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Short Term Load Forecasting Using Recurrent and

Feedforward Neural Networks

Andrew Loder

Abstract

Accurate load forecasting greatly influences energy production planning. If the demand

forecast is inaccurate this could lead to blackouts or waste of precious energy. This paper

compares many innovative networks on the basis of accuracy. The first is a feedforward

neural network (FFNN). Next we look at different models of Recurrent Neural Networks

(RNN) specifically long short term Memory (LSTM). Finally we explore combining the two

approaches into a hybrid network. We will be predicting load with an hourly granularity

also known as short term load forecasting (STLF). We will be applying these approaches to

real world data sets from www.eia.gov over a period of about 4 years. Our approach will

focus on the integration of historical time features from the last hour, day, month, etc. with

the inclusion of RNN methods. We show that the included time features reduce the overall

error and increase generalizability. We combine this with features such as weather, cyclical

time features, cloud cover, and the day of the year to further reduce the error. We will then

compare the approaches to reveal that the correct handling of time features significantly

improves the model by learning hidden features.
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Chapter 1

Introduction

1.1 Introduction

This paper is designed to walk through our approach to this problem in four steps. First we

will reveal the necessary background knowledge so that one becomes acquainted with the

problem and how we are attempting to solve this problem. We will start with the history

of artificial intelligence. We then will introduce the problem along with the necessary

background knowledge to fully understand it. We then take a look at other approaches

that have seen real world implementations. Next, we introduce the background knowledge

of our proposed solution to the problem, beginning with neural networks. We then pull

from recent academic literature on this subject to further build our approach. After all

of this background analysis has been done we finally detail our approach which consists of

threefold, an FFNN, LSTM, and a hybrid approach. Lastly, we detail and conclude our

findings.

1



Chapter 2

Background Knowledge

2.1 Developments in Machine Learning

To begin we must understand some historical context regarding the field of machine learning.

Neural networks has been around since the 1950s and extensive research has been conducted

ever since. Research into neural networks have been exploding in recent years. This is mostly

due to recent development in deep neural networks. These developments allow for great

improvements in computer vision, natural language processing, and speech recognition.

The field before deep learning was mostly fixed on single layer neural networks with hand-

designed features. It is provable that deep neural networks outperform single layer neural

networks in terms of learning and accuracy.

The rise of cheap storage and big data sets are other contributing factors to the preva-

lence of neural network research. The more data one feeds into a neural network, the more

the network can adjust to consider that data point and allow it to generalize [5]. As we

expand our resources to collect more data we can further the intelligence of our systems.

We can see this in the coming years with the adoption of smart grids which will gather data

2
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from the consumer’s electric meter.

Access to computational resources to run larger models have greatly improved the results

we can achieve. The more neurons we can have in the model the more complex we can

make the fit. Compared to a human brain, modern day neural networks are still an order

of magnitude smaller [5]. While modern day artificial neurons do not represent neurons in

a brain, this comparison gives the reader an idea of the relative computational capacity of

these entities.

2.2 The Problem: Energy Load Balancing

The problem we will be addressing is training a deep neural network to predict the hourly

energy load of a given load balancing area. A load balancing area is governed by a load

balancing authority that ensures that power system demand and supply are finely balanced.

The load balancing areas for the United States are seen in Figure 2.1 as the small dots. The

balance is needed for safety, cost saving, and reliability. These load balancing authorities

ensure that there are no blackouts if the supply is too low, and aim to minimize waste if

the supply is too high. They may also trade with neighboring load balancing authorities

to further ensure that energy is in balance. In this paper we are not concerned with the

supply side of this equation, rather, we are concerned with the demand of a given area. We

chose a load balancing area because they put out hourly information about load demand

and other data-points on www.eia.gov.

