
Trinity University
Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

5-2019

Convolution Acceleration: Query Based Filter
Pruning with ALSH
Arthur Feeney
Trinity University, afeeney@trinity.edu

Follow this and additional works at: https://digitalcommons.trinity.edu/compsci_honors

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital Commons @ Trinity. It has been
accepted for inclusion in Computer Science Honors Theses by an authorized administrator of Digital Commons @ Trinity. For more information,
please contact jcostanz@trinity.edu.

Recommended Citation
Feeney, Arthur, "Convolution Acceleration: Query Based Filter Pruning with ALSH" (2019). Computer Science Honors Theses. 47.
https://digitalcommons.trinity.edu/compsci_honors/47

https://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors/47?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Convolution Acceleration: Query Based Filter Pruning with ALSH
 Arthur Feeney

A departmental senior thesis submitted to the Department of Computer
Science at Trinity University in partial fulfillment of the requirements for

graduation with departmental honors.

April 22, 2019

Dr. Yu Zhang Dr. Yu Zhang
Thesis Advisor Department Chair

Michael Soto, AVPAA

Student Agreement

I grant Trinity University (“Institution”), my academic department (“Department”), and the Texas Digital Library
("TDL") the non-exclusive rights to copy, display, perform, distribute and publish the content I submit to this
repository (hereafter called "Work") and to make the Work available in any format in perpetuity as part of a TDL,
Digital Preservation Network (“DPN”), Institution or Department repository communication or distribution effort.

I understand that once the Work is submitted, a bibliographic citation to the Work can remain visible in perpetuity,
even if the Work is updated or removed.

I understand that the Work's copyright owner(s) will continue to own copyright outside these non-exclusive granted
rights.

I warrant that:

 1) I am the copyright owner of the Work, or
 2) I am one of the copyright owners and have permission from the other owners to submit the Work, or
 3) My Institution or Department is the copyright owner and I have permission to submit the Work, or
 4) Another party is the copyright owner and I have permission to submit the Work.

Based on this, I further warrant to my knowledge:

 1) The Work does not infringe any copyright, patent, or trade secrets of any third party,
 2) The Work does not contain any libelous matter, nor invade the privacy of any person or third party, and
 3) That no right in the Work has been sold, mortgaged, or otherwise disposed of, and is free from all claims.

I agree to hold TDL, DPN, Institution, Department, and their agents harmless for any liability arising from any
breach of the above warranties or any claim of intellectual property infringement arising from the exercise of these
non-exclusive granted rights.”

I choose the following option for sharing my thesis (required):

[x] Open Access (full-text discoverable via search engines)
[] Restricted to campus viewing only (allow access only on the Trinity University campus via
digitalcommons.trinity.edu)

I choose to append the following Creative Commons license (optional):

TRINITY UNIVESRITY

Convolution Acceleration: Query

Based Filter Pruning with ALSH

by

Arthur Feeney

April 2019

University Web Site URL Here (include http://)

Abstract

by Arthur Feeney

The rising ubiquity of Convolutional Neural Networks for learning tasks has led

to their use on a variety of devices. CNNs can be used on small devices, such as

phones or embedded systems; however, compute time is a critical enabling factor.

On these devices, trading high accuracy for improved performance may be worth-

while. This has led to active research in high-level convolution optimizations. One

successful class of optimizations is filter pruning, in which filters that are deter-

mined to have a small effect on the network’s output are deleted. In this work, we

present a self-pruning convolution that is intended to accelerate convolutions for

use on small devices. We call it an ALSH Convolution because it uses Asymmetric

Locality Sensitive Hashing to generate a subset of the convolution’s filters that are

likely to produce large outputs for a given input. Our methodology is accessible:

it generalizes well to many architectures and is easy to use, essentially function-

ing as a regular layer. Experiments show that a network modified to use ALSH

Convolutions can stay within 5% accuracy on CIFAR-10 and 10% on CIFAR-100.

Further, on small devices, a network built with our implementation can be 2x

faster than the same network composed of PyTorch’s convolution.

Contents

Abstract i

1 Introduction 1

2 Related Work 4

2.1 Convolutional Neural Networks (CNNs) 4

2.2 Dropout . 4

2.3 Improving Neural Network Performance 5

2.4 Quantization . 6

2.4.1 Pruning . 6

3 Background 8

3.1 Neural Networks . 8

3.1.1 Forward-Propagation . 8

3.1.1.1 Convolution Forward-Propogation 9

3.1.2 Stochastic Gradient Descent (SGD) 10

3.2 Neighbor Search . 11

3.2.1 Nearest Neighbor Search . 12

3.2.2 Near Neighbor Search . 12

3.2.3 Locality Sensitive Hashing (LSH) 13

3.2.4 Gap Amplification . 14

3.2.5 Example: Hyperplane LSH 14

3.3 Maximum Inner Product Search (MIPS) 15

3.3.1 Asymmetric Locality Sensitive Hashing (ALSH) 15

4 Methodology 18

4.1 ALSH Convolution . 19

4.2 Mode Probability . 24

4.2.1 Analysis of the Optimal Case 27

4.2.2 Extending to ALSH . 28

4.3 Training Strategy . 29

5 Experiments 31

ii

Contents iii

5.1 Implementation Details . 32

5.1.1 Hash Family . 32

5.2 Experimental Settings . 33

5.3 Experimental Results . 34

5.3.1 Compute Time . 34

5.3.2 Accuracy . 39

5.3.3 Bucket Statistics . 42

6 Conclusion 47

A 49

A.1 Finding Best-Case Mode Guarantee 49

Bibliography 51

Chapter 1

Introduction

Convolutional neural networks (CNN) have become common place in many com-

puter vision applications, including image classification, instance segmentation,

pedestrian and car detection, and object localization. Over recent years, the net-

works for all of these applications have become much deeper, resulting in an in-

crease in the number of network parameters and convolution operations. Such

large networks have significant inference costs that become especially apparent

when used on embedded sensors or mobile devices, where computational resources

may be limited. For small devices, computational efficiency is a critical enabling

factor. In fact, any device or service that has time constraints could potentially

benefit from an improvement in inference time, if it retains moderately high accu-

racy.

For many recent CNN models, the majority of the parameters are in the

fully-connected layers. A prime example of this is VGG-16, in which the fully-

connected layers make up 90% of the total number of parameters, but contribute

less than 1% to the total number of floating point operations [33]. Clearly, the

amount of work being done during inference is dominated by the convolutional

layers of the network. For this reason, most modern optimization efforts focus on

the convolutional layers.

One existing optimization for neural networks is weight pruning. Pruning is

a well-researched area and was first introduced relatively early in the development

of neural networks: Optimal Brain Damage and Optimal Brain Surgeon use a

second-order Taylor expansion to select parameters for deletion in fully-connected

layers [13, 22]. It is also possible to remove individual weight parameters from

1

Introduction 2

convolutions, but doing so generally requires the use of sparse BLAS libraries

or even specialized hardware. For this reason, weight pruning is not a popular

method for optimizing convolutions. However, deep CNNs often have a significant

amount of redundancy in their filters [1, 28]. So, more recently, researchers have

been looking into filter pruning as a way to reduce the computational costs of well-

trained CNNs. Unlike pruning individual weights, pruning filters does not require

the use of sparse BLAS libraries or specialized hardware. Further, the number

of filters pruned correlates very strongly with improved performance because it is

guaranteed to reduce the scale of matrix multiplications in the network; pruning

one filter essentially removes an entire row from the multiplication.

Many filter pruning methods delete filters that are unlikely to produce large

outputs. These filters typically have the smallest effect on the final output. A

simple but effective method of filter pruning determines which filters to prune

based off of their magnitude. It deletes filters that have small weights and retrains

the network to account for any change in accuracy [23]. Another method uses

a Taylor-expansion that approximates the change induced in the network’s loss

function by pruning network filters [28]. Their method makes pruning selections

with the goal of minimizing this change.

There is a prior work in accelerating fully-connected layers [34] that used

approximate maximum inner product search to quickly find a subset of nodes that

were likely to produce large outputs. By extending this, and leveraging existing

work in filter pruning and maximum inner product search, we introduce a new

method to selectively prune filters based on the convolution’s input. It functions

as a self-pruning layer that we call an ALSH Convolution. By using Asymmetric

Locality Sensitive Hashing (ALSH) [31, 32] to partition a convolution’s filters, we

can quickly find a subset of filters that are likely to produce many large inner

products for a given input. During each iteration, a new subset of filters is applied

to the input, significantly reducing the number of floating point operations. We

offer a specific training strategy that allows the network to retain accuracy as fewer

filters are used by the network. Unlike other filter pruning methods, the ALSH

Convolution is high-level and can be used as a regular network layer, making it

relatively accessible.

The central thesis of this work is that the convolutional layers dominate the

number of floating point operations performed by convolutional neural networks.

This makes them difficult or impossible to use on small devices, where compute

Introduction 3

time is a critical enabling factor. Our proposed solution to this is the ALSH

Convolution. It is a self-pruning layer that uses ALSH to find a subset of filters

that are likely to produce many large outputs. It significantly reduces the number of

floating point operations performed during convolution inference, while being both

easy to use and capable of retaining high accuracy.

Chapter 2

Related Work

2.1 Convolutional Neural Networks (CNNs)

Convolutional neural networks have become extremely popular for their state-of-

the-art results in many domains. Common applications for convolutional neural

networks solve problems in computer vision: classifying hand-written digits [21],

instance segmentation [24], object detection [10], scene recognition [40], and many

others. Convolutional neural networks are even used in reinforcement learning:

deep Q-learning is able to achieve very high-scores in simple video games [27].

Inception-ResNet-V2 [37] achieved state-of-the-art results on ImageNet, a huge

image classification data set with over a million training images. However, it had

over one hundred layers that, in total, had millions of parameters. Networks of

this scale require an immense amount of memory and may take weeks to train on

large datasets. Even after they have been trained, using them for inference can be

taxing and slow. This makes them difficult or even impossible to use on systems

with limited computing resources, such as embedded sensors and cell phones where

computational and power resources are limited.

