Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

5-2018

Modified Huffman Code for Lossless
Compression and Bandwidth Optimization and
Applying Genetic Algorithms to Generating

Paintings Based on Images

Alexander Hansen
Trinity University, alex@alex-hansen.com

Follow this and additional works at: https://digitalcommons.trinity.edu/compsci_honors

Recommended Citation

Hansen, Alexander, "Modified Huffman Code for Lossless Compression and Bandwidth Optimization and Applying Genetic
Algorithms to Generating Paintings Based on Images" (2018). Computer Science Honors Theses. 45.
https://digitalcommons.trinity.edu/compsci_honors/4S

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,

please contact jecostanz@trinity.edu.

https://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors/45?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Modified Huffman Code for Lossless Compression and Bandwidth Optimization and Applying
Genetic Algorithms to Generating Paintings Based on Images
Alexander Hansen

A DEPARTMENT HONORS THESIS SUBMITTED TO THE
DEPARTMENT OF COMPUTER SCIENC TRINITY UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR GRADUATION WITH
DEPARTMENTAL HONORS

04/13/2018

Mark C. Lewis Yu Zhang
THESIS ADVISOR DEPARTMENT CHAIR

Michael Soto, AVPAA

Student Agreement

I grant Trinity University (“Institution”), my academic department (“Department”), and the Texas Digital Library
("TDL") the non-exclusive rights to copy, display, perform, distribute and publish the content I submit to this

repository (hereafter called "Work") and to make the Work available in any format in perpetuity as part of a TDL,
Digital Preservation Network (“DPN”), Institution or Department repository communication or distribution effort.

I understand that once the Work is submitted, a bibliographic citation to the Work can remain visible in perpetuity,
even if the Work is updated or removed.

I understand that the Work's copyright owner(s) will continue to own copyright outside these non-exclusive granted
rights.

I warrant that:

1) I am the copyright owner of the Work, or

2) I am one of the copyright owners and have permission from the other owners to submit the Work, or
3) My Institution or Department is the copyright owner and I have permission to submit the Work, or
4) Another party is the copyright owner and I have permission to submit the Work.

Based on this, I further warrant to my knowledge:

1) The Work does not infringe any copyright, patent, or trade secrets of any third party,
2) The Work does not contain any libelous matter, nor invade the privacy of any person or third party, and
3) That no right in the Work has been sold, mortgaged, or otherwise disposed of, and is free from all claims.

I agree to hold TDL, DPN, Institution, Department, and their agents harmless for any liability arising from any
breach of the above warranties or any claim of intellectual property infringement arising from the exercise of these
non-exclusive granted rights.”

I choose the following option for sharing my thesis (required):
[X] Open Access (full-text discoverable via search engines)

[] Restricted to campus viewing only (allow access only on the Trinity University campus via
digitalcommons.trinity.edu)

Modified Huffman Code for Lossless Compression and
Bandwidth Optimization and Applying Genetic Algorithms

to Generating Paintings Based on Images

Alexander Hansen

Abstract

This thesis contains two projects. A modified Huffman code is presented as a lossless method
to compress common traffic types. We posit the usage of compression benefits instead of just
frequency of occurrence, as is common in Huffman codes, as the priority of each node when
constructing the Huffman tree. We show the effectiveness of this method on common data
transmission types and describe what would be needed for adoption of this new algorithm.

We explore genetic algorithms as a method to create paintings based on images. We
find a balance between computational work required and visually pleasing results to the
algorithm, prioritizing aspects of the parameter space based on their impact on the painting

and how they impact computational workload.

Acknowledgments

Thanks to Dr. Mark C. Lewis, my thesis advisor, and Dr. Paul Myers, my academic

adviser, for being ever-present entities in my education at Trinity University.

Modified Huffman Code for
Lossless Compression and
Bandwidth Optimization and
Applying Genetic Algorithms to
Generating Paintings Based on

Images

Alexander Hansen

Contents

1 Modified Huffman Coding for Lossless Compression and Bandwidth Op-

timization 1
1.1 Introduction e 1
1.1.1 The Problem 2
1.1.2 Common Transmission Types 2
1.1.3 Proposed Solution 3
1.2 Implementation and Methods 6
1.2.1 Specification L L 6
1.2.2 Advantages 7
1.2.3 Disadvantages. 8
1.2.4 Our Implementation and Strategy 9
1.3 Results. e 9
1.4 Future Work e 10

2 Applying Genetic Algorithms to Generating Paintings Based on Images 12
2.1 Imtroduction 12

2.1.1 Background Information Lo 12

2.2 Implementation 14

2.2.1 Applying a Genetic Algorithm to Painting 14
2.2.2 The Fitness Function 16
2.2.3 The Rendering Function 17
2.2.4 The Generator Function 17
2.2.5 The Selector Function 18
2.2.6 The Crossover Function 20
2.2.7 The Mutation Function 21
2.3 Results. 22
2.3.1 Maximizing Fitness. oL Lo 22
2.3.2 Hamming Walls. 23
2.3.3 The Impact of Population Size 29
2.3.4 The Impact of Iterations 30
2.4 Future Work L 30

A Code Appendix 35

List of Tables

1.1 Compression Results

2.1 Parameters of the tournament selector executions

List of Figures

1.1 Huffman code example

2.1 A rendered painting with its original reference image to the left of it
2.2 Informed random generation compared with fully random generation
2.3 Maximize selector fitness graph oo oL
2.4 Visualized Hamming wall 0oL
2.5 Informed random and random generator fitness graphs
2.6 Tournament selection maximum fitness graph
2.7 Tournament selector fitness graph versus maximal selector fitness graph