We will be focusing on the balancing area known as Tucson Electrical Power Company

(TEPC) shown as the peach dot in the very bottom left of Figure 2.1 in Arizona nearest

to New Mexico. We chose this for three reasons. First, it is a small load balancing area

containing one major city, Tuscon. The localization allows us to only have to consider one
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Figure 2.1: The Balancing Areas for the United States Source: U.S. Energy Information
Administration.

weather station, the Tucson International Airport. This further increases the accuracy of

the weather for the whole of the load balancing area which factors into the temperature

variable in our model. Second, TEPC has not changed its service area drastically within the

time period of the data we will be considering. It is important to consider how this data set

has changed over time. Load balancing areas are not static entities, they may change their

service area from time to time. Third, the TEPC region has relatively constant weather

conditions. Weather is hard to predict due to its complexity, for example, the influence

of cloud systems. The theory is that Tuscon does not receive too many cloud systems or

unique weather conditions such as hurricanes. Therefore there will be fewer anomalies in

the data set allowing for the model to generate a better fit.
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2.3 Data Driven and Simulation Approaches

There are two types of models that are prevalent in this space, simulation models and data

driven models. Simulation models use thermodynamics to estimate and analyze energy

consumption. These can only be applied to physical traits of buildings and the knowledge

of the environment that the buildings occupy.

Data driven models rely on historical data to estimate energy consumption. This model

is compelling to most because of the new spring of artificial intelligence techniques and

the widespread availability of data. Another appealing trait of data driven models is their

automated nature. Once a model has been created for one grid, we can train and apply

that model on another grid. This is in direct contrast to simulation models since simulation

models require more labor to apply it to other buildings.

2.3.1 Data Driven Models

Within data driven models there are two active research areas in load forecasting: short

term load forecasting (STLF) and long term load forecasting (LTLF). STLF, the area we

are focusing on, is the forecasting of energy demand from several minutes up to one week

in the future. LTLF is focused on predicting the future load with the forecast period of a

year and above. There are vastly different problems when implementing an STLF versus

an LTLF. The problem with STLF is reducing the jitter of a given prediction. The problem

with LTLF is that there are not accurate weather reports for its given forecast period, and

weather is the biggest driving factor in load demand.

STLF is used by the load balancing authorities to generate a day look-ahead to ensure

that the grid has time to react to demand changes. If the outlook is inaccurate, it can lead

to power loss due to underestimation and on the other end, it can lead to electricity waste
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due to overestimation. LTLF is used in the same way. It is used to see if utility companies

need to build additional infrastructure to keep up with demand.

2.4 Neural Network Background Knowledge

To understand the approaches to the problem we must first understand the basic concepts.

The simplest unit of a neural network is a neuron, Figure 2.2. This neuron will consist of

many inputs xi and weights wi which will be summed up to one value then fed into an

activation function that generates the output.

Figure 2.2: A simple Neuron.

An activation function is simply a function applied to the summation of inputs. There

are many types of activation functions i.e. sigmoid, tanh, etc. The most popular and

effective in recent research is the rectified linear unit (ReLU) [5]. This is defined by the
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following equation.

ReLU(x) =


x if x > 0

0 if x <= 0

2.4.1 Feedforward neural Networks

A Feedforward neural network (FFNN) is what a user with previous knowledge would

perceive as a simple neural network. The prominent features are that data is only fed

forward through the network and there are multiple hidden layers as illustrated in Figure 2.3.

An FFNN contains 3 distinct layers. The input layer which feeds the data, also known as

features, into the first hidden layer. A hidden layer contains neurons that receive the input

from the previous layer and feed their output into the next layer. For the sake of this

paper we will assume that every layer is densely connected, meaning a neuron connects to

every other neuron in the adjacent layers. Lastly we have the output layer which outputs

a single value for every neuron that exists in it. For a continuous prediction we will have

one neuron in the output layer, but for other predictions such as categorical or to predict

many continuous variables we would have multiple.

2.4.2 Training

Training the network is the most important part of all. This is where the magic happens.