2.2 Dropout

There is a traditional challenge when training machine learning algorithms called

“Overfitting.” It occurs when a model fits the training set too well and is unable

to perform more general inference on new data. Generally, the more parameters

4

Related Work 5

that a model has, the easier it is for it to overfit on training data. As neural net-

works have a large number of parameters, overfitting used to be a serious problem

that was difficult to overcome when training [14, 35]. Dropout was developed to

alleviate this problem in neural networks. The basic idea of dropout is to drop

a random subset of activations from the hidden layers of a network. Doing this

can prevent co-adaptation between network parameters [14]. Co-adaptation oc-

curs when two or more of a network’s nodes begin to have similar outputs, making

them redundant. Dropout allows one node to be updated during a training pass

while the other is not. This prevents them from greedily learning the same infor-

mation and makes it more likely that each node will produce a distinct output.

Further, dropout effectively trains a large ensemble of many, thinner networks [35].

In a way, every training example provides gradients for a smaller random subset

of the total network. At test time the thin networks that form the ensemble are

combined into a single large network. This helps networks generalize when pro-

cessing new data. If a network is large enough and properly trained, then the

network is almost guaranteed to get better results with dropout than it would

without dropout.

Adaptive dropout is a variant of dropout. Adaptive dropout introduced a

novel way to selectively remove unimportant nodes from a network. It is a direct

extension of dropout that gives each node a unique keep probability. These unique

keep probabilities are dependent on the layers input [39]. Experiments performed

by the authors show that adaptive dropout learns to drop activations based on their

magnitude. In these experiments, nodes that tended to produce large activations

were consistently given a high keep probability. There is an extreme version of

adaptive dropout, called Winner-Take-All [26], that keeps the top k% of activations

and drops the rest. However, finding the best nodes is inefficient because they rely

on brute-force techniques. Even though adaptive dropout and its variants reduce

the number of nodes used, there are no new computational savings from their

use. The primary contribution of the adaptive dropouts to this work is that large

activations have greater influence on the output than small activations.

2.3 Improving Neural Network Performance

There has been substantial research into reducing the compute and size complexity

of neural networks [6]. The majority of operations in a network are matrix-matrix

Related Work 6

or matrix-vector multiplications. So, most optimization methods that are intended

to accelerate network computations attempt to reduce the scale of these operations.

There are many low-level optimizations that can improve a networks compute

speed: loop tiling, loop unrolling, replacing floating point numbers with low bit

integers, and many others. However, in this section we focus on overviewing

higher-level methods for acceleration: quantization and pruning [6].

2.4 Quantization

Quantization techniques have introduced binary and ternary weight networks.

These networks have their internal parameters restricted to ±1 or ±1, 0 [7]. There

has even been work in restricting both the weights and activations to ±1 [15].

Since these networks only use two numbers, they can be compressed much more

than networks with floating point parameters. They are also able to maintain very

high accuracy on difficult datasets, such as ImageNet.

2.4.1 Pruning

Pruning methods existed far before deep learning’s resurgence and have been ex-

tensively studied [13, 22]. Pruning can be used in neural networks to remove

parameters that are considered unimportant. By doing this, pruning can increase

the sparsity of the network significantly. A sparse network requires less storage

space and has reduced complexity compared to a regular network. For convolu-

tional neural networks, pruning can be done at varying granularity:

• Fine-grained: any unimportant parameters may be pruned

• Vector-level: vectors are pruned from kernels

• Kernel-level: kernels are pruned from filters

• Group-level: clusters of kernels are pruned from filters

• Filter-level: Entire filters may be pruned from the convolution

Related Work 7

As discussed in the introduction, pruning filters correlates very strongly with

improved performance because it effectively removes entire rows from the matrix

multiplication [6, 28]. However, there is another important optimization: When

using filter-level pruning, the channels of the output that would have been com-

puted by the pruned filters will never be used in a computation. This means that

the input to the next layer will be smaller, so the next layer will perform less com-

putations than it normally would. So, not only is the current layer optimized, but

the following layer is as well. Due to its ability to significantly reduce complex-

ity, filter-level pruning is considered the best for accelerating convolutional neural

networks.

There has been successful prior work in filter-level pruning. In an article by

Hao Li et al [23], the authors propose a form of filter pruning that selects filters to

prune, in a single layer, based off of the sum of its absolute weights
∑
|Fi,j|, the

filter’s l1-norm. They then remove some fraction of the filters with the smallest

l1-norms from the layer. They do this because filters with smaller weights tend to

produce smaller activations and have a smaller effect on the final output. They

also devise a simple method to prune an entire network: iteratively pruning and

retraining to account for any loss of accuracy. The authors find a noticeable

performance improvement during inference and reduction in the network size with

minimal impact on final accuracy. A primary advantage of this method is that it is

relatively simple. The next method that we discuss, while possibly making higher

quality prunes, appears significantly more difficult to implement using existing

libraries.

A more robust method has been proposed by Molchanov et al [28]. They

reiterate that removing filters based on l1 norm can work well, but also claim that

pruning based on the mean of output feature maps can be effective. If a filter’s

mean output is small, then it likely is not useful for the current task. Their main

contribution is reformulating pruning as an optimization problem. They use a

Taylor expansion to prune parameters that have a nearly flat gradient of the cost

function with respect to their output feature map. They are able to stay within

5% accuracy on ImageNet while using only 52% of the network’s original filters.

Chapter 3

Background

3.1 Neural Networks

In this section, we quickly cover some of the fundamentals of neural networks. We

focus on the forward pass because it will be changed by our methodology. The

update will be changed slightly, but only to account for changes in the forward

pass.

Forward-propagation is when the inference occurs; the network is given an

input and it produces an output. Back-propagation and gradient descent are both

parts of updating the network. The network’s output is used to calculate a loss.

This is used by the back-propagation algorithm to find the gradients of each layer’s

parameters. Finally, gradient descent is used to update the network’s parameters

[12].

3.1.1 Forward-Propagation

The most fundamental form of neural network is a sequence of L non-linear trans-

formations or “layers” [12]. The layers that compose a standard network are

commonly called “affine,” “dense,” or “fully-connected.” To illustrate this type of

layer, let l ∈ {1, . . . , L} index the hidden layers of a network with L fully-connected

layers. Forward-propagation through a fully-connected layer can be described as:

8

Background 9

zl = W lyl−1 + bl

yl = f(zl)
(3.1)

In this sequence of equations, yl−1 is the output vector of layer l − 1 and the

input to layer l. Layer l first applies a linear transformation to yl−1; it computes a

matrix multiplication with W l and yl−1 and adds bl to the resulting vector. That

sum is zl. Finally, a non-linear transformation f(·) is applied to zl, producing yl.

This is the output of layer l and will be the input to the next layer [12]. This series

of operations is repeated for each of the remaining layers of the network. The last

layer’s output is some prediction, such as the class of an image.

3.1.1.1 Convolution Forward-Propogation

At a high-level, a convolutional neural network is essentially the same as a more

standard neural network. It is typically a sequence of layers that will produce some

output; however, the internal layers, called “Convolutions,” perform a different

operation than a fully-connected layer.

The type of convolution that is typically used for image classification is com-

posed of filters. It applies these filters to regions of the input, computing an inner

product with the filter and each region [12]. It is possible to implement this type

of convolution by transforming the input and filters into matrices and then com-

puting their product. This can be done by using the algorithm im2col. It reshapes

images into matrices by unrolling patches of the image into the columns of a ma-

trix [2, 17]. To use this with a convolution, one can apply im2col to the input

and flatten each filter into a row of a different matrix. Then, one can perform

a general matrix multiplication of the convolution’s filter matrix and the input

column matrix to produce the convolution’s output. This product must then be

reshaped into the proper dimensions for the convolutions final output.

Background 10

Algorithm 1: Simplified im2col

input[H][W][C]
out[H][W][K][K][C]
for h = 0 . . . H do

for w = 0 . . .W do
for k1 = −K/2 . . . K/2 do

for k2 = −K/2 . . . K/2 do
for c = 0 . . . C do

out[h][w][k1][k2][c] = input[h+ k1][w + k2][c]
Reshape out into a [M ×W]× [K ×K × C] matrix.

This implementation is a simplified version because it is not strict about how

the filters are applied along the input’s borders. We primarily include it to show

the general idea [2]. It is just taking small squares of the input image and making

them the columns of a matrix.

Algorithm 2: Conv2d using im2col

input : An Object I ∈ Rc×h1×w1

Filters F ∈ RM×c×k×k

output: An object O ∈ RM×h2×w2

begin
/* Apply Algorithm 1 to the input I */

cols← im2col(I)ᵀ ∈ R[k×k×c]×[h1×w1]

rows← F ’s filters transformed into the rows of a matrix in RM×[k×k×c]

O∗ ← rows× cols ∈ RM×[h1×w1]

O ← reshape O∗ into an image in RM×h×w

return O

After using im2col on the input and flattening the filters into the rows of a

matrix, this is essentially the same as a fully-connected layer’s forward-pass. It

performs a matrix multiplication. Throughout the rest of the paper, we will write

our modifications to the convolution algorithm using im2col because it is easier

and makes some indexing operations more clear.

3.1.2 Stochastic Gradient Descent (SGD)

Neural networks are updated using gradient descent [12]. Suppose we let a net-

work’s parameters at iteration t be θt and define a function ∇J(·) that computes

the gradients of the parameters using the back-propagation algorithm. By using

the network’s parameters and the back-propagation function, we can define SGD

Background 11

as θt+1 = θt − l ×∇J(θt). Where the hyper-parameter l is the learning rate. The

network’s parameters are updated at every time step by: First, scaling the gra-

dients by the learning rate, l. Second, subtracting the scaled gradients from the

network’s current parameters.

The learning rate, l, is a required hyper-parameter for gradient descent that

affects the magnitude of updates. When updating a network that has a small l,

its parameters will be adjusted by a very small amount. On the other hand, if

a network has a large l, like 1, then updates will cause its parameters to jump

around a lot and it is possible that the parameters will never converge to good

values [12].

The momentum method of updating makes a small change to SGD. It essen-

tially gives SGD a “short-term memory” so that some information is preserved

preserved from prior updates [36]. In practice, this modification is a major im-

provement to vanilla SGD.

vt+1 = β × vt +∇J(θt)

θt+1 = θt − l × vt+1

(3.2)

In this set of equations, the scalar β is a chosen parameter between zero and

one. Common default choices for β are 0.9 or 0.99. the variable vt, which is

initially a zero vector, is the “short term memory” that saves some information

about old updates. There are even improvements to SGD with momentum, such

as Adagrad and ADAM [9, 18].