2.8 Tournament selector comparison
2.9 Fitness graph of different population levels

2.10 Fitness graph of multiple executions with varying amounts of iterations

A.1 The original mutation function,
A.2 The function for creating a data context

A.3 The function for calculating the fitness of a painting

17
19
24
25
25
27
27
28
29
31

Chapter 1

Modified Huffman Coding for
Lossless Compression and

Bandwidth Optimization

1.1 Introduction

This project is a compression algorithm based on the Huffman code. We maximize the
amount of tokens in the tree in exchange for a smaller compressed message. We avoid
having to store the entire Huffman tree with the compressed message by storing it separately,
giving an identification number to it and prepending all messages compressed using that
code with that identification number, so it can be used to decode it later. Instead of
constructing a Huffman code for every single file we compress, we construct a number of
generalized Huffman codes based on a category of data and assign each an identification

number. These codes and identification numbers together become a “data context”. We

implement a program that holds many data contexts and assigns the best one to each input
message and observe how much we can compress messages and how quickly the messages

can be decoded

1.1.1 The Problem

Cisco estimates that in 2016, over 96,000 petabytes of data were transferred across networks
around the world.[18] This is up from 72,000 petabytes in 2015 and for an even more extreme
comparison, 12 petabytes in 1998. Clearly, internet traffic is increasing at a great pace. As
internet traffic increases, consumers are sending more and more web requests from their
client devices every day, with more and more devices to send from. This creates a challenge
for those who maintain servers that handle these requests. Savings of kilobytes or even just
bytes can add up to have a significant impact on total bandwidth usage when requests are
being processed en masse. If there were a way to more effectively compress data before
sending it to the client, provided it is quick at both compressing and decompressing and is
relatively easy to implement, the savings in bandwidth could be huge, thus providing benefit
to any implementing networks. We suggest a compression algorithm and implementation

that meets these criteria.

1.1.2 Common Transmission Types

The majority of traffic on the internet is either text, image, video, or audio. This paper
will focus on a text implementation due to the ease of representing text on paper. However,
it has already been shown that Huffman code techniques can be used to compress images,
video, and audio as well.[1][22][2] The algorithm we present can therefore also be used on
these formats.

Recently, the concept of minimizing Javascript of other web languages has become more

and more important. If a large company with a website that is accessed a lot is able to
minimize their payload, or filesize of their webpage, they could save lots of bandwidth. Our
solution can be used to compress code very efficiently, so this is another reason for focusing
on text in our implementation and examples.

What is important is that all common network traffic types can be tokenized, and when
tokenized, there is at least some redundancy present. This is when minimum redundancy
codes such as the Huffman code are most useful and effective. Note that there is a lot of
redundancy in Javascript code (and most code) in the form of variable names, bracketing,
keywords, etc., making it a great target for Huffman-based compression. Even if there is not
that much redundancy, a Huffman code can be used to hold sets of equivalently occurring
tokens to save memory.[15] A Huffman code based solution is therefore very adaptable to

the terrain of modern data transmission.

1.1.3 Proposed Solution

Bandwidth is clearly the core concern. We could minimize bandwidth with all sorts of lossy
compression, but lossy compression is not acceptable in an algorithm designed for all kinds
of web traffic and could result in corrupted data. We seek to minimize bandwidth usage
with only lossless techniques.

As memory and data storage device prices decrease every year, it is becoming less and
less important to be efficient in space complexity.[13] The traditional Huffman code is fairly
conservative in its use of space. We seek to take advantage of this modern trend by inflating
the size of the compression and decompression programs themselves in exchange for a smaller
compressed file size and thus better compression ratio. Transmitting this smaller file will
then use less bandwidth.

From a high level perspective, the version of the Huffman code we present has two major

deviations from the original specification. The addition of a data context and the offloading
of the Huffman code tree itself into the implementation specification, saving the output
file from having to store the entire tree. The addition of a data context has been discussed
before, but it has not been as large or offloaded as ours is.[22] We also introduce the concept
of a compression benefit. That is, the benefit of compressing something big is more than
compressing something small. This will be discussed more later.

A Huffman code is constructed by breaking apart an input message into tokens and
constructing a tree based on those tokens and how frequently they occur, with the most
frequently occurring tokens at the top of the tree. This tree can then be traversed to encode
or decode messages. An example of a traversal represented as a binary string is shown in
Figure 1.1. In this example, 0 represents going to the left child and 1 represents going
to the right child. The tree itself and the traversal are then written to the disk in an
efficient manner, providing a compressed file. If the tree grows too large, then writing it
to the output file could make the output file larger than the original input. This is why
the Huffman code’s most common used method of tokenizing an input is by the letters and
symbols used in English, ensuring that no more tokens than the English alphabet and some
other symbols are encoded. As this sort of memory conservation is not important in our
implementation, we want to choose a less granular token. In our example of English text,
we could choose a word or small phrase. We will use a word, as implementing a decision
algorithm for determining what constitutes a small phrase is not the focus of this paper,
but such an algorithm could be a great addition.

With these less granular symbols, in our case words, we can then construct a much larger
Huffman code tree based on the text. This tree should not be based on one individual file,
rather, a corpus based on some genre of text. These subsets should be similar in genre,

providing a more accurate tree. As an example, if one were to construct a Huffman code tree

on all papers submitted to a computer science journal and then use that code to compress
the next submitted paper, it would probably do a decent job. If that code was then used
to compress all tweets made in the past hour, it would probably not compress that file very
well, barring some extreme coincidence. This genre-generalized Huffman code tree is the
“data context”, or context of the data being transmitted.

We then take this very large data context, created from a corpus of computer science
academic papers, and store it in the encoding/decoding program with an identification
number. The identification number is a fixed-length message before the actual encoded
message that specifies which data context was used to encode this message. The output
file then does not have the large Huffman code tree in it taking up space, rather, it has an
identifier for a data context that it will be paired up with when it is received and decoded.

There is also the consideration of benefits. If the word “a” occurs extremely frequently
in the input, it will be in one of the top levels of the Huffman code and be compressed down
to a very small size. However, if we compress the word “the” down to that same small size,
even if “the” is less frequent, we are potentially (depending on the frequency of occurrence
of “the”), going to be compressing more efficiently. For the sake of example, assume a
one-byte letter size and the token is on the third level of the tree, meaning a three-bit
compressed token size. We would be removing 5 bits from the representation of the token
“a” and 21 bits from the representation of the token “the”. The benefit of compressing a
symbol is the frequency at which it occurs times the size of that token. We then use these
benefit values instead of the normal frequency value used by a standard Huffman code.