Back-propagation allows for the information from the error of the output to flow backward

through the network in order to compute the gradient. This gradient is the direction of the

greatest decrease in error, see Figure 2.4. The mission of back-propagation is to find the

global minima of the error plane by adjusting the weights of the layers where the error, on

some level, is defined as how close the prediction is to the real value. To explain this in

depth is outside of the scope of this introduction. In this paper we will be using Adam [9]
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Figure 2.3: Feedforward Neural Network with 3 hidden layers.

and not delving into the world of training.

Figure 2.4: Gradient Decent where z axis is error, y and x axis are weights. Source:
Wikipedia.
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2.4.3 Recurrent Neural Network

A recurrent neural network (RNN) is one where the output of a neuron feeds into its

input. We can explain this in much more simple terms. Lets say we have a problem where

a document was damaged and some of the words were unreadable. As humans we would

approach this problem by reading the document and making an educated guess that aligned

with the context of the sentence and document. RNNs solve this problem similarly, they

would take in the series of words to understand the context of the sentence, then predict the

unreadable word. They do this through self-loops which allow the information to persist

from the first to the last word. This structure can be confusing since we self reference, but

one can unfold this recurrent network. Once we unfold one can think of it as many copied

layers in a normal neural network passing an extra input into their successor as shown in

Figure 2.5. There are many variations of an RNN, one of which, long short term memory

(LSTM) we will describe later.

Figure 2.5: A recurrent neuron and the unfolding.
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2.5 Dropout Layer

The simplest way of reducing overfitting is by adding a dropout layer to a model. A

dropout layer randomly drops units along with their connections from a neural network

during training [12]. This prevents units from relying on one another too much because

during training one unit can not always rely on another unit being there. This allows units

to reach a value that independently adds value to the prediction rather than relying on each

other. The only parameter we will give to the dropout layer is the probability that a unit

will be dropped. The original paper cited above finds that the best dropout probability is

30%. We will be using this probability as a starting point for all of our models.

2.6 Previous Approaches

There have been several approaches used in STLF: Autoregressive integrated moving av-

erage (ARIMA), recurrent neural network (RNN), feedforward neural network (FFNN),

extreme learning, and long short term memory (LSTM).

Din et al. compares the performance of a feedforward neural network and recurrent

neural network [4]. They use the New England-ISO data set from 2007 to 2012. The

features of this data-set include date, hour, electricity price, dry bulb, dew point, and

system load. The features they decide to use are temperature effects, time effects, holiday

effects, and lagged load.

They included temperature effects for two reasons. The first is when you have lower or

higher temperature, the climate control system in buildings will consume energy to maintain

a reasonable temperature. The second reason is humidity. Buildings will also control this

factor as well. They address the time effects by adding two inputs, the hour and the weekday.

This is particularly interesting due to the lack of yearly data. The holiday effects are simple
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- if it is a workday or not. Workdays and non-workdays have different energy consumption

profiles due to human actors changing their behavior. Lastly, they consider lagged load

to contain vital information about specific patterns of energy consumption. They include

previous week and previous day same hour load, and previous 24 hour average load. They

also include data distribution effects over the past 24 hours. They use skewness, kurtosis,

variance, and periodicity. They find that these features uncover hidden patterns hidden in

the data-set. They conclude that weather, time, holidays, lagged load, and data distribution

are found to be the most dominant factors. They also show that the RNN has less error

than the FFNN on all domains and error calculations.

Liu et al. propose a long short term network (LSTM) based on an RNN for STLF [10].

LSTM’s are a type of RNN where some variables from one iteration are fed into the next

as illustrated in Figure 2.6.

An LSTM unit is composed of an input gate(It), output gate (Ot), and a forget gate

(Ft). To further understand the figure, σ is an activation function, ct is the remembered

input, and ht is the previous output. The goal is to remember the previous input values

ct and forget some of the values using Ft and to factor the previous input into the output

we see at Ot. LSTMs were proposed to deal with the exploding and vanishing gradient

problems that were encountered with traditional RNNs [8]. An exploding gradient is a

problem where the gradient, which is used to change the weights of the model, becomes too

big and results in a numeric overflow. A vanishing gradient is one where the gradient gets

too small, so much so that all training stops and the weights are not updated. This is the

result of the chain rule when back propagating through the unfolded layers of an RNN.