3.2 Neighbor Search

We do not perform any form of neighbor search in our methodology. Instead, we

perform Maximum Inner Product Search (MIPS). However, they are very strongly

related. In fact, the method that we use for MIPS is a direct extension of Locality

Sensitive Hashing, a solution for approximate neighbor search. This section begins

with nearest neighbor search and builds up to Locality Sensitive Hashing. In the

next section, we introduce Asymmetric Locality Sensitive Hashing for MIPS.

Background 12

3.2.1 Nearest Neighbor Search

The nearest neighbor search problem is important for many fields, including ma-

chine learning, pattern recognition, and data compression. It is an example of an

optimization problem: the goal of nearest neighbor search is to efficiently minimize

some objective function [3, 11].

Definition 1 (Nearest Neighbor Search). Given an objective function, o : Rd×Rd −→
R, a set of points C ⊆ Rd and some query point q ∈ Rd, return the point p ∈ C
that minimizes o(q, p).

For our purposes, we want to find a point that is close to the query. So,

when discussing neighbor searches, we will use o(q, p) 7→ ||q− p||γ as the objective

function, where ||x||γ is some arbitrary norm of x and ||q − p||γ is the distance

between q and p.

3.2.2 Near Neighbor Search

Near neighbor search is very similar to nearest neighbor search; However, instead

of returning the point that is closest to the query, one can return any point that

is within some predefined distance from the query. For example, in the R-near

neighbor search problem, when provided a distance parameter R and a query

point q, we begin searching through the collection C. If we find a point p ∈ C

with ||p− q||γ ≤ R then p is a valid near neighbor of q. If no point in the dataset

is within distance R from q, then the search failed [3].

An extension of near neighbor search is the (c, R)-approximate near neighbor

search problem. Note that this is approximate: the query time is improved im-

mensely at the expense of accuracy. However, even though it is approximate, for

many applications it is likely to find a point that is close enough to the query to

still be useful [3, 8, 16].

Definition 2 ((c,R)-Approximate Near Neighbor Search). We are given a collection

of d-dimensional points C ⊆ Rd, two parameters c > 1 and R > 0, and a value

δ ∈ [0, 1]. Build a data structure such that when given a query point q ∈ Rd, if

there exists an R-near neighbor of q in C, it returns any point p ∈ C such that

||q − p|| ≤ cR with a probability of success of 1− δ.

Background 13

Instead of returning a point within distance R from the query, we may now

return a point within distance cR from q. This can be simplified by assuming

R = 1. If R 6= 1 then we divide all points in the dataset by R so that R becomes

1. We can do this because dividing by a scalar will not affect the relative ordering

of distances between points [3]. When we do this, cR = c. This effectively removes

the parameter R and allows the name to be simplified to the c-approximate near

neighbor search problem. So, with this updated name, we can say that if there is

a point within unit distance from the query, there is probability 1− δ that a point

within distance c from the query will be found [3].

3.2.3 Locality Sensitive Hashing (LSH)

Locality sensitive hashing is a solution for the c-approximate near neighbor search

problem [3, 4, 8, 16]. As the name suggests, it uses hash tables to store points.

It relies on specific hash families that have a high probability of producing the

same hash for points that are near each other. If we use one of these families, by

hashing the query point we are given a bucket that is likely to contain points that

are near the query. We then do a linear search through that bucket for points

within distance c. This results in accurate sub-linear search [16].

Definition 3 (Locality Sensitive Hashing). A family H is said to be (R, cR, p1, p2)-

sensitive if for any h ∈ H, two points p, q ∈ Rd, and c > 1

• If ||q − p||γ ≤ R then Pr(h(q) = h(p)) ≥ p1,

• if ||q − p||γ ≥ cR then Pr(h(q) = h(p)) ≤ p2

This says that if q and p are near each other, then they have a high probability

of hashing into the same bucket. If they are distant, then they have a lower

probability of hashing into the same bucket. It is clear that we want p1 > p2. If

p2 > p1 then there is a high probability that distant things are hashed into the

same bucket, which is not desirable for a near neighbor search. Further, a very

important trait for us is that LSH scales very well with increased dimensionality

[11, 16]. Other methods for neighbor search, such as kd-trees, begin to perform

poorly as the dimension of data increases.

Background 14

3.2.4 Gap Amplification

One method that we will use in our experiments in Chapter 5 is Gap Amplification

[3, 25]. Some implementations of LSH will have two parameters, K and L. The

value K is the number of hashes used by each table and L is the number of

hash tables. Using the concatenation g(x) = Concat(h1(x), . . . , hK(x)) of K hash

functions is effectively an AND operation that increases the gap between p1 and

p2. Using multiple hash tables is an OR operation that increases both p1 and

p2. Properly setting these parameters can increase the gap between the threshold

probabilities p1 and p2 so that p1 approaches 1 and p2 approaches 0.

While multiple tables are needed for theoretical guarantees, it is more common

to implement LSH using a multi-probe scheme [25]. This uses a single table, but

probes multiple buckets. Every bucket is ranked based on their similarity to the

hash. Buckets are searched from most similar to least similar.

3.2.5 Example: Hyperplane LSH

In the experiments we perform in chapter 5, we use the Hyperplane hash family

[4, 5]. This hash family is typically used for cosine similarity; testing if two vectors

have a small angle between them. At the most basic level, it is composed of a

function bi that is defined as

bi(x) =

1 aᵀx ≥ 0

0 otherwise
(3.3)

Where the vector a ∈ Rd has elements aj ∼ N (0, 1). When used with gap

amplification, there will be K hash functions that are concatenated together. It

becomes a string of K bits, or a 2K bit integer.

g(x) = int(bK(x), . . . , b1(x)) (3.4)

g(x) breaks Rd into different regions using the multiple bi(·). The vector a

is the normal vector of a hyperplane. If a point x is above the this hyperplane,

then aᵀx = 1 is returned for that bit. If it is below the hyperplane, then it is 0.

Background 15

If two points are very near to each other, then they will probably be “above” and

“below” the same hyperplanes and have the same hash.

3.3 Maximum Inner Product Search (MIPS)

MIPS is similar to the near neighbor search problem [31, 32]. The major distinction

is that, instead of searching through a dataset for a point that is near the query,

the goal is to find the point that maximizes the inner product with the query. So,

given a query vector q ∈ Rd and a collection of points C ⊆ Rd, the goal of MIPS is

to find the vector p ∈ C that maximizes qᵀp. For our methodology, we are going

to be finding the filters that are likely to produce large inner products; we want

to do a maximum inner product search, not a near neighbor search. Therefore,

approximate MIPS is particularly relevant for us. There are a variety of solutions

for MIPS, but we have chosen to use Asymmetric Locality Sensitive Hashing.

3.3.1 Asymmetric Locality Sensitive Hashing (ALSH)

Asymmetric locality sensitive hashing is a transformation of LSH that allows it

to be used for MIPS. It does this by applying asymmetric transformations prior

to hashing that make the distance between the two transformed vectors inversely

proportional to the non-transformed vectors’ inner product. If the two transformed

vectors are close, then the original vectors likely have large inner products [31, 32].

Due to their strong relation, ALSH has nearly the same definition as LSH:

Definition 4 (Asymmetric Locality Sensitive Hashing). A family H and two func-

tions Q : Rd −→ Rd′ and P : Rd −→ Rd′ are said to be (R, cR, p1, p2)-sensitive, if for

a hash function h ∈ H, they satisfy the following for any two points q, x ∈ Rd and

c < 1

• if qᵀx ≥ R then Pr(h(Q(q)) = h(P (x))) ≥ p1

• if qᵀx ≤ cR then Pr(h(Q(q)) = h(P (x))) ≤ p2

The function Q(·) is called the query function. It is only applied when search-

ing the data structure. The function P (·) is called the pre-processing function and

Background 16

is applied when building the data structure. As with LSH, we want p1 > p2.

However, unlike LSH, we must have c < 1 so that cR < R [31, 32].

For the Hyperplane LSH discussed in the previous section, good choices for

the functions Q(·) : Rd −→ Rd+m and P (·) : Rd −→ Rd+m have already been found

[32]. They are defined as

Q(x) = Appendm(x, 0, 0, . . . , 0)

P (x) = Appendm(x, 0.5− ||x||22, 0.5− ||x||42, . . . , 0.5− |x||2
m

2),
(3.5)

There is just one assumption that we need for these functions to work for

MIPS. If we want to search through the set X, then each x ∈ X must have ||x||2 ≤
U < 1. This can be achieved by scaling every item in the dataset with U÷max

x∈X
||x||.

Using these functions P (·) and Q(·), the original authors find the equality:

Q(q)ᵀP (x)

||Q(q)||2||P (x)||2
=

qᵀx√
m÷ 4 + ||x||2m+1

2

(3.6)

Notice that the value of ||x||2m+1

2 approaches 0 as m increases because ||x||2 ≤
U < 1. This means that qᵀx is a multiple of the left-hand side of the equality. So,

the authors find

argmax
x∈X

qᵀx ' argmax
x∈X

Q(q)ᵀP (x)

||Q(q)||2||P (x)||2
(3.7)

This says that the x that maximizes the cosine of the angle between Q(q)

and P (x) is similar or equal to the x that maximizes qᵀx [32]. So, Q() and P ()

allow LSH to be used for MIPS. Interestingly, it has been shown that asymmetry

is not necessary to use LSH for MIPS. For instance, SimpleLSH uses a single

symmetric transformation and can outperform Hyperplane ALSH [29]. The base

hash function used by Simple-LSH is Hyperplane LSH, but it uses a different P ()

and Q():

Q(x) = P (x) = Append(x,
√

1− ||x||22) (3.8)

It is symmetric because Q(x) = P (x). There is a more recent improvement

to Simple-LSH called Norm-Ranging LSH [38]. Norm-Ranging LSH breaks the

Background 17

dataset into different sub-partitions based on the norms of each datum. Each

sub-partition is hashed separately. Doing this helps to improve the distribution of

points in the hash table. Both Simple-LSH and Norm-Ranging LSH have better

query times than ALSH methods [29, 38].