As decoding a compressed file using a Huffman code is very fast, this file can be de-
compressed quickly.[9] We also considered using different branching factors to minimize the

depth of the tree, but this turns out to have no real impact on output file size.

0001101011

Figure 1.1: A rudimentary Huffman code tree with a corresponding binary string that
encodes the string “hello”. A “0” in the string corresponds to going to the left child of a
node, and a “1” corresponds to going to the right.

1.2 Implementation and Methods

1.2.1 Specification

The implementation of this algorithm has two parts: a client and a centralized server that
keeps track of data contexts. The client needs to have access to a set of standard data
contexts (Huffman code trees), their identifiers, and have the ability to traverse them to
decode or construct a lookup table to encode a message. The server needs to store all data
contexts and their identifiers and provide updates to the clients when needed.

The client as described here is not the typical web definition of a client as a browser, it is
an implementation of our algorithm to encode or decode messages. The clients will requests
new contexts from the server if they come across a context identifier for which they do not
have the context. The client will also be tasked with determining which context, given its
current inventory, is most efficient. The simple, and slowest, way to do this is to compress
the message with every potential data context and pick the best one. There are much
better ways to do this using genre classification, which is an entire field of its own. What is
important here is that the process of deciding which context would be optimal does not have
to be a brute force solution like what we are using. We used that in our implementation

that for simplicity’s sake, though. Because the decision of which data context to use must

be done when encoding, the process of encoding will indeed be slower than decoding. This
is okay, as it could be done in advance (not on the fly as requests are made) to all files being
sent. For dynamically generated files, a smarter classification algorithm would be needed
to assign an optimal data context on the fly.

An encoded file consists of the context identifier, the compressed data, and any tokens
that were not found in the data context at the end. This is necessary because, as the
contexts are not generated based on the input file itself, it is possible for an input file to
have tokens in it that are not in the context. There will be a node in the data context that is
in the least likely position, a leaf at the farthest level of the tree, that will be a placeholder.
The tokens not present in the data context are then stored in their original form at the end
of the file, in the same order that the placeholders occurred. This does mean that if a very
malicious input message were to somehow circumvent all available contexts and contain a
large amount of tokens that no context contained, it would be possible for the message to
actually expand instead of being compressed. This is, however, both extremely unlikely
and could be checked by comparing the output message size to the input message size and
opting not to compress in this case.

The context identifier at the beginning of the file would be however long the imple-
menters feel necessary for it to cover all contexts they would desire. This sort of decision
has been historically difficult to make correctly, as the popularity of a particular system is
hard to gauge at its inception (e.g. IPv4). In our implementation, it was three bytes, with

an option to check the end of the file for more version info if all three bytes were 255.

1.2.2 Advantages

The solution to the problem of bandwidth optimization is the primary advantage. This

algorithm can cut down on file sizes in transmission by immense amounts. This algorithm

also can be implemented easily, without much more difficulty than a regular Huffman code.
This is important, as the adoption of this algorithm would require browsers to implement
decoders and servers to implement encoders (clients and servers here referring to the web
sense of the words, not our specification’s definition). It is also adaptable to many different
data formats and allows for a lot of data contexts, so a data context can fit a specific input

message very well.

1.2.3 Disadvantages

Corner cases do exist. It is hypothetically possible for a file to expand, or get abysmal
compression. We do avoid this as much as possible, but there will theoretically always be
some heinously complicated input that could not be compressed very efficiently. This would
not happen in general, though.

The disk space required to store so many data contexts could become very large, espe-
cially when accounting for different data types (audio, video, etc.). We assume disk space
is not an issue, however, and disregard this.

Lastly, this algorithm is not very good at handling random data or noise. If a person
is browsing their computer late at night and drifts off to sleep, their head could hit the
keyboard and generate the string “ugibighnhdfvbsmdofu”. This would most likely not
belong to many contexts, and if it did, that context would not fit the rest of the text very
well. This is not too big of a problem, though, as it will just remain uncompressed via the
placeholder nodes in the context. The implementer also has the choice to be more smart

about these situations and perhaps resort to a different compression algorithm.

1.2.4 Our Implementation and Strategy

Our implementation used the programming language Rust, for its speed and ease of im-
plementing low-level data structures safely (i.e. without memory leaks or things of that
nature).

The construction of this tree can be seen in the appendix as Figure A.2. First, the
corpus is split up on spaces. In a more efficient implementation, punctuation would also be
its own token, but I have omitted this from the appendix for brevity. These tokens are then
stored as tuples with their benefits, calculated as their length times their size. These tuples
are then inserted into a priority queue/min heap strucure which is popped repeatedly to
constructed the Huffman code. A lookup table for quicker encoding is constructed from the
code for all tokens it contains. Finally, some identifier (arbitrary at this point) is attached
to the code to form a data context.

For encoding, each token is found in the lookup table with its corresponding encoded
form. For decoding, the data context traverses the Huffman tree following the traversal
prescribed by the binary encoded file. This means that encoding is O(n) where n is the
number of tokens in the input and decoding is O(m) where m is the size in bits of the

encoded message. Both are very fast operations.

1.3 Results

We constructed a few data contexts that are representative of data frequently transmitted
over the internet, namely minified Javascript, English text sourced from novels, and social
media English text (a corpus of tweets). We compressed another sampling of texts from
the same genre as the data context and averaged the compression ratios to get the values

seen in Table 1.1.

10

One particular advantage of using a Huffman coding in this manner is the bit-level
output of the algorithm. As the actual implementation of characters varies by application
(some applications will have single-byte char sizes, some have two-byte char sizes, systems
that support Unicode have four-byte char sizes). The compressed size will always be the
same number of bits, but the ratio can depend on how big a character or token is in the
original file. The encoding and decoding part of this program took under one-fiftieth of a
second total on my (somewhat slow machine, even with extremely large data contexts (for
example, the English Novels context contained over 50,000 tokens).