One advantage they propose is that the RNN architecture introduces self-loops where

they are able to produce paths that the gradient can flow for a long duration. This means

that the model improves its accuracy at a constant rate. This property allows for the
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Figure 2.6: Long Short Term Memory cell unfolded.
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model to neglect small local jitters which improves precision and generalizability. They

acknowledge the downfall of RNNs, RNNs assume that all input variables are independent

of each-other. In STLF and LTLF the previous value is not independent of the subsequent

value so a traditional RNN is unsuitable for this task. In their conclusion they state that

LSTMs can be used to forecast hour-ahead values with high precision.

Bouktif et al. focuses both on short term and monthly forecasting, proposing an LSTM-

RNN [2]. They use a large data set from a metropolitan area from France covering a nine

year period at a 30 minute resolution. They use a genetic algorithm to generate models

with different time lag intervals, then pick the best lag time of the bunch. A genetic

algorithm (GA) generates slight differences in the model, trains them, then picks the most

accurate one, then repeats the process. GA works much like evolution. The GA allows for

domain specific knowledge, like the amount of lagged load one should have, to be decoded

and decided for you. They found that the LSTM-RNN had lower forecasting errors in the

medium and short term when compared to the best machine learning algorithms.

Chen et al. finds that an ensemble strategy enhances the generalization capacity of the

model [3]. Inspired by the ResNet architecture in [7], they propose a deep residual network.

This architecture is used to force the network to preprocess related things before feeding

it into the final network, like the temperature and load of a given hour then output that

further into the model. During training they take snapshots of the model when the error

is relatively low. Then they use those snapshots as an ensemble, meaning their outputs

are averaged together when they are making a prediction. To simplify, they take neural

networks that think a little bit differently and average their predictions. This leads to a

more generalizable result because the weights of a snapshot are different allowing for more

inputs to be considered since at each snapshot the impact of the input variables is different.

There are several data-driven approaches to forecast LTLF. The biggest change between
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the STLF and LTLF is the problem of exploding and vanishing gradients and the imprac-

ticality of weather forecasts. These problems eliminate many of the techniques used for

STLF and one of the biggest factors, weather, from the equation. We include these works

because they take the same form of STLF models, forecasting with hourly granularity and

encoding time features.

Agrawal et al. focused on generating a long term load forecasting using hourly pre-

dictions [1]. They used the New England-ISO hourly data. They forewent weather data

because it would require weather predictions for up to 5 years in the future. Errors in

these forecasts were found to degrade the models performance. They found that the most

important feature was the load demand for the same day and hour of the previous year.

They proposed a model of an RNN with LSTM cells. Due to exploding gradients,

simple RNNs do not perform well on long term forecasts. LSTM cells allow for the RNN

to remember long term dependencies and short term states. They also mention that FFNN

assumes that the training and test data are independent. Since electricity load demand is a

time series data - the assumption fails so FFNN is not suitable. Ultimately they find that

LSTM-RNNs are suitable for forecasting with a mean absolute percentage error of 6.54.

They concede that incorporating weather parameters into the data-set can be beneficial.



Chapter 3

Approach

3.1 Introduction

3.2 Data

The data we will be using comes from two sources, the load data and the weather data. The

load data for a given load balancing authority can be found at www.eia.gov and the weather

data can be found at www.ncdc.noaa.gov. The weather station we will be using is from

the Tucson International Airport in Arizona, network id GHCND:USW00023160. Load

data from api.eia.gov/series/?api_key=BLANK&series_id=EBA.TEPC-ALL.D.H where

one must sign up on the website and replace the API key with your own. This data

and the corresponding code and data can also be found at https://github.com/aloder/

Senior-Thesis.