Chapter 4

Methodology

Our primary goal is to improve the computational efficiency of convolutional neural

networks when used on small devices. We intend to do this by reducing the number

of transformations applied by each network layer. The method we have devised is

a form of filter pruning that is inspired by another work that showed how ALSH

can be used improve the performance of a fully-connected layer [34]. We wish to

extend this idea to convolutional layers. Specifically, we want to use ALSH to

quickly find a subset of filters that are likely to produce large inner products when

applied to the input. The reason that this is restricted to small devices is that it

there is an inherently sequential step. We use ALSH to analyze the convolution’s

input and determine which filters to use, and then apply those filters. It is not

possible to efficiently analyze the input and apply the filters at the same time.

Due to this being sequential, it would not make sense to use our methodology on

a device that supports a large number of threads.

Unfortunately, there are some complications that make our goal a non-trivial

extension of the fully-connected version [34]. First, The original paper that ap-

plies ALSH to fully-connected layers used a single vector as the network’s input.

This is not realistic for practical settings because most networks are trained with

mini-batches. It is natural for a fully-connected layer’s weights to be stored in a

matrix. This makes it simple to search for the best weights to use; However, in a

standard convolution implementation, a single input is a 3D tensor and each of the

convolution’s filters are 3D tensors. So, we are working with multi-dimensional

tensors that are applied in strange ways; a single input may be treated like many

vectors. Second, the author’s of the fully-connected version used simple models on

18

Methodology 19

small datasets to test their methodology. As we are using convolutions, we want

to test our methods on more challenging datasets using more practical models. In

the remaining sections of this chapter, we overview our solutions to these problems

in what we entitle an “ALSH Convolution.”

There are two main reasons we chose to use ALSH for our methodology: First,

we specifically want to find large inner products quickly. ALSH allows us to quickly

approximate which filters are likely to produce large inner products. Second, It

is also important that ALSH can work well with high-dimensional data [16, 31,

32]. For our application, vectors may have hundreds or thousands of components.

When the dimension is that high, many other methods for neighbor search or MIPS

may begin to fail. We will explain why we chose to use Hyperplane LSH in our

implementation, rather than L2-LSH or SimpleLSH [29, 31], in Chapter 5 because

that choice was specific to our implementation, rather than the methodology that

we are proposing.

4.1 ALSH Convolution

We break the ALSH Convolution into three parts: 1. the pre-pass, for creating

the hash tables; 2. the forward pass, for inference; and, 3. the backward pass,

for updating for the network. The pre-pass is a new addition that is done during

the convolution’s construction. Its main task is building the ALSH tables that

contain references to the convolution’s filters. Part 2 is a major modification to

the standard convolution’s forward. Part 3 is a small change in the convolution’s

backward pass to account for the changes in the forward pass.

Methodology 20

Algorithm 3: ALSH Conv2d Pre-Pass

input : Filters F ∈ RM×c×k×k

an LSH family H
a positive integer K
a positive integer L
an ALSH pre-processing function P

output: An ensemble of L ALSH tables

Tables← an ensemble of L hash Tables
foreach table in Tables do

g(x)← (h1(x), h2(x), . . . , hk(x)) where hi ∈ H
Let g(x) be table’s hash function

F ∗ ← F ’s filters transormed into the rows of a matrix
foreach table in Tables do

foreach row of F ∗ do
insert the index of row into table[g(P (row))]

return Tables

The ALSH Conv2d Pre-Pass constructs an ensemble of L hash tables that

each use some combination of K hash functions. Then, each of the M filters that

were passed into the function are flattened into vectors of length c × k × k. The

indices of the filter-vectors are inserted into each table at the index they are hashed

to. These indices act as references into the filter matrix and make it simple to

maintain order and avoid selecting the same filter multiple times in the forward

pass. After the Pre-Pass has completed the convolution should be ready to use for

inference. So, we now introduce the forward-pass of the ALSH Conv2d.

Methodology 21

This pseudo-code of the forward-pass uses im2col in an effort to make indexing

operations more clear; However, with some minor modifications, the forward pass

can also be used with a convolution that is not implemented with im2col.

Algorithm 4: ALSH Conv2d Forward Pass

input : A mini-batch of objects I ∈ RN×c×h1×w1

Filters F ∈ RM×c×k×k

an ALSH query function Q
an ensemble of hash tables Tables containing the indices into F .

output: A mini-batch of objects O ∈ RN×M×h2×w2

begin

Î ← im2col(I)
F ∗ ← F ’s filters transormed into the rows of a matrix
filtersToUse ← {}
foreach table ∈ Tables do

hashCount ← initially a zero-array

foreach column ∈ Î do
h ← table.applyHash(Q(column))
increment hashCount[h]

hash ← most frequent hash
insert each item contained in table[hash] into filtersToUse

/* Defining the active set */

A← rows of F ∗ indexed by the elements of filtersToUse

O∗ ← A× Î
O ← reshape O∗ into a mini-batch of objects and fill with zeros
return O

The ALSH Conv2d forward-pass is essentially the same as the standard con-

volution forward-pass [12], but it inserts a few lines that find the active set of

filters. The algorithm uses the tables that were created in the pre-pass to find a

subset of the filters to use in the layer’s matrix multiplication. Each table hashes

the same regions of the input that the filters scan across. The bucket used by

a table corresponds to the most frequently occurring hash value for that table.

Using the most common hash is not guaranteed to work well, but we believe that

it works well enough in practice. We discuss this in much greater detail in the fol-

lowing section, 4.3. We then use the filters that are inside of the selected buckets

in a matrix multiplication with the input. Since we did not use every filter, the

output will not have the correct dimension. So, using the indices in filtersToUse

Methodology 22

and O∗, we can create an object O that initially contains 0’s and then fill the

proper regions using O∗.

Algorithm 5: ALSH Conv2d Backward Pass

input : A mini-batch of objects dO ∈ RN×M×h2×w2

Filters F ∈ RM×c×k×k

The last Active Set A
a set of indices, filtersUsed
An ensemble of hash tables Tables
The last input to the forward-pass Î

output: A mini-batch of objects dI ∈ RN×c×h1×w1

begin
dO∗ ← reshape dO as a matrix

dÎ ← dO∗Aᵀ

dA← ÎᵀdO∗

dI ← col2im(dÎ)
use dA and filtersUsed to update F
update Tables with the new filters F
return dI

The final part of the ALSH Convolution is the backward-pass. As with the

forward-pass, this algorithm is a minor modification of the standard convolution

update [12]. There are a few that points of particular note about this algorithm.

One is that it can use the active set, A, to compute dÎ. This is essentially a free

optimization to the backward pass because A is a subset of F . So, as with the

forward pass, the matrix multiplication is smaller than it would normally be. The

second thing to note is col2im. This function is the backward pass of im2col and

is not unique to the ALSH Convolution. The third aspect of the algorithm to note

is that the hash tables are updated with the changed filters. This may seem like

a taxing operation, but instead of refilling every table with all of the rows of F ,

we can just empty the buckets that were used in each table and only reinsert the

rows of A. This is possible because the rows of A are the only filters that were

updated.

Methodology 23

We now offer a possible optimization for the ALSH Conv2d forward pass.

In the first pseudo-code of the forward pass, the output is filled with zeros in

the kernels where a filter was not applied. However, these zeroed regions are

still used in the next layer’s hash and convolution operation. This results in

many unnecessary multiplications by zero that can be avoided. This variant of

the forward pass prevents these unnecessary computations by sharing the current

layer’s active set with the next layer. We call this “Last-Active-Set Sharing.”

Algorithm 6: ALSH Conv2d Forward Pass with Last-Active-Set Sharing

input : A mini-batch of objects I ∈ RN×c′×h1×w1

Filters F ∈ RM×c×k×k

an ALSH query function Q
an ensemble of hash tables Tables containing the indices into F ,
The indices of the previous ALSHConv2d’s active set, LAS

output: A mini-batch of objects O ∈ RN×M×h2×w2 ,
The set of filters used by this layer, filtersToUse

begin

Î ← im2col(I) ∈ R[c′×k×k]×[N×h1×w1]

/* Use only the kernels of each filter that align with the

kernels of the input I. So, each filter has the same number

of kernels as the input. */

tmp← use LAS to index the kernels of each filter of F.

F ← tmp’s filters transformed into the rows of a matrix of the form
RM×[c′×k×k]

filtersToUse ← {}
foreach table ∈ Tables do

hashCount ← initally a zero-array

foreach column ∈ Î do

/* Similarly, only apply parts of the hash function that

align with the kernels of the input I */

h← table.applyHash(Q(column), LAS)

increment hashCount[h]

hash ← most frequent hash
insert table[hash] into filtersToUse

A← F ∗ indexed by the elements of filtersToUse

O∗ ← AÎ // Matrix Multiplication
O ← reshape O∗ into a mini-batch of objects
return O and filtersToUse

Methodology 24

This algorithm is similar to algorithm 4, but it adds a new input parameter

LAS and a new output value filtersToUse. The value filtersToUse contains the

indices of the filters that were used by the current layer. These are passed into the

next convolution as the parameter LAS, or “Last-Active-Set.” This LAS parameter

is used to determine which kernels the current layer should apply to the input.

Algorithm 4 and 6 compute the same thing; however, we consider algorithm 6 to

be an optimization. We compare their compute times in Chapter 5.

4.2 Mode Probability

While describing the forward pass algorithm in the previous section 4.2, we claimed

that using the mode of a table’s hashes is an effective way to determine which

bucket to include in the active set. This may be a simple choice, but it is not

guaranteed to work. Fortunately, we believe that it is good enough in practice

when using the Hyperplane ALSH family [32] and will detail why in the remainder

of this section.

For now, we only consider LSH and will find similar probabilities for ALSH

later. We want to find the probability that a value x in the dataset X has the

same hash as the most frequently occurring hash in the set {h(q) | q ∈ Q}, where

h() is some concatenation of Hyperplane LSH functions. Essentially, we want to

find:

Pr{mode({h(q) | q ∈ Q}) = h(x)} (4.1)

For this problem, we are given a locality-sensitive hash function h, a positive

real number c > 1, a dataset X, and a set of queries Q. Before we begin, let us

briefly recall the definition of LSH [3, 5, 8, 16], discussed in section 3.3.3. For any

arbitrary values of q and x that are in the sets Q and X respectively,

• if ||q − x||γ ≤ R then Pr(h(q)) = h(x)) ≥ p1

• if ||q − x||γ ≥ cR then Pr(h(q) = h(x)) ≤ p2

In addition to these threshold probabilities, we adopt a convention of as-

suming that the collision probability is monotonically decreasing in distance [31].