Great compression results can be had with this compression algorithm, especially in the
realm of highly redundant data like code (e.g. Javascript). It would just need to be adopted

by both servers and clients for it to be practical.

Table 1.1: Some compression results using data contexts. The ratios are the original size
of the file over the compressed file size, both in bits. In the “Benefits Ratio” column is the
result for the calculation using benefits, and in the “No Benefits Ratio” column, a standard
Huffman code using just the frequency of token occurrence was used. Included are results
for a regular Huffman code that compresses based on each character and a Huffman code
with no Huffman code tree included in the output file, something slightly more analogous
to our project’s Huffman code.

Benefits Ratio No Benefits Ratio No-Tree Huffman Standard Huffman

English Novels 3.4200 2.4270 1.8220 1.6779
English Social Media 2.5704 2.3684 1.7223 1.5923
Javascript 4.1921 2.6180 2.0429 1.9010

1.4 Future Work

We hope to construct many more data contexts for varying data types and investigate
exactly how many contexts would be needed to adequately cover all common data trans-

mission types. We also hope to implement the encoding and decoding programs as browser

11

and server plugins, enabling transmission of data compressed in this manner and supporting

adoption of this algorithm.

Chapter 2

Applying Genetic Algorithms to
Generating Paintings Based on

Images

2.1 Introduction

This project explores the application of genetic algorithms to generating paintings based on
photos. We find various combinations of parameters for our genetic algorithm that strike a

balance between computational work and visually pleasing and accurate results.

2.1.1 Background Information

The subject of generating paintings based on algorithmic operations applied to computers
has been studied before in great depth.[12][23][19] These approaches are highly effective

and expressive, but some can be stylistically limited due to their deterministic nature of

12

13

analysis. In the case of both [12] and [23], they analyze features from the original image,
such as color or edge location, and abstract them into something that can become a stroke
or collection of strokes and represent them in a table. The painting algorithm draws from
this table to ensure the feature is represented in the final rendered painting. This is the
approach of most painting algorithms that are based on an original image. Those other
algorithms which paint images based on no original reference image, such as [19], are a
different problem than this project, so they will be referred to sparingly.

As it is hard to say in art whether one approach is better or worse, this project seeks
not necessarily to improve upon the previous work but to provide another entirely different
tool for generating paintings based on a reference image. We utilize machine learning,
specifically a genetic algorithm, to create a large amount of paintings and then evolve them
into one, particularly accurate, painting. This accuracy is determined by a fitness function
which is discussed later.

The concept of a genetic algorithm was originally proposed by A.S. Fraser with the
intent of being able to computerize and simulate evolution.[7] Originally, it was much more
focused on the mutation and mating aspects of it, and less on the fitness definition and
iteration. In applying genetic algorithms to art, however, a creative use of a fitness function
and a mutation function are required.

Much work has been done on genetic algorithms, and they seem to contain an inherent
quality that makes them good at optimization problems. This can be seen in the amount of
publications across many diverse fields using genetic algorithms to optimize their problems.
Some examples are molecular geometry calculations,[5] electromagnetic design tools,[21]
course scheduling.[4] There is much more work out there exemplifying this optimization
characteristic. [16][14][10][6][20]

Genetic algorithms are often applied to optimization problems in this way because they

14

are able to find optimal solutions without necessarily knowing why they are optimal. In
problems where there are features that can be evaluated and weighted based on how good
or bad they are with respect to the final product, genetic algorithms are able to find optimal
arrangements of these features. We apply this to paintings, as every stroke can be viewed
as a feature and evaluated in this way. Some work has been done on applying genetic
algorithms to art and in very interesting ways. Karl Sims has published a paper and
created an art exhibit using one.[17] He, too, struggles with large parameter spaces in his
work and discusses some ways around them, but his process is not based on a reference
image as ours is, so we cannot take advantage of these approaches.

Sims also has an exhibit where there are sixteen different paintings, and visitors to the
exhibit can select the most visually appealing ones. Their features are then mixed to create
the next generation of paintings. This is a good demonstration of the idea behind genetic
algorithms.

Other work on using genetic algorithms with art include Roger Johansson’s implemen-
tation in Javascript of a genetic algorithm to approximate the best arrangement of fifty
polygons to replicate the Mona Lisa with great success.[11] This project can be viewed

online. !

2.2 Implementation

2.2.1 Applying a Genetic Algorithm to Painting

There are three core parts to this project: the generation function, the genetic algorithm,
and the rendering. Paintings are a struct represented by a collection of strokes, which is a

struct with a start point, an end point, a width, and a color.

Tt can be viewed here: https://chriscummins.cc/s/genetics/

15

The genetic algorithm itself has five parts: the selector function, which selects which
of the population to mate; the fitness function, which defines the fitness of a painting; the
crossover function, which defines how two paintings interact to create a child; the mutation
function, which randomly mutates a painting; and the simulator, which iterates the genetic
algorithm according to some given properties and kills off stochastically.

The structure of the program, from a high level, is as follows:

1. The generator function generates n initial random paintings.

2. The selector function selects m of the initial random paintings to mate and produce

child paintings.

3. The crossover function takes two selected paintings and combines their strokes, half
from one and half from the other, to create a child painting. It repeats this process

until all of the selected paintings have been mated.

4. Another selector function selects o random members of the population.

5. The mutation function mutates these o members.

6. The simulator then stochastically kills off m paintings from the population.

7. Go back to step 2 and repeat until a predetermined number of iterations has been

met.

8. Render the most fit, according to the fitness function, of the population and output

it as the final result.

16

2.2.2 The Fitness Function

This paper will frequently refer to the “fitness” of a painting. This is a value determined
by the fitness function. It is therefore crucial to explain first, as the rest of the discourse
in this paper relies on this concept. The fitness function gives us an integer value for how
“good” a painting is with respect to the original photo. This allows the various parts of
the simulator to address photos by how fit they are and make decisions accordingly. It also
provides us with a quantitative metric with which to compare the effectiveness of various
approaches and tweaks to our program.