We will be using load and weather data from 2015-07-01 to 2018-06-30. A good amount

of data points have been removed due to missing data or malformed data. In total there

are 25,018 observations in the final data set as opposed to the total number of possible
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observations, 26,304 meaning 1,286 (4%) observations have been removed. Further work

should be done to clean the data more efficiently. It is important to note that missing data

has a big impact on recurrent neural networks since we have to fill that missing data. We fill

that missing data with the next available record, this is another error that could drastically

affect the training and error rate.

3.3 Features

Feature selection is one of the most important steps in creating any machine learning model.

A feature is an individual measurable property or characteristic of a phenomenon being

observed [11]. Features are normally numeric but can be strings or other data types. For

our purposes we will be encoding every string as a number either by using one hot encoding

or by converting it to values using domain knowledge. One hot encoding is a tactic to

represent variables that are linked but do not have an ordinal relationship [6]. We use one

hot encoding to force the network to treat these values as independent.

3.3.1 Temperature

The two most important aspects of this problem is temperature and historical load. The

biggest variable in energy consumption is temperature. This is due to climate control sys-

tems like heating and air conditioning. Tuscon ranges from very hot during the day and

very cool at night due to its climate. We can see this in Figure 3.1. These temperature

fluctuations cause the heater to turn on when the temperatures are low and the air condi-

tioning to turn on when the temperatures are high. The machine learning algorithm must

learn this threshold and understand its correlation to achieve a lower error.
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Figure 3.1: 2017-05-09 Temperature
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3.3.2 Historical

The second important aspect is historical features. The historical load and historical tem-

perature can help the model identify trends in the data set [3]. For example comparing the

last days temperature to this days temperature. If this days temperature is much hotter,

one can assume that the load is going to be higher then the last days load. The network

can use these measurements as further context to generate a correct prediction.

The problem with using historical features is that one needs to further condense the

data set to support them. For instance, if we would like to have last months load fed into

the prediction, one must fold the data set onto itself and remove a month from the entire

data set, as we did. One must also interpret or drop the data points that are missing the

last month field, further decreasing the size. This trade off is worthwhile since we have a

big enough data set to train on and generate these historical data points as well.

3.3.3 User Behavior

Another important feature is user behavior. User behavior is how people interact and use

energy in different scenarios. This aspect is one of the hardest ones to predict because

there is no correct empirical way to rate user behavior besides their historical energy usage.

This is one of the benefits about smart grids, they can better understand and account for

individual buildings and users due to the granularity of their measurements. To somewhat

account for user behavior we one hot encode whether it is a workday or not. One other

thing we implemented was time features, such as hour of day and the day of year. This is

included to help identify long term trends of a given hour or day.
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3.3.4 Cyclical Time Features

With time features, we encounter a problem. That problem is that time is cyclical but

straight time features like hour or day of year are not. For example take hours of the day.

There are 24 hours of the day so one would encode those hours using 0-23. The problem

with this approach is that spatially 0 is the far away from 23 even though they are close to

each-other, in regards to time.

To solve this problem we need to look at circles. We can transform a time feature into

a circle using cosine and sine, see Figure 3.2. This allows for 23 to be right next to 0. The

machine learning algorithm will be able to see the correlation which results in faster, more

accurate fit. We apply this to day of year, day of week, and hour of day.

3.4 Data Integrity

A popular saying is trash in trash out. The trash in this case is the data. Some of the

load data points are corrupted, and the question is how do we deal with that? The way

we set up our models hurts us even more. We place a high value on historical load data

but if that historical record does not exist, should we just throw out that data point? In

time series data it is a little more difficult since we can not replace a missing data point

with the average since the average depends on the time of day and other conditions. So

our approach was to simply take the values around the corrupted data points and calculate

the average between those values. This approach saves only a few of the data points but

does improve model accuracy. Multiple predictions depend on the same data points since

all predictions look at the same historical data points in all our models.