Further, we initially assume that the threshold probabilities are a step-function

Methodology 25

with constant values. So, if points q and x are close, Pr(h(q) = h(x)) = p1. If

they are distant, P (h(q) = h(x)) = p2. Doing this makes it easier to model. We

will loosen this assumption later. Finally, we define a discrete variable, VS(z), that

is the number of occurrences of a value z in the list of hashes generated from a set

S; the frequency of z in the set {h(s) | s ∈ S}.

Now are ready to begin finding the probability. There are three different types

of queries that we must consider: First, when q is close to x. Second, when q is

distant from x. Third, when q is neither close or far from x. We define three sets

that separate these different classes of queries.

• Mx = {q ∈ Q | ||q−x||γ ≤ R}, so that each q inMx has Pr(h(q) = h(x)) = p1

• Nx = {q ∈ Q | ||q − x||γ ≥ cR}, where q in Nx has Pr(h(q) = h(x)) = p2

• Ox = {q ∈ Q | R < ||q − x||γ < cR}, Under our assumption that the

collision probability is monotonically decreasing, we know for a q in Ox that

p2 < Pr(h(q) = h(x)) < p1. This value cannot be precisely known in theory;

however, we will denote it as p3.

Each of the hashed elements of Mx are either equal to h(x) with probability p1

or they are not with probability 1− p1. So, the probability that VMx(h(x)) equals

n is a binomial distribution, denoted with the function b(S, n, p) =
(|S|
n

)
(p)n(1 −

p)|S|−n. Thus, we have that Mx has n elements hash to h(x) as

Pr{VMx(h(x)) = n} = b(Mx, n, p1) (4.2)

We find similar probabilities for Nx and Ox.

Pr{VNx(h(x)) = n} = b(Nx, n, p2)

Pr{VOx(h(x)) = n} = b(Ox, n, p3)
(4.3)

The resulting hashes of each element of the sets Mx, Nx, and Ox are the results of

discrete independent events. So, the probability that h(x) occurs n times in the

set {h(q) | q ∈ Q} is the sum of all the combinations of probabilities where the

Methodology 26

number of occurrences of h(x) sums to n across the three sets Mx, Nx, and Ox.

Pr{VQ(h(x)) = n} =
n∑
j=0

j∑
i=0

b(Mx, n− j, p1)× b(Nx, j − i, p2)× b(Ox, i, p3)

(4.4)

Before considering the case with an arbitrary number of possible hash values,

we will first find the probability that h(x) is the most frequently occurring hash

in the case where there are only two possible hash values. This will be useful for

us later. As a more succinct notation, we introduce a new function modeβ() that

is defined as

modeβ(S) = mode{(h1(s), . . . , hβ(s)) | s ∈ S} (4.5)

In the case where β = 1, we can find the probability that h(x) is the most

frequent hash by finding Pr{VQ(h(x)) > |Q| ÷ 2}; the probability that more than

half of the values in the list of hashes are equal to h(x). As VQ(h(x)) is discrete,

this probability is the summation of Pr{VQ(g(x)) = n} for each n between |Q|÷2

and |Q|.

Pr{mode1(Q) = h(x)} =

|Q|∑
n=
|Q|
2

+1

Pr{VQ(h(x)) = n}
(4.6)

In reality, we will not be restricted to only two hash values. So, we now want

to find a similar probability for the case where there are an arbitrary number

of hash functions concatenated together. Rather than being the probability that

h(x) occurs more than half of the time, this is the probability that h(x) occurs at

least as frequently as all of the other 2β − 1 values.

Pr{modeβ(Q) = h(x)} =
∏
y∈X

Pr{VQ(h(x)) ≥ VQ(h(y))}

=
∏
y∈X

(|Q|∑
j=0

|Q|∑
i=j

Pr{VQ(h(x)) = i} × Pr{VQ(h(y)) = j}
)

(4.7)

Notice that the initial value of i is j. The frequency of h(x) is always greater

than the frequency of h(y). Further, by using the symbol ≥, we allow for h(x) =

h(y). This is important because h(x) may equal h(y), so they will have the same

Methodology 27

probability. We have now found the probability that a value x ∈ X has the same

hash as the most frequently occurring hash in the set {h(q) | q ∈ Q}. We will

refer to equation 4.7 as the mode probability because it is the probability that h(x)

is the mode of modeβ(Q). Of course, equation 4.7 can also work for mode1, but

equation 4.6 will be easier to use in some instances in the following sections.

4.2.1 Analysis of the Optimal Case

For LSH to be optimal, it must have p1 = 1, p2 = 2, and c −→ 1+.

Lemma 4.1. When p1 = 1, p2 = 0, and c −→ 1+, for each x ∈ X with a set Mx

that contains more than half of the elements of Q, the hash h(x) is guaranteed to

be mode1(Q).

Proof. Using equation 4.4, when p1 = 1, p2 = 0, c −→ 1+, and for any x ∈ X with

|Mx| > |Q| ÷ 2, we find that Pr{mode1(Q) = h(x)} = 1. Similarly, for any x ∈ X
where |Mx| < |Q| ÷ 2, we find that Pr{mode1(Q) = h(x)} = 0. Thus, Theorem

4.1 is true.

The full derivations of Pr{mode1(Q) = h(x)} = 1 and Pr{mode1(Q) =

h(x)} = 0 can be found in the Appendix 6.1. We can use Theorem 4.1 to find a

similar guarantee for an arbitrary number of buckets. We need to consider pairs

of h(x) and other buckets individually. If h(x) is the mode among all pairs of the

form (h(x), h(y)), then h(x) is the mode of the entire hash list.

Theorem 4.2. When p1 = 1, p2 = 0, and c −→ 1+, for the x ∈ X with the largest

set Mx, the hash h(x) ∈ N is guaranteed to be the mode of modeβ(Q).

Proof. Suppose we have the x ∈ X with the largest set Mx. Now, consider a

pairs of hashes of the form (h(x), h(y)) where y ∈ X. Because p1 = 1 and

p2 = 0, everything in the set (Nx ∪ Ny) \ (Mx ∪ My) will not vote for h(x) or

h(y). As c −→ 1+ we know that |Ox| = 0, so we do not need to consider it. To

find the mode among h(x) and h(y), we only need to consider elements in the set

Q \ ((Nx ∪Ny) \ (Mx ∪My)). Everything in this set is guaranteed to vote for h(x)

or h(y). From Theorem 4.1, we know that

Pr{mode1(Q \ ((Nx ∪Ny) \ (Mx ∪My))) = h(x)} = 1 (4.8)

Methodology 28

Since y is arbitrary, we know that this is true for any y ∈ X. As h(x) wins the

vote mode among all pairs with other buckets, it is guaranteed to be the mode of

the entire hash set. We can now conclude that if |Mx| > |My| for all y ∈ X, then

Pr{modeβ(Q) = h(x)} = 1 (4.9)

Thus we know that Theorem 4.2 is true.

Now, in this optimal case, we can loosen our assumption that the probabilities

p1 and p2 are exactly the collision probabilities. To do so, we must think back to

the standard definition of LSH [3, 4, 11, 16] that states that

• if ||q − x||γ ≤ R then Pr(h(q)) = h(x)) ≥ p1 and

• if ||q − x||γ ≥ cR then Pr(h(q) = h(x)) ≤ p2

In optimal case, we have p1 = 1 and p2 = 0. So, when using the standard

definition of LSH, because Pr(h(q) = h(x)) ≥ p1 and p1 = 1, we know that

1 ≤ Pr(h(q) = h(x)) ≤ 1. Therefore, if ||q − x||γ ≤ R then Pr(h(q) = h(x)) = 1

for all y ∈ X. Similarly, if ||q − x||γ ≥ cR then Pr(h(q) = h(x)) = 0 for all y ∈ X.

Therefore, the optimal case is true for LSH and does not require that p1 and p2

are exact.

4.2.2 Extending to ALSH

We have just looked at the probabilities for LSH; however, our methodology uses

ALSH. So, we need to show that these same equations can be derived for ALSH.

Recall that the definition of ALSH [31, 32] states that

• if qᵀx ≥ R then Pr(h(Q(q))) = h(P (x))) ≥ p1

• if qᵀx ≤ cR then Pr(h(Q(q)) = h(P (x))) ≤ p2

We will make similar assumptions based on this. We assume that the collision

probability is monotonically increasing in qᵀx and that the threshold probability

are exact. So, if points q and p have a large inner product, the probability that

Methodology 29

Q(q) and P (x) is large. This allows us to derive probabilities in a similar way to

how we derive equations 4.3 and 4.4.

Because ALSH uses a query function, Q(·), we represent the set input queries

as Y instead of Q. The dataset that we are searching through is still X.

We can now redefine the sets Mx, Nx, and Ox to derive the new probabilities.

• Mx = {q ∈ Y | qᵀx ≥ R}, so that q ∈Mx all have Pr(h(Q(q)) = h(P (x))) =

p1

• Nx = {q ∈ Y | qᵀx ≤ cR}, so that q ∈ Nx all have Pr(h(Q(q)) = h(P (x))) =

p2

• Ox = {q ∈ Y | cR < qᵀx < R}, Using our assumption that the collision

probability is monotonically decreasing, we know for a q ∈ Ox that p2 <

Pr(h(Q(q)) = h(P (x))) < p1.

Using these, we can derive probabilities that are identical to equations 4.3 and

4.4. We will not show them here, because the derivation really is the same. While

the probabilities look the same, they model different things. Both probabilities

model the probability that, for an input set of queries, a bucket x is selected. How-

ever, the probabilities that use LSH have a dependence on the distance between

the queries and x. While the probabilities that use ALSH have a dependence on

the inner products of the input queries and x.

