues, electronic, jazz, metal, rap, reggae, and rock. Blues is the the smallest

genre containing 1178 tracks. Because our CNN model took all training and testing data

together, we needed to ensure that the entire input was formed with even genre distribution.

Therefore, when using a CNN on the MSD data, we chose only these seven genres and

trimmed them down to the same size: 1178 tracks, the size of the smallest genre. The RNN

model, on the other hand, took samples one batch at a time. We could then maintain an

evenly distributed input while using the entire MSD by drawing random tracks from each

genre.

2.2 Pre-Processing

2.2.1 The Fast-Fourier Transform

For audio processing, we initially read in every 30-second clip with the Sunau library (as the

tracks were in .au format), split it into ten-millisecond windows, and applied Fast-Fourier

Transform on each small section (220 frames). The data shape of the output was the same
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as the input, which was an array of 220 complex numbers. They represent intensities of 220

evenly-divided frequency bins. We further edited the array by computing the magnitude of

each complex number so that they became real. Combining all FFT outputs in a 30 second

clip resulted in a two-dimensional array that could be graphed as a heat map. However, the

resulting heat map looked chaotic and random. Figure 2.1 shows the first 500 frames of a

classical song, where the horizontal axis represents the time and the vertical axis represents

frequency.

Figure 2.1: Heat map from Sunau and FFT

The randomness in the graphs propelled us to look for other audio processing tools. We

eventually settled on the Python library Librosa. After reading in the tracks with Librosa

and keeping rest of the procedure intact, the resulting heatmap for a four-second clip from

the same song is shown below in Figure 2.2.

Figure 2.2: Heat map from Librosa and FFT

From the heat map we could clearly see musical features such as longer lasting notes
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that represented classical music. There were also human-recognizable traits from other

genres such as the steady, low-frequency, brief, beats found in hip-hop music and chaotic

clusters for metal music. These traits gave us confidence that spectrogram was a sensible

form of representation. However, we noticed that the top three quarters of the heat map

were usually inactive and the bottom quarter was always compact. Such observation lead

us to an improved representation: mel-spectrograms.

2.2.2 Mel-Spectrograms

What di↵erentiates Mel-spectrograms from regular spectrograms is their frequency spacing

on y-axis. Mel-frequency spacing better approximates the hearing scale for human ears

where lower frequencies are emphasized and higher frequencies are compressed. This ap-

proach seemed especially appropriate because our heat map results from our fast-Fourier

transforms showed that most active sounds occured in lower frequencies. We used Librosa

to produce a mel-spectrogram for each track. The processed tracks were split into smaller

clips as individual samples. We varied the length of such samples to find the optimal parti-

tioning, which is discussed in the results section. In order to gain a visual perception of the

mel-spectrogram results, we picked three random tracks from each genre and plotted them.

Below are the graphs for all genres in the GTZAN dataset.
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(a) Blues (b) Classical

(c) Country (d) Disco

The figures show similarities shared within genres as well as di↵erences across genres.

Just by looking at the random samples of mel-spectrograms, we could conclude distinct
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(e) Hiphop (f) Jazz

(g) Metal (h) Pop

features for a few genres, but not all of them. Similar to the results from our fast-Fourier

transforms, classical tracks feature long horizontal lines in the spectrograms representing
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(i) Reggae (j) Rock

lasting and steady notes. Metal tracks feature heavy activity across the frequency spectrum

so that the entire mel-spectrogram appears bright. Disco tracks feature long vertical lines

with equal intervals on the spectrograms because of their steady beats. Hiphop tracks also

feature vertical lines across the entire frequency spectrum, but the intervals are not uniform

across the track, most likely due to the fact that hiphop songs change up their rhythm every

once in a while. Although we could interpret some visual features with musical knowledge

about these genres, there were some similarities that we could not explain. Also, some

genres look very similar, like disco, rock, and pop.