In our problem, we want to take an image and turn it into a painting. One of the most
basic concepts of how accurate a painting is to a given reference photo is how far off the color
is of every pixel. For example, given the RGB values of original photo pixel located at (1,1)
as (255,254, 255) and the corresponding painting pixel located at (1,1) as (255,255, 255),
we can see that the G value is one pixel off from the original. This gives it an “unfitness” of
1. We can take the inverse of this to get the fitness. The inverse is the maximum possible
difference (255 + 255 + 255 = 765) minus the actual difference (1), so 765 — 1. Therefore,
this particular pixel in the painting has a fitness of 764. The fitness value of a painting is
the sum of the fitness of every rendered pixel in comparison to the original photo.

Note that the fitness function does not rely on mutating any data, only referencing the
two images. This means that it is easily implemented in parallel, a feature that is important
in executing genetic algorithms in a timely manner. The actual code for this function can

be seen in the appendix as Figure 77.

17

Figure 2.1: A rendered painting with its original reference image to the left of it

2.2.3 The Rendering Function

Rendering a painting is as minimalist and intuitive. From the start point to the end point of
every stroke, a line is drawn with the stroke’s color. This line has the width of the stroke’s
width. There is no actual paint simulation or anything particularly advanced happening
here. This is because the discoloration of paint or lighting could interfere with the fitness
function’s ability to accurately compare the color of a stroke to the original photo.

The rendering function is important to this project because it is used in the calculation of
the fitness and therefore the assessment of the genetic algorithm’s progress and quantitative
results.

Figure 2.1 shows an example of a rendered painting with it’s original image next to it.

2.2.4 The Generator Function

The generator function is the function that generates random paintings for the initial pop-
ulation of the genetic algorithm. Originally, it was truly random, generating completely
random strokes with completely random parameters and combining them into a painting.

This was not good enough. The parameter space of the problem is too large. Strokes have

18

color, length, position, width, etc., and starting with truly random strokes puts us so far
away from an optimal solution that it takes the genetic algorithm far too many iterations
to get a desirable result. We instead created an “informed” random generator. In this
improved generator, most aspects are still kept random but certain things are set to be
more accurate by taking some features from the reference image. We limited the minimum
and maximum length of strokes to be set by an argument passed in by the user, which min-
imizes the parameter space greatly. We also set the color of every stroke to be the color of
the original image at its start position, and thus further shrank the parameter space. This
proved to greatly increase starting fitness. Note that the fitness increase did not sacrifice
the effectiveness of the genetic algorithm. The final fitness is a function of the starting
fitness, as seen below. In Figure 2.2, we introduce the “fitness graph” which is a graph of
the maximum fitness at every iteration through an execution of our genetic algorithm, to
show the difference in both fitness and final image when an informed random generation

function is used versus a purely random one.

2.2.5 The Selector Function

The selector function’s job is to select which parents will mate to produce the children for
the next iteration.

There are different kinds of selectors that are used in genetic algorithms. There is
stochastic, which is random and is effectively useless for this application; there is tour-
nament selection, which chooses x members of the population at a time to participate in
a tournament and picks the top 2 most fit participants from that tournament (multiple
tournaments can be run per iteration); fitness maximal selection, which selects the absolute
most fit members to mate; and some other more obscure types.

The amount parents being selected to "mate” each iteration is an input to these selector

370000000

360000000

350000000

340000000

330000000

320000000
0

19

== |nformed Random

== Random

1000 2000 3000 4000

[terations

(a) Informed random final result. (b) Random final result.

Figure 2.2: The maximum fitness of every iteration’s population using the informed random
generation approach versus the non-informed approach, and their respective final results
from the genetic algorithm after 5000 iterations.

20

functions. So, the maximize selector picks the top = to mate, producing 5 children. This
is a parameter that we fixed to §, where n is the total population size, producing § of
the population size children every iteration, and killing off § as well. We tested a few
other values, but ultimately fixed it to § as it seemed optimal. This is discussed more in
the results section. Fixing this value, although semi-arbitrary, provided consistency as we
tested the other elements of the genetic algorithm’s parameter space, which was already far
too large. The maximize selector was our primary choice as it picks the most fit paintings
and then uses them to create children. This can cause a phenomenon of a local maxima,
but it still resulted in the highest fitness. That is, the local maxima level is higher in the
maximize function than the highest fitness able to be achieved by other selectors in the
same amount of time. This will be discussed more in the results section.

The tournament selector was the other selector we experimented with. It takes two
parameters: the number of tournaments and the number of participants in the tournament.
We fixed these values, again somewhat arbitrarily, to § tournaments of size 5. For a
population size of 1000, this would be 166 tournaments of size 10. This results in 1660
fitness calculations per iteration, which is more than the maximize selector, but is often
more efficient as it will select the same population member multiple times and access the
cached fitness value. The scaling of the tournament selector is independent of the fitness
increase, meaning it is not just a slower maximize selector.[8] This means it could be resistant

to the local maxima that the maximize selector can sometimes experience.

2.2.6 The Crossover Function

After a subset of the population has been selected to become “parents”, they are passed into
a crossover function. In the original definition of a genetic algorithm, this was a function

that took the two parents’ binary string representations and split them, combining part

21

from one parent and part from the other.[7]

We approximate this process; instead of using a binary representation, we take half of
the strokes from one painting and half of the strokes from the other, combining them. To
maximize the increase in fitness, we compare the two potential combinations (parent one’s
first half, and then parent two’s, or vice versa), and pick the best combination. This worked,
but also made us more susceptible to local maxima, also known as Hamming walls. This
will be discussed later in the results section. Because of this, this feature was removed.
Some other versions of the crossover function exist, such as not taking exactly half from
each painting and instead taking a random percentage from each that totals one hundred
percent, but no major improvement in performance was shown using this method. This

new set of child paintings are then added into the total population.