4.3 Training Strategy

The training strategy that we propose is similar to that used by other filter prun-

ing methods. These methods iteratively prune filters and retrain to account for

changes in accuracy [23, 28]. Our method has a slight distinction though. We it-

eratively “replace” and retrain. We replace a standard convolution with an ALSH

Convolution every n epochs during retraining. The filters of the ALSH Convolu-

tion are initialized so that it has the same weights as the convolution that it is

replacing. If we replace convolutions with ALSH Convolutions without retraining,

there is a noticeable dip in accuracy; eventually becoming random guesses. We

Methodology 30

show in our experiments that retraining is sufficient to bring the accuracy back to

a decent level.

This algorithm shows one possible way to implement our training strategy.

There are some potential improvements that could be made, such as gradually

increasing the gap between replacement during training. Or, using a validation

set and making a replacement when the loss has stopped decreasing. For our

experiments, we stick with a simple algorithm that is very similar to the one

shown that sets the number of epochs between replacements to be a constant

value.

Algorithm 7: ALSH Conv2d Train-and-Replace

input : A model M ,
number of epochs E,
and the number of epochs between each replacement gap

output: M

depth ← number of feature layers in M
for n in {1, . . . , E} do

if n % gap = 0 then
replace M.features[depth] with an ALSH Conv2d
depth ← the next “deepest” convolution in M.features.

train(M)

while M.weights have not converged do
train(M)

return M

Chapter 5

Experiments

To test our proposed methodology, we perform experiments using three popular

image classification datasets:

• CIFAR-10 consists of 60,000 images from ten classes [19]. Each class con-

tains 6,000 images that are 32× 32 RGB pixels. 50,000 images are used for

training and the remaining 10,000 images compose the test set. We did not

use a validation set while training.

• CIFAR-100 is very similar to CIFAR-10, but has 100 classes instead of ten

[19]. There are 500 training images for each class and 100 test images for

each class. Again, we do not use a validation set while training.

• MNIST has 70,000 images of hand-written digits. 60,000 are used for train-

ing and 10,000 are used for testing [21].

We test our methodology using multiple network models. Namely, AlexNet

[20] and VGG-11 [33]. These models are relatively small for modern convolutional

neural networks. Our methodology is specifically intended to be used with small

devices, so it would not make sense to use networks on the scale of Inception-

Resnet-V2.

For both of these models, we use the implementations from torchvision.models

that are pre-trained on Imagenet-12 and do not use batch normalization [30]. We

retrain both models on CIFAR-10 and CIFAR-100 until they achieve high accuracy

on each dataset. After they get high accuracy, we apply our train-and-replace

31

Experiments 32

strategy. The main architectural detail of note about these models is the number

of convolutions that they have. AlexNet has five convolutions and VGG-11 has

eight [20, 30, 33]. In addition to using AlexNet and VGG-11 on CIFAR-10 and

CIFAR-100, we perform additional tests on MNIST [21] with an extremely small

custom model that has three convolutions.

5.1 Implementation Details

In order to highlight that our methodology can be implemented using existing high-

level deep learning libraries, the bulk of the implementation of ALSH Conv2d is

written using PyTorch Tensor operations. Additionally, a majority of the imple-

mentation of Hyperplane ALSH uses PyTorch Tensor operations [30]. An inter-

esting point that may help to highlight the trade-off between hashing every region

and dropping filters is that we implemented the Hyperlane LSH [5] function using

PyTorch’s functional convolution. The Hyperplane LSH is composed of functions

bi that are defined as

bi(x) =

1 aᵀi x ≥ 0

0 otherwise
(5.1)

In one sense, we can treat ai like a filer of a convolution because it com-

putes an inner product with x. If the table’s hash function is defined as g(x) =

(b1(x), . . . , bn(x)), we can make the vectors ai the filters of a convolution. We can

then compute g(x) by applying that convolution to the input and then determine

the bit values and final hash value from that convolution’s output. Since our hash

function is implemented using a convolution, as long as the number of hash tables

and hash functions per table is smaller than the number of filters, there is potential

for a speedup. However, there is overhead when finding the most frequent hashes

in order to generate the active set.

5.1.1 Hash Family

We chose to use the Hyperplane ALSH family purely because it was possible to

implement it using a convolution. This allowed us to keep our implementation

Experiments 33

high-level. We are not aware of any other ALSH families that can be implemented

in a similar fashion. This is because of the Q() function that is used by ALSH.

For Hyperplane ALSH, Q() appends zeros to its input [32]. However, other ALSH

families require Q(x) to append some function of the norm of x [29, 31, 38].

Consider some input: since the regions of the input that a convolution scans

across often overlap, it is not possible to append the norm of these regions to the

input. So, while these Q() functions could work with lower-level implementations,

they cannot work with the high-level implementation we chose.

For each ALSH Convolution in every test, we use the same parameters to

create the hash tables. We found that using three hash tables with a hash function

that is the concatenation of five of the bi() functions works well and is small enough

to provide a significant speedup. For our hashing setup, we chose to use multiple

tables. In practice, while multiple tables is necessary for theoretical guarantees, it

is common for ALSH to use a multi-probe scheme [25]. However, our tables are

not large enough for storing redundant data to be a major concern.

Further, we use a table’s top five most frequent hash values to determine

which buckets to generate the active set with. Finally, we set m = 2 for the

asymmetric functions, Q(x) and P (x), in all of our tests [31, 32]. These settings

make it so that about fifty percent of the filters will be used on average.

5.2 Experimental Settings

There are some universal settings that we used in all of our tests. We will specify

any settings that are unique to a test when we get to them. One of the first things

to note is the data augmentation that we used in our experiments. We normalize

each image using the settings recommended by PyTorch so that they have a mean

of (0.485, 0.456, 0.406) and deviation of (0.229, 0.224, 0.225) [30]. For the training

data, we take a 224×224 random resized crop of each image and perform a random

horizontal flip. For the test data, we resize the images to be 256× 256 pixels and

then make a 224×224 center crop. The batch size that we use is dependent on the

model and dataset, but the training batch and testing batch sizes are always the

same. All of the models that we used are from torchvision.models [30]. They have

been pre-trained on ImageNet-12, but we retrain them on each dataset. Finally,

our timing tests were run on an Intel Xeon ES-2695 v4.

Experiments 34

5.3 Experimental Results

5.3.1 Compute Time

We show the average batch time during testing using a batch size of 64 images.

Table 5.1 show the times on each dataset and network without the ALSH Convo-

lution. For each model, we scale the images in the dataset to 224 × 224. So, the

times should be similar for each dataset. We include all of them though.

As the buckets do not have a great distribution, the variation between itera-

tions is fairly small. However, because the hashes used are random, the distribution

in the buckets can change across different runs. So, during some runs the average

number of filters used may change quite a lot. So, we report the average compute

time of 20 batches of 64 images that are 224x224 for five trials. We show the

average of the trials for each dataset and network.

Trial Model
CIFAR-10 Time(s) CIFAR-100 Time(s)

Default ALSH Default ALSH

1
Alexnet 2.93 1.81 2.94 1.87
VGG-11 25.49 18.88 25.23 17.20

2
Alexnet 2.95 1.86 2.94 1.87
VGG-11 25.24 17.32 25.23 18.61

3
Alexnet 2.94 1.74 2.94 1.78
VGG-11 25.24 18.41 25.25 18.55

4
Alexnet 2.94 1.87 2.94 2.00
VGG-11 25.23 19.50 25.34 17.75

5
Alexnet 2.93 1.89 2.95 1.98
VGG-11 25.43 18.57 25.29 18.80

Ave.
Alexnet 2.94 1.83 2.94 1.90
VGG-11 25.33 18.54 25.27 18.18

Stdev.
Alexnet .006 .05 .004 .08
VGG-11 .11 .71 .04 .61

Table 5.1: Average Time per Batch of 64 Images

For both networks, we replaced all of the convolutions with ALSH Convolu-

tions. We performed these timing tests using PyTorch 0.4.0 [30]. With this version

of PyTorch, the ALSH Convolution is faster on average. The greater deviation

Experiments 35

of times could be caused by the random nature of ALSH. The filters will always

be partitioned in different ways in each trial and that could impact which subset

ends up being used.

Experiments 36

We perform similar tests using PyTorch 1.0.1 [30]. In these tests, we show

how the number of ALSH Convolutions in a network affects the compute time.

To do this, we show recorded the times that the network took to process a single

batch. We replace an existing convolution with an ALSH Convolution every 20

iterations. Since the images are scaled to be the same size, even though the

datasets are different, the average time to process a batch should be the same for

each dataset. So, for these tests we arbitrarily decided to use CIFAR100.

Figure 5.1: AlexNet on CIFAR100 with All Features

Figure 5.1 shows the times that different implementations of AlexNet took to

compute a batch for 100 batches. One implementation, shown in orange, is com-

posed purely of PyTorch’s Conv2d. The other, in blue, has an ALSH Convolution

replace PyTorch’s Conv2d every twenty iterations. The ALSH Convolution used

in these plots does not use Last-Active-Set sharing. As desired, our methodology

offers a small speedup to PyTorchs’ Conv2d when there are a small number of

cores. As the number of cores increases, the speedup becomes negligible.

Experiments 37

Figure 5.2: AlexNet on CIFAR100 with Last-Active-Set Sharing

Figure 5.2 is similar to 5.1; it also shows time to compute batches for two

versions of AlexNet. The difference is that the ALSHConv2ds used in 5.2 employ

Last-Active-Set Sharing. These plots indicate that Last-Active-Set sharing offers

greater speedup as the number of ALSH Convolutions in the networks increases.

Again, as the number of cores increases, the speedup becomes insignificant.

Experiments 38

Figure 5.3: AlexNet on CIFAR100

Figure 5.3 shows the data from figures 5.1 and 5.2 plotted together. We

can see that when the AlexNet has four ALSH Convolutions with Last-Active-

Set Sharing, it has better compute time compared to vanilla ALSH Convolutions.

There also seems to be a greater correlation between the number of layers that

use the ALSHConv2d and a speedup. The green line shows a clear step down in

compute time when an ALSHConv2d is inserted into the network.

We now make similar comparisons for VGG-11. Again, these use PyTorch

1.0.1 [30]. As with the previous plots, figure 5.4 shows the time that VGG11 takes

to compute a batch of 64 images that are 224× 224 pixels. We replace a standard

convolution with an ALSH Convolution every 20 iterations.