2.2.3 MFCCs

With the Librosa library, we were able to apply several other advanced pre-processing

methods. Mel-frequency cepstral coe�cients (MFCCs) were one of the most frequently

used methods by genre classification studies. We chose a window size of one second and
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(a) MFCCs of a classical song

(b) MFCCs of a jazz song

Figure 2.4: MFCCs of a classical song and a jazz song

thirteen coe�cient channels. Although MFCCs extracted specific features of the audio, we

had no way of identifying the meaning of these features. Figure 2.4 shows the MFCCs of a

classical song and a jazz song, respectively.



20

2.3 Neural Networks

2.3.1 Convolutional Neural Networks

Our first attempt using a neural network was a convolutional neural network. The reason

behind this choice was both empirical and intuitional. CNNs are often very good at image

recognition tasks and even the simpler models are able to yield high accuracy. Moreover, by

looking at our spectrograms it seems like a small portion of the full song should still o↵er

enough information to determine its genre. Since CNNs are usually used for image related

learning, each sample is expected to have three dimensions: height, width and three color

channels. However, our data had neither the color channels nor the audio equivalence of

them (stereo input channels). Therefore we simply added an extra dimension in our data

that only had one element, to approximate black and white images. We split the processed

the dataset into three parts: training (50%), testing (20%), and holdout (30%). As explained

in the Dataset section, when the input set was GTZAN, the CNN model could use the entire

dataset. When the input set was MSD, the CNN model could only use seven genres, each

containing 1178 tracks. The CNN model was consisted of two groups of convolutional layers

followed by a max-pooling layer, and at the end they were flattened, densed, dropped out

at a rate of 0.5, and densed again. We adapted this model on Keras from one that was

designed for image recognition on the dataset Cifar-10 and had a impressive accuracy with

that task. The detail of our model is presented in Figure 2.5.

Ultimately, CNNs were and are usually designed for image recognition and classifica-

tion. The di↵erences in the fundamental nature of images and audio led us to decide that

convolutional neural networks would not work as well for audio feature learning as it does

on images. One feature that di↵erentiates music from images is that audio signals carry the

sequentiality and relativity that image pixels don’t possess. This fundamental di↵erence
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Figure 2.5: CNN Model

caused us to move on and look into the recurrent neural networks.

2.3.2 Recurrent Neural Networks

Recurrent neural networks are mostly used on tasks with sequential data, such as speech

recognition, grammar learning, or text prediction. Music shares a sequential nature with

speech and text, as the flow from one note to the next determines the mood of melody and

hence the genre. Given this knowledge, recurrent neural networks seemed like the a logical

next step.

We settled on Pytorch as our choice for a machine learning library because of its balance

between ease-of-use and full control. The specific structure of our model is shown in Figure

2.6.

Instead of training all thirty seconds of the track, we decided that a subset of it would be

enough to distinguish one genre from another. We started with a five second sample size. We
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Figure 2.6: RNN Model
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increasd it and compared the performance of each sample size. For each training iteration

through the RNN, we generated a batch of training samples, consisting of approximately

50 randomly chosen five-second samples from all genres. When the input source was the

GTZAN dataset, we drew the samples randomly from a set of mel-spectrogram processed

samples, where all genres were aggregated and shu✏ed. We were able to do this because

the genre distribution in GTZAN was already evenly distributed. When the input source

was from the MSD, we made sure to draw the same amount of samples from each genre

for every batch. We were actually able to utilize the entire MSD this time around as our

random selection for each batch could reuse samples between batches. With random sample

drawing, we could keep the batch balanced while utilizing the entire dataset.

2.3.3 Aggregation

After finishing training and comparing di↵erent architectures, we saved the best neural

net model with its structure and weights. The holdout group (not used during training or

testing) from the same dataset was then fed in to the model to predict labels. We aggregated

the predictions for every track, using majority rule. At the end, we compare the track-based

predictions to the ground truth to compute the final accuracy.
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Results

There are many variables when determining the final classification accuracy. We chose to

analyze the e↵ects of the following few: pre-processing method, sample length, number of

genres, choice of dataset, and neural network structure. In order to identify each variable’s

e↵ect individually, we compared results by varying one variable at a time while keeping the

rest unchanged.