2.2.7 The Mutation Function

After the child paintings are added to the population, a stochastic selector function selects
a predetermined amount of paintings to mutate. We decided that we would pick a random
parameter of a stroke and modify it by a predetermined “mutation strength”. The code
of our original implementation of the mutation function is available as Figure A.1 in the
appendix. You will notice that in the end, this function, like the original crossover function,
also makes a comparison to ensure a better fitness. The painting compares itself to its pre-
mutated state and picks the more fit painting to return. This also made us more susceptible
to Hamming walls, and was removed. The mutation strength is better as a relatively large
value to help avoid Hamming walls.

After the mutation occurs, a number of paintings equivalent to the amount of child
paintings that were just added are stochastically selected to be “killed”, or removed from

the population.

22

2.3 Results

2.3.1 Maximizing Fitness

Some of the most fit images generated based on the original reference image are below:

More paintings can be seen in the appendix as Figure 77.

Stroke Properties

These two paintings ran for the same number of iterations. They show the increase in
“difficulty” of arranging longer strokes versus shorter strokes. Through many tests, it has
become apparent that a feature in a painting only shows up if the stroke length is less than
that feature itself. The longer strokes tend to obscure the smaller details, like the moon in

the background and some shrubbery in the foreground. In a much shorter time, a shorter-

23

stroke painting is able to achieve a much higher fitness than another painting of longer
strokes. So, one way to maximize fitness is to just have shorter strokes. Thinner strokes
also have this effect but it is not as dramatically as shorter strokes. This “impressionist”
style of painting strikes a great balance of computational work to good results, requiring
much less computation for much more fit results. For the sake of exploring other styles,
we then chose to move on to the more challenging longer-stroke version and see how much

improvement can be made.

Selectors

When trying to maximize fitness, it is intuitive to use the maximize selector. This is the
selector that selects the most fit members of the population to mate for the next generation.
It does increase the run-time dramatically, as at every iteration it must find the most fit
members to mate, but the increase in fitness makes this trade-off worth it. Using the
maximize selector to run a genetic algorithm for some amount of time hours will result in a
higher fitness than using a tournament selector for the same amount of time. Technically,
the tournament selector can get through many more iterations in the same time, but each

individual iteration has a lesser positive impact on the fitness.

2.3.2 Hamming Walls

When looking at the fitness graph of an execution of our genetic algorithm, it takes a
logarithm, or inverse-exponential, shape. This can be seen in Figure 2.3. We postulate that
this is due to a local maxima, or Hamming wall as they are called in genetic algorithms.
This postulated maxima can be seen in Figure 2.4. This is a place where an increase in
fitness would require many changes to happen simultaneously.[3] It could also be due to

approaching the most optimal arrangement of strokes, but as a perfect fitness value is much

24

365000000

Figure 2.3: A graph of the maximal fitness throughout one execution of the genetic algo-
rithm.

higher than those values these lines are asymptotically approaching, this seems unlikely.

More evidence for the existence of a Hamming wall can be seen in Figure 2.5. If the
posited hamming wall was actually an optimal arrangement of strokes, then the fitness
graph for the random generator execution should approach the same optimal arrangement
as the informed random generator execution, around 368, 000, 000, and then start to flatten
out. Instead, it reaches its own Hamming wall around 351, 000, 000.

If one is familiar with Hamming walls, they may have heard of Gray coding. Hamming
walls can be combated with something called Gray coding[3] when using binary strings
to represent members of the population. As our approach to using genetic algorithms on
paintings does not use a binary-based representation, these methods of Gray coding are
unfortunately not applicable. There may be ways to apply the strategies of Gray coding to
our application, but they are not obvious at this point.

Hamming walls, or local maxima in general, occur when an algorithm cannot see far

enough in the future to make a change that will temporarily distance itself from its goal

25

but eventually get it closer. When thinking about them in this sense, any part of our
algorithm that greedily grabs the best option could be causing this phenomenon. The most
obvious candidate is the maximize selector, which always grabs the most fit members of

the population. For many iterations, that most fit member may not actually change at all,

Hamming Wall

0 1000 2000 3000 4000

Figure 2.4: A fitness graph with a Hamming wall visualized. The Hamming wall is around
fitness = 368, 000, 000.

370000000 == |nformed Random
== Random

360000000
350000000

340000000

330000000

320000000
0 1000 2000 3000 4000

Iterations

Figure 2.5: The fitness graph of two executions using an informed random and a random
generator function.

26

resulting in a lot of children with the same or extremely similar characteristics being added
over and over again. Over a longer time, it is theoretically possible that a sudden mutation
and more fit child could cause a spike and an overcoming of a Hamming wall.

Increasing the previously mentioned mutation strength would increase the probability
of being able to overcome a Hamming wall. We tested raising the mutation strength until

it was detrimental to the overall fitness and it never was able to overcome Hamming walls.

Overcoming Hamming Walls with Selector Choice

Discouraged by this Hamming wall, we turned to the tournament selector. It was touched
on before, but for the sake of detail: the tournament selector works by selecting tournaments
out of the total population. These tournaments each have x participants, where x is less
than half of the population. It then picks the most fit two participants to make a child for
the next iteration. This selector can sometimes be quicker than the maximize selector as
you will only need to calculate the fitness of the tournament participants, not the entire
genetic algorithm. This can also help avoid Hamming walls, as it will often not select the
most fit or most optimal path for the next iteration. This results in a more flat, but perhaps
more consistent, slope.

Figure 2.6 shows the maximal fitness of every iteration using the tournament selector.
Notice that it is more linear shaped, and less logarithmic, which is good when hoping to
avoid asymptotically approaching a Hamming wall.

This optimistically linear slope is immediately overshadowed when the tournament se-
lector graph is plotted along with the maximize selector graph. This can be seen in Figure
2.7. Clearly, the maximize selector is far more effective. The postulated Hamming wall is
so far above anything the tournament selector achieved in the same number of iterations.

The genetic algorithm with a tournament selector would have to run for approximately

351650000

351600000

351550000

351500000

351450000

351400000
0

1000

2000

3000

4000

27

= Tournament

Figure 2.6: The maximum fitness of every iteration using the tournament selector.

370000000

365000000

360000000

355000000

350000000

1000

2000

3000

4000

= Tournament

= Maximize

Figure 2.7: The tournament selector’s maximal fitness at every iteration graphed with the

maximize selector’s.