Figure 5.4: VGG11 on CIFAR100

Experiments 39

When using Last-Active-Set sharing, there is a noticeable improvement to the

regular ALSH Convolution implementation. Our methodology offers a substantial

speedup to VGG11 when there is a small number of cores. When 1 core is used,

there is approximately a 2× speed up. Even when using 16 cores, there is a

consistent speed up when using Last-Active-Set sharing. It scales surprisingly

well.

Figure 5.5: Close-up of VGG11 on CIFAR100 with 16 cores

5.3.2 Accuracy

In this section, we show how our methodology impacts the accuracy of a network.

The “Normal” accuracy that we report is the initial accuracy of the network before

we performed our train-and-replace training methodology to construct the ALSH

network. Essentially, the “Normal” versions are pure CNN architectures without

ALSH Convolutions. To achieve the normal network accuracies, we used a model

that was trained to get high accuracy on ImageNet-12 and then retrained it on

each dataset until it attained reasonably high accuracy [30]. The “ALSH” accuracy

that we report is the same model, but after our train-and-replace strategy has been

applied. For instance, Table 5.2 reports the model’s accuracy with only a single

ALSH Convolution replacement.

In these tests, some of the settings that we used for our train-and-replace

strategy are consistent and are fairly standard. For instance, We always use the

Cross Entropy loss function because it works well for multi-class classification.

We also use SGD with momentum that had β = 0.9 and an initial learning rate

of 0.001. The learning rate is static while training-and-replacing. After all of

the ALSH Convolutions have been inserted, we decay the learning rate every

Experiments 40

thirty epochs. While performing tests, we noticed that the filters do not change

buckets in the hash tables frequently. So, rather than updating the hash tables

every iteration, we update them after each epoch. Some settings are different for

each network/model combination. Specifically, the number of replacements, the

number of epochs between replacements, the number of epochs run after the final

replacement.

Model Dataset #Replace Gap Post-Epochs

AlexNet CIFAR-10 4 35 40
AlexNet CIFAR-100 4 30 50
VGG-11 CIFAR-10 7 35 40
VGG-11 CIFAR-100 7 35 50

Table 5.2: Unique Settings for ALSH Models

The term “Gap” is the number of epochs in-between replacements and “Post-

Epochs” is the number of epochs after every ALSH Convolution has been inserted

into the network. These values were not rigorously determined and can likely be

improved.

To begin our analysis of how our methodology affects model accuracy, we

looked at the case when only one layer in the network is an ALSH Convolution.

We replace the “top” convolution before the classification layers of the network.

Model
CIFAR-10 CIFAR-100

Normal ALSH Normal ALSH

AlexNet 92.52% 91.81% 72.83% 70.12%
VGG-11 94.58% 94.10% 77.81% 76.34%

Table 5.3: Accuracy: Replacing only the “Top” Convolution

We can see from this table that the by replacing the last convolution in the

“feature” layers of the network that there is the expected dip in accuracy, but it is

always within 3% of the original accuracy. As we did not exert much effort trying

to find optimal settings, it is likely that this dip in accuracy can be reduced. Next,

we look at the accuracy when we make replacements deep into the network.

Experiments 41

Model
CIFAR-10 CIFAR-100

Normal ALSH Normal ALSH

AlexNet 92.52% 87.02% 72.83% 62.31%
VGG-11 94.58% 88.69% 77.81% 68.34%

Table 5.4: Accuracy: “Deep” Replacements.

With AlexNet, we replaced four of the five convolutions and for VGG-11, we

replaced seven of the eight convolutions. We can see that there is a much larger

decrease in the classification accuracy compared to the single replacement. Un-

fortunately, even though our training settings are likely non-optimal, the current

dip in accuracy is still quite large. In fact, VGG-11 with ALSH Convolutions

is slower and less accurate than the normal implementation of AlexNet. Again,

finding optimal settings was not a major concern for us. So, it is likely that the

accuracy that we report can be improved.

There are a few methods, beyond parameter selection, that could potentially

improve the accuracy. First, we could make the replacements more gradual. At the

moment, replacing an existing convolution with an ALSH Convolution causes, very

suddenly, about half of the filters to be used. One way to make the replacement

more gradual would be to start with a large number of tables used and gradually

remove some. In our tests, we always used three tables. Instead, we could start

with ten tables and remove one every epoch until three remain. This is closer

to the training strategy used by other filter pruning methods that remove a filter

every iteration [23, 28].

Experiments 42

Changing the frequency of replacements could also improve accuracy. These

images are of the training loss. There is a peak in the loss when a replacement

happens. By retraining after a replacement, the loss is able to stabilize some.

Figure 5.6: Training Losses

Judging from the training loss, it appears that in some cases the gap between

replacements could have been larger. It may be beneficial to use a smarter function

to set the gap between replacements, rather than a constant number. This could

mean using a validation set and making replacements when the validation loss

stops decreasing. Or, it could just be a function that gradually increases the gap

between replacements.

5.3.3 Bucket Statistics

During our tests on CIFAR-10 and CIFAR-100 [19], we noticed that the number

of filters used did not vary substantially across iterations during inference. While

the number of filters used was not always the same, there was a subset of filters

that were almost always being used. Hyperplane ALSH is known to have a poor

distribution of bucket sizes [29, 38], but we were not sure if this was the cause. It

is possible that it is being caused by the ReLU hash function that makes a convo-

lution’s output semipositive. We have decided that using an activation function

that applies a similar transformation to positive and negative values may be ben-

eficial. So, we perform more experiments using the Softshrink, Hardshrink, and

Experiments 43

Tanh activation functions in an effort to fix the poor bucket distribution that we

experience when using ReLU.

Figure 5.7: ReLU V.S. Softshrink

For these tests, we employ a small model on MNIST made of three convolu-

tions that each have 32 filters. We are not concerned with performance or accuracy

in these tests, we just want to compare the frequency that certain hashes occur

when using different activation functions.

Experiments 44

Figure 5.8: Average of hashes during inference

We looked at the number of times that each hash occurred during an iteration.

Figure 5.7 displays the average number of times a hash occured across an entire test

cycle. In the left column of the plots, “Conv 1” refers to the middle convolution

of the three in the network. “Conv 2” in the right column refers to the top

convolution. Every activation function has a few buckets that contain many more

points than the other buckets. So, the ReLU activation function is not entirely

responsible for the poor distribution. This is consistent with prior work on ALSH.

Experiments 45

The poor bucket distribution is likely a failure of Hyperplane ALSH [29, 38] rather

than being caused by ReLU.

While each activation function has a poor distribution, we notice that Tanh

has a slightly better distribution than ReLU. In Conv 1, Tanh peaks at about

3500 elements while ReLU peaks at over 6000. In Conv2, Tanh peaks at 1600 and

ReLU peaks at a bit over 2000. So, while the activation function does not solve

the problem, it does appear to have an affect. We will look at this more deeply.

To judge the quality of the bucket distribution, we can look at the max and the

deviation. The lower the max and deviation, the better the distribution should

be.

Trial Statistic
ReLU Soft Hard Tanh

1 2 1 2 1 2 1 2

1
Max 6559 2021 4496 2726 4346 2215 3334 1601
Stdev 1236 500 1077 620 1151 543 860 397

2
Max 4126 2655 3787 2075 4378 2372 3199 1792
Stdev 1111 645 955 514 1057 460 804 392

3
Max 3776 2893 3857 1802 3875 2552 3732 2162
Stdev 911 713 971 441 992 628 951 434

4
Max 3985 2607 4134 2194 3629 2092 3720 2084
Stdev 1005 663 993 455 942 434 937 403

5
Max 4002 2670 3682 2126 3524 2173 3378 1968
Stdev 979 596 988 485 574 574 875 497

Ave
Max 4489 2569 3991 2328 3950 2280 3472 1921
Stdev 1048 623 994 503 943 527 885 424

Table 5.5: Bucket Distributions across Trials

Again, we found the average of the number of times a hash occurred across

an entire test. Table 5.5 displays the maximum and the standard deviation of

the buckets sizes in the average. We test using the same four activation functions

before the middle and top convolutions, numbered 1 and 2, for five trials. We also

show the average of each trial. For each column we color the largest max red and

the smallest max blue.

This table indicates that the choice of activation function does affect the

bucket distribution. For convolution 1, Tanh’s worst performance is better than

ReLU’s best. In addition, the averages reported for Tanh are lower than the other

Experiments 46

three activation functions. This warrants more rigorous future work examining

how the choice of activation function affects the quality of the ALSH Convolution.

Chapter 6

Conclusion

In this work, we set out to improve the computational efficiency of convolutional

neural network inference on small devices. To that end, we were partially suc-

cessful. We were able to substantially accelerate inference for the networks that

we tested without severely damaging the network’s ability to accurately classify

images. Unfortunately, the speedup offered by our current implementation is still

not enough to make this a viable method for networks trained to classify im-

ages; PyTorch’s implementation of AlexNet is faster and more accurate than our

ALSHConv2d version of VGG-11.

Even so, there is still room for our current implementation to be put into use.

Compared to other forms of filter pruning [23, 28], our methodology can be treated

as a regular network layer, so it is relatively simple to use and generalizes well to

many architectures. Further, there are many applications of neural networks that

have not received the same level of attention as image classification. For such

applications, there may only be one accessible models that has been fully trained

by experts. So, if one wants to use a neural network on an embedded device for

some niche task, the ALSH Convolution can still be beneficial.

For future work, it may be worthwhile to explore using SimpleLSH or Norm-

Ranging LSH instead of Hyperplane ALSH, because they improve the bucket

distributions [29, 38]. As discussed in Chapter 5, doing this will likely require

developing a slightly lower-level implementation. It may also be interesting to

analyze how the choice of activation function affects accuracy since they appear to

influence the bucket distributions. We also believe that making the replacement

process more gradual, by slowly decreasing the number of tables, and using a more

47

Experiments 48

thorough methodology to decide when to make a replacement, rather than using

a constant gap, are both important and warrant deeper inquiry. We are confident

that any combination of these could lead to improved accuracy and plan to pursue

these ideas in the future.

Appendix A

A.1 Finding Best-Case Mode Guarantee

The following is the full derivation of Pr{mode2(Q) = h(x)} from Chapter 4.