3.1 Pre-processing

Pre-processing FFT MFCC Mel-spectrogram

Sample Length One second One second One second
Neural Network CNN CNN CNN
Dataset GTZAN GTZAN GTZAN
Number of Genres 10 10 10
Accuracy 13% 36% 48%

Table 3.1: Comparison between pre-processing methods

Three main methods of pre-processing we used were the fast-Fourier transform, mel-

24
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frequency cepstral coe�cients, and mel-spectrograms. The following comparison results

were gathered with the GTZAN dataset (ten genres), one-second sample length, and a

convolutional neural network with Keras. The result is presented in Table 3.1.

It is clear that mel-spectrograms outperform the other two methods by a significant

margin. Therefore, we continued to test other variables with mel-spectrogram processed

data.

3.2 Sample Length

From a human perspective, it usually takes less than a few seconds to determine the genre

of an audio excerpt. Therefore, we used five seconds per sample as the upper-bound of our

sample size. However, the usual input size for many NN models remains fairly small. The

CNN model we adapted from was originally designed for CIFAR-10 data, where each sample

was 32⇥ 32 pixels with three color channels. With Librosa’s mel-spectrogram function, the

recommended number of mel-frequencies is 128, so this became the height of our sample.

With the length of the fast-Fourier transform window at 1024 and sample rate of 22050Hz,

one second of sample translated to approximately 42 pixels in width. In order to bring the

dimensions of our input data close to the original 32⇥ 32⇥ 3, our first attempt for sample

size was 42 ⇥ 128 ⇥ 1 (grey-scale for color). We later experimented with three-second and

five-second window sizes while keeping the pre-processing method as a mel-spectrogram,

neural net model as a CNN, and source of data as the GTZAN dataset with ten genres.

The comparison of results is shown below.
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Pre-processing Mel-spectrogram Mel-spectrogram Mel-spectrogram
Sample Length One second Three seconds Five seconds

Neural Network CNN CNN CNN
Dataset GTZAN GTZAN GTZAN
Number of Genres 10 10 10
Accuracy 48% 52% 49%

Table 3.2: Comparison between various sample lengths

3.3 Neural Network Models

Out of all models we tested, CNN in Keras and RNN in Pytorch yielded the most promising

results, while other models failed to do so. This may be due to improper implementation,

so we are only presenting the results from our CNN and RNN, under the controlled en-

vironment of five-second samples from ten genres in GTZAN dataset processed into mel-

spectrograms. The table of results can be seen in 3.3

Pre-processing Mel-spectrogram Mel-spectrogram
Sample Length Five Seconds Five Seconds
Neural Network CNN RNN

Dataset GTZAN GTZAN
Number of Genres 10 10
Accuracy 52% 33%

Table 3.3: Comparison between di↵erent NN models

Table 3.3 clearly shows that our CNN performs better with the task. This could be due

to the di↵erence in complexity between the two models, as the CNN model had multiple

layers while the RNN model was plain.
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3.4 Number of Genres

As presented in previous chapters, the Million Song Dataset su↵ers from an inconsistent

genre distribution. Our CNN model’s rigidity with batching restricted its utilization of

MSD to seven genres and less. Therefore, we chose the Pytorch RNN model to test the

number of genres’ impact on classification accuracy, with five-second samples processed as

Mel-spectrogram. The table of results is presented below as Table 3.4.

Pre-processing Mel-spectrogram Mel-spectrogram
Sample Length Five Seconds Five Seconds
Neural Network RNN RNN
Dataset MSD MSD
Number of Genres 10 14

Accuracy 32% 23%

Table 3.4: Comparison between numbers of genres

From Table 3.4, it is clear that as the number of genres increases, the classification

accuracy decreases. However, this does not provide much insight on the performance of the

network because the numbers were not on the same scale. For a ten-category classification,

the baseline is 10%, while for a fourteen-category classification, the baseline is around 7%.

Without proper conversion metrics, it is meaningless to compare the numbers.