28

351650000 == Tourmnament

== Smaller Tournament
351600000
351550000

351500000

351450000

351400000
1000 2000 3000 4000

Figure 2.8: The fitness graphs of our tournament size and a smaller tournament size.

190, 503 iterations in order to overcome the one using a maximize selector’s fitness. As the
maximize selector took about 17 hours to run 5000 iterations and the tournament selector
took about 13 hours to do 5000 iterations. The tournament selector would have to run for
roughly 494 hours, or 41 days straight on our systems to even approach the Hamming wall
of the maximize selector, assuming the linear slope would continue and it would not en-
counter its own Hamming wall at an earlier point. In that same time, the maximize selector
would still be either slowly approaching the Hamming wall, or could be even higher than it.
The amount of time required to achieve a comparable result with the tournament selector
makes this approach not worth it unless running the genetic algorithm for a very long time.
Lowering the tournament selector’s parameters to do less tournaments or less participants
in the tournaments does make it run faster but has a dramatically negative impact on the
its slope. The increase in speed is not big enough to compensate for this negative impact
on the slope. This can be seen in Figure 2.8. The parameters of these two executions can
be seen in Table 2.1.

From this test and similar ones, we deduced that it is not worth it to pursue smaller

29

Table 2.1: Parameters of the tournament selector executions

Number of Tournaments Tournament Size Runtime Final Fitness

Tournament % %% 13:12:52 351646879
Smaller Tournament f% f% 11:47:50 351554728
370000000 -—n=30
= n=60
365000000
360000000
355000000
350000000
0 1000 2000 3000 4000

Figure 2.9: The fitness graph of two executions of the genetic algorithm: one with the
population set to n = 30 and one with the population set to n = 60.

tournament parameters for more quick execution. The better balance of computational
work and fitness is therefore in the larger tournament selector, but the best balance is still
found in the maximize selector.

Due to these above factors, we moved on from tournament selection and used maximize

selection for all tests after that.

2.3.3 The Impact of Population Size

The size of the population in each iteration turns out to have a significant impact on the
shape of the fitness graph. Unfortunately, it also increases the time it takes to execute one

iteration greatly.

30

For all executions mentioned up until this point, the population value has been set to
n = 30. Figure 2.9 shows what happens when we increased the population size to n = 60,
using our maximize selector. Unfortunately, it took so long to run, we were only able to run
it out to a thousand iterations. But clearly the impact is massive. The slope at every point is
higher and the initial fitness is higher. This makes sense from a conceptual perspective, with
more population being generated in the beginning, there are more combinations of strokes
and therefore a higher likelihood of more fit paintings being generated. Unfortunately,
to run these 1000 iterations took 69.18 hours. Recall that running 5000 iterations with
n = 30 took only around 17 hours. We found that doubling the population size increases
the amount of time required to run one iteration by a factor of 20.347, on average. This
means that increasing the population size is not as efficient as running a lower population
for a longer time.

Some more examples of paintings and their reference images can be seen in the appendix

as Figures 7?7, 77, 7?7, and 77?.

2.3.4 The Impact of Iterations

The amount of iterations an execution has exerts a very predictable effect on the fitness
graph. Shown in Figure 2.10, the number of iterations merely determines how far along this
logarithmic curve it goes. Note that even when a random generator is used, giving a lower

fitness to start with, the pattern persists.

2.4 Future Work

In the future, we hope to look into how to implement Gray coding for a project like this to

avoid Hamming walls. New methods of combating Hamming walls may be needed in order

31

370000000 == 100 iterations
== 100 iterations random

1000 iterations

360000000
== 1000 iterations random
== 5000 iterations
350000000 T == 5000 iterations random
340000000
330000000
320000000

1000 2000 3000 4000

Figure 2.10: The fitness graphs of six executions, three of which used a random generator
function and three didn’t, of varying lengths (amounts of iterations).

to solve the problem in this context. We also hope to test more parameter configurations
for our selectors, finding more optimal configurations. Lastly, we feel that implementing a
more intelligent fitness function, maybe something that uses edge detection or something

along those lines, could result in a more accurate evolution.

Bibliography

[1]

S. Ashida, H. Kakemizu, M. Nagahara, and Y. Yamamoto. Sampled-data audio signal
compression with huffman coding. In SICE 2004 Annual Conference, volume 2, pages

972-976 vol. 2, Aug 2004.

M Atheeshwari and K Mahesh. Efficient and robust video compression using huff-
man coding. INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN EN-
GINEERING AND TECHNOLOGY, 2(8), Aug 2011.

Paul Charbonneau. An introduction to genetic algorithms for numerical optimization.

NCAR Technical Note, page 74, 2002.

Peter Cowling, Graham Kendall, and Limin Han. An investigation of a hyperheuristic
genetic algorithm applied to a trainer scheduling problem. In Fvolutionary Computa-
tion, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2, pages 1185-1190.
IEEE, 2002.

D. M. Deaven and K. M. Ho. Molecular geometry optimization with a genetic algo-

rithm. Phys. Rev. Lett., 75:288-291, Jul 1995.

32

(6]

[10]

[11]

[12]

33

Mark FErickson, Alex Mayer, and Jeffrey Horn. The niched pareto genetic algorithm 2
applied to the design of groundwater remediation systems. In International Conference

on FEvolutionary Multi-Criterion Optimization, pages 681-695. Springer, 2001.

Alex S Fraser. Simulation of genetic systems by automatic digital computers i. intro-

duction. Australian Journal of Biological Sciences, 10(4):484-491, 1957.

David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes
used in genetic algorithms. In Foundations of Genetic Algorithms, pages 69-93. Morgan

Kaufmann, 1991.

Chen Hong-Chung, Wang Yue-Li, and Lan Yu-Feng. A memory-efficient and fast

huffman decoding algorithm. Information Processing Letters, 69(3):119 — 122, 1999.