The biggest problem with this data set is its error. It is not easy to tell if energy usage

of an hour just had a random spike in demand or if it was an error. The way we deal with
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Figure 3.2: Time feature Encoded with sin and cos.
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this is by setting a cap value where all the points above it are set to N/A, then we fill those

N/As with the neighbor method above. This approach has worked well for our data set.

The problem with this approach is consecutive missing data points. If there are consecutive

missing data points we remove them from the record since repairing all of them is too labor

intensive and will not greatly add to the accuracy of the model.

Another way we deal with this error is through manual observation. We have created a

tool on processing to examine data points our model is having the most trouble predicting.

If we deem it an error, we remove the points from the data set. This method is very

inefficient because there is no empirical standard for dictating if a data point is an error or

not. Leaving the user to use their expert knowledge, which has inherent bias since we know

that the model is having trouble predicting this data point. We leave it to future work to

devise a better system where to detect and replace errors in the data set.

3.5 Approach

Our approach will be threefold. We will look at the performance of three models FFNN,

LSTM, and a hybrid model. The reasoning behind this is to see if the combination of the

FFNN and the LSTM model will achieve better results since they both have drawbacks.

We used tensorflow v1.12.0 and trained the models on discrete GPU GTX 1080. We

primarily used the tensorflow implementation of the Keras API to rapidly test different

configurations of the models. We ran each model with a training set of 2016, 2017, and

2018 with the months of 2017 of 1,3,4,6,7,8. We tested the models on 2017 with the months

of 2, 5, 9, and 11. We split the data set in such a way so that the model would be tested on

each of the seasons all the while having enough training data to fit correctly. We also used

a random validation split of 0.2 meaning 20% of the training set would be used to monitor
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the training. We used the ADAM optimizer to train the model. We normalized the data

using a min max scalar. We also tested normalizing using the z-score, but we found that

the min max scalar worked better due to some of the variables not being in the form of a

normal distribution. Over the course of the training we saved the model with the lowest

error on the validation set. After the training is over we tested both the model that went

through the entire training and the model that we saved. We then picked the model that

performed the best on the testing set and saved their results. Over the course of the testing

we found that the best model, determined by the validation set, always had the least error.

After testing a model, we upload the results to tensorboard, a web based tool used

to analyze results from tensorflow. In total we tested 65 different configurations of the

proposed models.

3.6 FFNN Model

This model is a simple neural network that we found works best with four layers, see

Figure 3.3. Through trial and error we found that using more then one dense hidden layer

is unnecessary. We also found through trial and error that one of the best configurations

is 2048 nodes with ReLU activation. We will detail this more in the results section. The

features we use are detailed in Table 3.1.

3.7 LSTM Model

This is a recurrent neural network implementation laid out in Figure 3.4. The difference is

that we feed this network an array of features that are time stepped, and the time step we

decided to use hourly. There is future work to be done on considering different time steps.

Another consideration is the sequence size which is how many time steps do we want to
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Figure 3.3: Feedforward Neural Network Structure.

Feature Note

Temperature (F)

Year

Day of year Cyclical

Day of week (F) Cyclical

Time of day (hour) Cyclical

Past 24 hour mean load

Past 24 hour mean temperature

Last Hour’s Load

Last Hour’s temperature

Cloud Cover Based on SKC in NOAA data set

Workday One hot encoded

Table 3.1: Features for the FFNN.
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include for each prediction. This can be hard to decide but with trial and error we can find

the best time step to use [2]. In addition to the time step, we must also consider different

features see Table 3.2.

Figure 3.4: Long Short Term Memory Network Structure.

Feature Note

Temperature (F)

Cloud Cover Based on SKC in NOAA data set

Load

Last Week Load

Last Day Load

Table 3.2: Features for the LSTM Model.
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3.8 Hybrid Model

The hybrid model relies on the concatenation of the two models previously described. The

idea behind this is to get the best traits of both models above. Our FFNN uses just a few

historical data points, which is susceptible to errors since we depend on a small sample.