3.5 Datasets

Our initial motivation to increase the size of dataset was to solve the overfitting problem

at early stages. Due to reasons mentioned in the previous sections, using a CNN on the

full MSD was not an option. However, we were able to make comparisons for the rest

of the combinations. The first group used the RNN model in Pytorch, with five-second

mel-spectrograms drawn from ten genres in each dataset. Table 3.5 shows the results.
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Pre-processing Mel-spectrogram Mel-spectrogram
Sample Length Five Seconds Five Seconds
Neural Network RNN RNN
Dataset GTZAN MSD

Number of Genres 10 10
Accuracy (Training, Testing) 50%, 33% 40%, 32%

Table 3.5: RNN accuracy comparison between datasets

From Table 3.5, it seems like changing to a larger dataset did not change the network

performance. However, a di↵erence exists in the comparison of training accuracy. It shows

that using the MSD yielded a much smaller gap between the training and testing accuracy,

hence easing the overfitting problem. However, with respect to the overall goal of genre

classification, a larger dataset did not improve the performance.

Pre-processing Mel-spectrogram Mel-spectrogram
Sample Length Five Seconds Five Seconds
Neural Network CNN CNN
Dataset GTZAN MSD

Number of Genres 10 7

Accuracy (Training, Testing) 95%, 49% 85%, 68%

Table 3.6: CNN accuracy comparison between datasets

Table 3.6 shows a comparison of using various datasets with a CNN. From Table 3.6,

we see that a CNN shows the same trend. The accuracies shown in Table 3.6 cannot

be compared horizontally because GTZAN and MSD used in this comparison contained

di↵erent numbers of genres (10 for GTZAN and 7 for MSD). However, vertical comparisons

show the dataset’s impact on the overfitting problem.
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3.6 Binary Classification

After inspecting the results presented above, we decided to interpret the performance on a

genre level and plotted the results from a RNN with GTZAN dataset, with the MSD using

10 genres, and with the MSD using 14 genres, separately.

Figure 3.1: Results of a RNN using the GTZAN

The vertical axis represents the prediction and horizontal axis represents the ground

truth. The diagonal lines in all three graphs shows that predictions in general reflect the

ground truth. It is also clear that the network performs better with some genres than
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Figure 3.2: Results of a RNN using the MSD with 10 genres

others. Metal, for example, has always been easily identifiable, while blues was hard to

identify. The di↵erence between genres inspired us to further investigate the easiness to

identify each genre.

We modified our CNN model to perform binary classification and tested the accuracy

for all ten genres from GTZAN. The results are shown in Table 3.7.

Table 3.7 show that classification performance was very inconsistent across genres. While

metal and classical music are comparatively distinct, rock and blues are often ambiguous.

This discovery is consistent with with human performance, as it’s more di�cult for humans
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Figure 3.3: Results of a RNN using the MSD with 14 genres

to identify some genres than others. When all genres are combined together, the result only

reflects the average performance. It could indicate that di↵erent genres require di↵erent

amount of time to convergence. The inconsistency among convergence time could a↵ect

the overall training performance. It also proved that genre selection could greatly a↵ect

the di�culty of a classification task. A dataset consisting of metal, classical, hiphop tracks

would be significantly easier to classify than one consisting of jazz, rock and blues tracks.
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Genre Accuracy

Metal 97.1%
Classical 91.4%
Hiphop 83.1%
Reggae 79.0%
Country 74.3%
Pop 71.2%
Disco 70.0%
Jazz 70.0%
Rock 69.5%
Blues 66.7%

Table 3.7: Binary genre classification results

3.7 Aggregation

In the end, we performed majority voting on our best-performing architecture: a three-

second sample size from GTZAN dataset, mel-spectrograms, and a CNN classifier. Each

track contained ten such clips that were voted upon. After majority voting, track-based

holdout set performance showed an 7% increase, adding up to a 59% accuracy as final

result.
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Conclusion

After testing several choices of datasets, pre-processing methods, neural network structures,

and other factors, we found the optimal combination to be a convolutional neural network

using mel-spectrograms of three-second samples of audio. A bigger dataset reduces the over-

fitting problem but has very little impact on validation accuracy. Our final best validation

accuracy turned out to be 59%. Although it was inferior to the state-of-art accuracy for

music genre classification, it outperformed other attempts to solve this challenge with con-

volutional neural networks. We also discovered that the classification accuracy was highly

genre-dependent, which could have impeded the overall performance. It also showed genre

selection’s great impact on the classification di�culty.
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