Jeffrey Horn, Nicholas Nafpliotis, and David E Goldberg. A niched pareto genetic
algorithm for multiobjective optimization. In Fvolutionary Computation, 1994. IEEE
World Congress on Computational Intelligence., Proceedings of the First IEEE Con-

ference on, pages 82-87. leee, 1994.
Roger Johansson. Genetic programming: Evolution of mona lisa, 2008.

Atsushi Kasao and Masayuki Nakajima. Synergistic image creator? a picture genera-

tion system with consideration of the painting process. 30:13-21, 09 1999.
John C McCallum. Memory prices (1957-2017).

Heinz Miihlenbein, M Schomisch, and Joachim Born. The parallel genetic algorithm

as function optimizer. Parallel computing, 17(6-7):619-632, 1991.

[15]

[20]

[21]

22]

23]

34

S. Pigeon and Y. Bengio. A memory-efficient adaptive huffman coding algorithm for
very large sets of symbols. In Data Compression Conference, 1998. DCC' °98. Proceed-
ings, pages 568—, March 1998.

Colin R Reeves. A genetic algorithm for flowshop sequencing. Computers € operations

research, 22(1):5-13, 1995.
Karl Sims. Artificial evolution for computer graphics, volume 25. ACM, 1991.
Cisco Systems. Visual networking index.

Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. Painting with flow. Proceedings
of the IEEE VIS Arts Program (VISAP), pages 117-126, 2014.

Matthew Bartschi Wall. A genetic algorithm for resource-constrained scheduling. PhD

thesis, Massachusetts Institute of Technology, 1996.

D. S. Weile and E. Michielssen. Genetic algorithm optimization applied to electromag-
netics: a review. IEFEFE Transactions on Antennas and Propagation, 45(3):343-353,
Mar 1997.

M. J. Weinberger, G. Seroussi, and G. Sapiro. Loco-i: a low complexity, context-based,
lossless image compression algorithm. In Data Compression Conference, 1996. DCC

’96. Proceedings, pages 140-149, Mar 1996.

Yili Zhao and Dan Xu. Monet-style images generation using recurrent neural networks.
In Abdennour El Rhalibi, Feng Tian, Zhigeng Pan, and Baoquan Liu, editors, E-

Learning and Games, pages 205211, Cham, 2016. Springer International Publishing.

Appendix A

Code Appendix

35

36

Figure A.1: The original mutation function

match rng.gen::<i32>() % 3 {

0= {
to_modify.start.

to_modify.start.

}

1 =>{
to_modify.end.x
to_modify.end.y

}

2 => A
to_modify.width

X

_=> 0,

X

y

= (to_modify.start.x
+ rng.gen::<u32>() J, mutation_strength) % self.width;
(to_modify.start.y
+ rng.gen: :<u32>() % mutation_strength) % self.height;

(to_modify.end.x
+ rng.gen::<u32>() Y mutation_strength) % self.width;
(to_modify.end.y
+ rng.gen::<u32>() % mutation_strength) % self.height;

to_modify.width + rng.gen::<u32>() 7 mutation_strength;

s.strokes.remove (to_modify_index) ;

s.strokes.push(to_modify) ;

let post = s.fitness();
if post > pre {

return s;
} else {

return self.clone();

/77
pub

let
let

Figure A.2: The function for creating a data context

Creates a DataContext based on a corpus.
fn new(corpus: String) -> DataContext {
// Gather vector of pointers to individual words in the corpus.
let mut tokens: Vec<&str> = corpus.split(" ").collect();
// Create unique tuples of tokens and their benefit.
let mut tokens_with_benefit: Vec<(&str, u64)> = tokens
.par_iter()
.map(|x| {
(*x, (tokens.iter() .filter(l&yl| y == x).count() * x.len()) as u64)})
.collect();
// Add the "not contained" token with a benefit of zero
tokens_with_benefit.push(("token not contained", Ou64));
tokens_with_benefit.sort();
tokens_with_benefit.dedup();
tokens_with_benefit.sort_by_key(lx| x.1);
// Create the Huffman tree. At this point, tokens_with_benefit is sorted
// by lowest benefit to highest benefit. Note that the compare
// function for this node type is inverted to make this BinaryHeap a
// MinHeap, useful for creating a Huffman code.
// Start with all singletons
let mut forest: BinaryHeap<Node> = tokens_with_benefit
.iter()
.map(|x| {
Node: :Leaf {data: x.0.to_string(), benefit: x.1,}}).collect();
// Merge the singletons one by one into a tree.
while forest.len() > 1 {
let left = forest.pop().expect("heap pop didn’t work");
right = forest.pop().expect("heap pop didn’t work");
benefit = left.benefit() + right.benefit();
let new_tree = Node::Interior {
left: Box::new(left),
right: Box::new(right),
benefit: benefit,
+;
forest.push(new_tree);
}
// There should be only one node in the forest left, the root.
assert! (forest.len() == 1);
return DataContext {
_context_id: "Test".to_string(),
root: forest.peek().unwrap().clone(),
encoding_table: forest.peek().unwrap() .make_table(tokens),
3

37

Figure A.3: The function for calculating the fitness of a painting

pub fn fitness(&self) -> i32 {
let mut fitness = 0f64;
// The image we are trying to approximate.
let goal = load_image(&self.filename);
let rendered_strokes_buffer = self.render_strokes();
for x in 0..goal.width() {
for y in 0..goal.height() {
let grgb = goal.get_pixel(x, y).data;
let rrgb = rendered_strokes_buffer.get_pixel(x, y);
let unfitness = (grgb[0] as 132 - rrgb[0] as i32).abs() +
(grgb[1] as 132 - rrgb[1] as i32).abs() +
(grgb[2] as i32 - rrgb[2] as i32).abs();
fitness += 765.0 - unfitness as f64;

}

return fitness as i32;

38

39

40

41

42

	Trinity University
	Digital Commons @ Trinity
	5-2018

	Modified Huffman Code for Lossless Compression and Bandwidth Optimization and Applying Genetic Algorithms to Generating Paintings Based on Images
	Alexander Hansen
	Recommended Citation

	tmp.1527087678.pdf.83hsj