LSTM takes in a series of historical data to predict the next data point. The problem

with LSTM is that it can not take in the latest input since it can only rely on historical

data. The FFNN takes in the most recent data and the LSTM handles the historical data

Table 3.3. The layout of this hybrid model is more complicated then the previous models

see Figure 3.5.

Figure 3.5: Hybrid Network Structure.
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Feature Note Model

Temperature (F) Both

Cloud Cover Based on SKC in NOAA data set Both

Load LSTM

Last Week Load Both

Last Day Load Both

Workday One hot encoded FFNN

Day of week (F) Cyclical FFNN

Time of day (hour) Cyclical FFNN

Table 3.3: Features for the Hybrid Model.
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Results

4.1 Overall

To gauge the results we use mean average percentage error (MAPE) because it is the easier to

interpret when compared to, for example, root mean squared error (RMSE). As 4.1 shows

FFNN is the model with the lowest percent error followed by the hybrid method, then

LSTM. The FFNN performed very well for this situation given its unfavorable credibility

in most academic literature. One would assume that the LSTM would have the best error.

This could be due to the number of features that we choose for this given task since most

research in the field of short term load forecasting with LSTMs only take into consideration

the load data. The hybrid model performed in the middle landing a little bit closer to the

FFNN than the LSTM network. This is most likely due to the hybrid network favoring

the FFNN weights more than the LSTM network, but as we will show below the hybrid

approach does beat the FFNN in some cases.
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Model MAPE

FFNN 0.91

LSTM 1.22

Hybrid 0.95

Table 4.1: The errors of the test set for a given model

4.2 Comparison

To understand how well each model fit, we need to graph them for all four seasons since

climate is one of the main causes of energy fluctuation. Each set of graphs is a selected day

from the test dataset, meaning these data points were not used to train and the network

has never seen these. First, we will explain the graph. The blue lines are the prediction and

the orange lines are the actual values. Under the graphs is the error which shows us how

off the model was at a given hour. We are going to be using a 24-hour marking scheme.

These are in Universal Time and Tucson is in Mountain Standard Time.

4.2.1 Spring

We will first begin with spring as seen in Figure 4.1. As you can see in Figure 4.1 the

FFNN has the best fit on the peak at midnight, the LSTM overestimates the peak, and the

hybrid underestimated then over corrected. At around hour 15, we can see some models

having trouble, with the top performer being the hybrid model. The increase to the peak

was steady and no model shows any difficulty fitting to it.

This is due to the spring months being very cold at night, and in this case the low was

54 during the night.
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Figure 4.1: Prediction comparison graph for spring.
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4.2.2 Summer

We now look at prediction comparison for the typical summer day, see Figure 4.2. The sine

like behavior of power consumption is very typical for the summer months. We can see that

FFNN does the best by far almost mimicking the behavior almost exactly. Looking at the

error graph we see the similarities of the LSTM and hybrid mistakes.

Figure 4.2: Prediction comparison graph for average day summer.

4.2.3 Fall

Next consider Figure 4.3. We can see that yet again the FFNN comes out with the best fit

and the lowest error. The hybrid predictions resemble more of the FFNN predictions than

the LSTM predictions. Further examination of the peaks reveals that the hybrid prediction
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deviates from the FFNN prediction and resembles more of a flat peak that we see in the

LSTM prediction which results in lower error.

Figure 4.3: Prediction comparison graph for a fall day.

4.2.4 Winter

Lastly let us consider a winter day shown in Figure 4.4. This day is particularly noisy which

results in less smooth predictions from the models. We can see that the FFNN is the most

smooth, followed by hybrid, then LSTM. The FFNN does the best at predicting between

the two peaks, but the Hybrid network does the best at predicting the peaks.
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Figure 4.4: Prediction comparison graph for winter.
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4.2.5 Overall Error

To further understand how our models are performing given different circumstances we

break down the results into seasons shown in Table 4.2. We used our test set with the

following months as the seasons, February is winter, May is spring, September is summer,

and November is fall. The FFNN performs considerably better in the summer, spring, and

fall. The hybrid approach performs better in the winter. This can be due to the hybrid

model unintentionally prioritizing winter fit or the LSTM combined with the FFNN reveals

a hidden correlation.

Model Winter Spring Summer Fall

FFNN 1.15 0.88 0.83 0.81

LSTM 1.47 1.16 1.10 1.14

Hybrid 1.09 0.94 0.97 0.90

Table 4.2: The errors of the test set for a given model

4.3 FFNN

For the feedforward neural network we tested two factors to find the optimal network

structure. First we tested the layer size, the results can be viewed in Table 4.3, and the

training error can be viewed in Figure 4.5. We found that the best network structure

comprised of a small number of layers an input layer, one hidden layer consisting of 2048

nodes, a dropout layer with a 0.3 chance and lastly a single node for the output layer.

There is likely a marginally better network but through our testing, we did not find one.

For future work, more conclusive testing must be done to ensure that more layers do not

improve the results of the model.
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Size MAPE

4096 0.96

2048 0.91

1024 0.98

512 0.97

Table 4.3: Size of hidden layer and error.

Figure 4.5: Feedforward Neural Network Layer Training Comparison.
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4.4 LSTM

We ran into problems with the implementation of the CuDNNLSTM on tensorflow. We

found that the model would sometimes not be able to find the gradient and stagnate at an

error rate. See Figure 4.6. By looking at the predictions we noticed a cap on the prediction

value leaving plateaus on the lower and higher loads. This is probably put in place to

combat the vanishing and exploding gradients that recurrent neural networks face. It is

not clear how to fix this error, so we ignored the result and changed the model until it fits

correctly.

Figure 4.6: Not training correctly.

4.5 Hybrid

4.5.1 Activation Functions

With this network we focused on testing the activation functions. The implementation of

the CuDNNLSTM on tensorflow is fixed to the tanh activation function since they use some

hardware tricks to make the training process faster on a GPU. We tested both tanh and

ReLU on all layers with the ability to customize the activation function. We found that
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ReLU performed better in both training time and MAPE as seen in Table 4.4.

Tanh ReLU

1.11 0.95

Table 4.4: Comparison of the tanh and ReLU error

4.5.2 Sequence Size

Using Bouktif et al. [2] as a guiding piece, we tested multiple sequence sizes under the same

conditions to ensure that the best one was chosen as shown in Table 4.5. This shows us

that there is an optimal sequence size and one can not keep increasing the sequence size

expecting better results.

Sequence Size MAPE

3 1.01
6 0.95
12 2.61

Table 4.5: Sequence size and error
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Conclusion

This paper introduces three models for hour ahead energy forecasting, FFNN, LSTM, and

Hybrid, then evaluates their accuracy. Contrary to our predispositions and many papers pre-

dispositions we found that an FFNN with historical time features performed the marginally

better then the hybrid network and significantly better then the LSTM network for pre-

dicting the next hour load. In our review of academic literature on FFNN and LSTMs we

have failed to find a paper that finds FFNNs performed better. This leads us to believe

that this paper is unique in that regard.

We can point to several possible factors as to the poor performance of the proposed

LSTM model. The most likely possibility is the importance of temperature in this data

set. LSTMs are fed in a sequence of historical data, but not the most current data, leaving

them at a disadvantage when compared to our proposed FFNN which has both the most

important historical data as well as the current data. The second possibility is the very

short term nature of our prediction. Most papers use LSTM architecture to predict longer

than our time frame.

We finally propose a hybrid model. The intent was to combine the current data fed
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into the FFNN and the historical data fed into the LSTM. Overall the hybrid approach did

not perform better than the FFNN but in some circumstances, we show that the hybrid

approach did perform better. To understand these results further, more research should be

done on the proposed hybrid approach.

In conclusion, we find ourselves going against recent academic research that LSTMs

perform the best compared to other approaches for short term load forecasting. Given the

results we recommend the proposed FFNN for hour ahead load forecasting.
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