Recall the equality, where f is a binomial distribution.

Pr{vote2(Q) = h(x)} =
L∑

n=
L

2
+1

(n∑
j=0

(
f(Mx, n− j, 1)× f(Ox, j, p3)

)
× f(Nx, 0, 0)

)

(A.1)

We replace the function f(·, ·, ·) with the actual binomial distribution.

L∑
n=
L

2
+1

(n∑
j=0

(
|Mx|
n− j

)
(p1)

n−j(1− p1)|Mx|−(n−j) ×
(
|Ox|
j

)
(p3)

j(1− p3)|Ox|−j
)
×

(
|Nx|

0

)
(0)0(1− 0)|Nx|−0

(A.2)

We notice that as c −→ 1+ the set Ox will become empty. Thus, |Ox| = 0. So,

the only case where
(|Ox|

j

)
is non-zero is when j = 0. In this case,

(|Ox|
j

)
=
(
0
0

)
= 1.

So, we find:

L∑
n=
L

2
+1

(
|Mx|
n

)
(p1)

n(1− p1)|Mx|−n ×
(
|Nx|

0

)
(0)0(1)|Nx|

(A.3)

49

Experiments 50

We know that
(|Nx|

0

)
(0)0(1)|Nx| = 1 so it can be removed.

L∑
n=
L

2
+1

(
|Mx|
n

)
(p1)

n(1− p1)|Mx|−n

(A.4)

Remember that p1 = 1. So, as we have 00 = 1, it is the case that (1 −
p1)
|Mx|−n = 0 when |Mx| − n 6= 0. This implies that, we must have |Mx| = n. So,

when |Mx| >
L

2
, we can derive:

Pr{mode2(Q) = h(x)} =
L∑

n=
L

2
+1

(
|Mx|
n

)
(p1)

n(1− p1)|Mx|−n

=

(
|Mx|
|Mx|

)
(1)|Mx|(1− 1)|Mx|−|Mx|

= 1× 1× 1 = 1

(A.5)

Similarly, when |Mx| ≤
L

2
, we get Pr{vote(Q) = h(x)} = 0. Thus, in the

case where p1 −→ 1−, p2 −→ 0+, and c −→ 1+, if a bucket contains an element that

has an Mx that contains more than fifty percent of the total number of queries,

then that bucket is guaranteed to be selected.

Bibliography

[1] Speeding Up Convolutional Neural Networks with Low Rank Expansions (May

2014).

[2] Anderson, A., Vasudevan, A., Keane, C., and Gregg, D. Low-

memory gemm-based convolution algorithms for deep neural networks,

September 2017. https://arxiv.org/abs/1709.03395.

[3] Andoni, A., and Indyk, P. Near-optimal hashing algorithms for approxi-

mate nearest neighbor in high dimensions. Commun. ACM 51, 1 (Jan. 2008),

117–122.

[4] Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and

Schmidt, L. Practical and optimal lsh for angular distance. In Proceed-

ings of the 28th International Conference on Neural Information Processing

Systems - Volume 1 (Cambridge, MA, USA, 2015), NIPS’15, MIT Press,

pp. 1225–1233.

[5] Charikar, M. S. Similarity estimation techniques from rounding algo-

rithms. In Proceedings of the Thiry-fourth Annual ACM Symposium on The-

ory of Computing (New York, NY, USA, 2002), STOC ’02, ACM, pp. 380–388.

[6] Cheng, J., Wang, P.-s., Li, G., Hu, Q.-h., and Lu, H.-q. Recent ad-

vances in efficient computation of deep convolutional neural networks. Fron-

tiers of Information Technology & Electronic Engineering 19, 1 (Jan 2018),

64–77.

[7] Courbariaux, M., Bengio, Y., and David, J.-P. Binaryconnect: Train-

ing deep neural networks with binary weights during propagations. In Pro-

ceedings of the 28th International Conference on Neural Information Process-

ing Systems - Volume 2 (Cambridge, MA, USA, 2015), NIPS’15, MIT Press,

pp. 3123–3131.

51

Bibliography 52

[8] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. Locality-

sensitive hashing scheme based on p-stable distributions. In Proceedings of

the Twentieth Annual Symposium on Computational Geometry (New York,

NY, USA, 2004), SCG ’04, ACM, pp. 253–262.

[9] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research 12, Jul (2011), 2121–2159.

[10] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and

Zisserman, A. The pascal visual object classes (voc) challenge. International

Journal of Computer Vision 88, 2 (June 2010), 303–338.

[11] Gionis, A., Indyk, P., and Motwani, R. Similarity search in high di-

mensions via hashing. In Proceedings of the 25th International Conference on

Very Large Data Bases (San Francisco, CA, USA, 1999), VLDB ’99, Morgan

Kaufmann Publishers Inc., pp. 518–529.

[12] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[13] Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain surgeon and

general network pruning. IEEE International Conference on Neural Networks

(March 1993), 293–299.

[14] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,

and Salakhutdinov, R. R. Improving neural networks by preventing co-

adaptation of feature detectors, 2012. https://arxiv.org/pdf/1207.0580.pdf.

[15] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Ben-

gio, Y. Binarized neural networks. In Advances in Neural Information

Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

and R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 4107–4115.

[16] Indyk, P., and Motwani, R. Approximate nearest neighbors: Towards

removing the curse of dimensionality. In Proceedings of the Thirtieth Annual

ACM Symposium on Theory of Computing (New York, NY, USA, 1998),

STOC ’98, ACM, pp. 604–613.

[17] Jia, Y. Learning semantic image representations at a large scale.

http://www.deeplearningbook.org

Bibliography 53

[18] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.

CoRR abs/1412.6980 (2014).

[19] Krizhevsky, A. Learning multiple layers of features from tiny images. Tech.

rep., 2009.

[20] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet clas-

sification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[21] LeCun, Y., and Cortes, C. MNIST handwritten digit database, 2010.

[22] LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain damage.

Advances in Neural Information Processing Systems, 2 (January 1990), 598–

605.

[23] Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.

International Conference on Learning Representations 2017 (March 2017).

[24] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-

manan, D., Dollr, P., and Zitnick, C. L. Microsoft coco: Common

objects in context. In European Conference on Computer Vision (ECCV)

(Zurich, 2014). Oral.

[25] Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li, K. Multi-

probe lsh: Efficient indexing for high-dimensional similarity search. In Pro-

ceedings of the 33rd International Conference on Very Large Data Bases

(2007), VLDB ’07, VLDB Endowment, pp. 950–961.

[26] Makhzani, A., and Frey, B. J. k-sparse autoencoders. CoRR

abs/1312.5663 (2014).

[27] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D., and Riedmiller, M. A. Playing atari with deep

reinforcement learning. CoRR abs/1312.5602 (2013).

[28] Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.

Pruning convolutional neural networks for resource efficient inference. Inter-

national Conference on Learning Representations 2017 (June 2017).

Bibliography 54

[29] Neyshabur, B., and Srebro, N. On symmetric and asymmetric lshs for

inner product search. In International Conference on Machine Learning 32

(2015).

[30] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. Automatic

differentiation in pytorch. In NIPS-W (2017).

[31] Shrivastava, A., and Li, P. Asymmetric lsh (alsh) for sublinear time max-

imum inner product search (mips). In Advances in Neural Information Pro-

cessing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,

and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2321–2329.

[32] Shrivastava, A., and Li, P. Improved asymmetric locality sensitive hash-

ing (alsh) for maximum inner product search (mips). In Proceedings of the

Thirty-First Conference on Uncertainty in Artificial Intelligence (Arlington,

Virginia, United States, 2015), UAI’15, AUAI Press, pp. 812–821.

[33] Simonyan, K., and Zisserman, A. Very deep convolutional networks for

large-scale image recognition. CoRR abs/1409.1556 (2014).

[34] Spring, R., and Shrivastava, A. Scalable and sustainable deep learning

via randomized hashing. In Proceedings of the 23rd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (New York, NY,

USA, 2017), KDD ’17, ACM, pp. 445–454.

[35] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929–1958.

[36] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the im-

portance of initialization and momentum in deep learning. In Proceedings of

the 30th International Conference on International Conference on Machine

Learning - Volume 28 (2013), ICML’13, JMLR.org, pp. III–1139–III–1147.

[37] Szegedy, C., Ioffe, S., and Vanhoucke, V. Inception-v4, inception-

resnet and the impact of residual connections on learning. In AAAI (2016).

Bibliography 55

[38] Yan, X., Li, J., Dai, X., Chen, H., and Cheng, J. Norm-ranging lsh for

maximum inner product search. In Advances in Neural Information Process-

ing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 2952–2961.

[39] Zhai, K., and Wang, H. Adaptive dropout for training deep neural net-

works. NIPS’13 Proceedings of the 26th International Conference on Neural

Information Processing Systems 2 (December 2013), 3084–3092.

[40] Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Torralba, A.

Places: A 10 million image database for scene recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence (2017).

	Trinity University
	Digital Commons @ Trinity
	5-2019

	Convolution Acceleration: Query Based Filter Pruning with ALSH
	Arthur Feeney
	Recommended Citation

	Abstract
	1 Introduction
	2 Related Work
	2.1 Convolutional Neural Networks (CNNs)
	2.2 Dropout
	2.3 Improving Neural Network Performance
	2.4 Quantization
	2.4.1 Pruning

	3 Background
	3.1 Neural Networks
	3.1.1 Forward-Propagation
	3.1.1.1 Convolution Forward-Propogation

	3.1.2 Stochastic Gradient Descent (SGD)

	3.2 Neighbor Search
	3.2.1 Nearest Neighbor Search
	3.2.2 Near Neighbor Search
	3.2.3 Locality Sensitive Hashing (LSH)
	3.2.4 Gap Amplification
	3.2.5 Example: Hyperplane LSH

	3.3 Maximum Inner Product Search (MIPS)
	3.3.1 Asymmetric Locality Sensitive Hashing (ALSH)

	4 Methodology
	4.1 ALSH Convolution
	4.2 Mode Probability
	4.2.1 Analysis of the Optimal Case
	4.2.2 Extending to ALSH

	4.3 Training Strategy

	5 Experiments
	5.1 Implementation Details
	5.1.1 Hash Family

	5.2 Experimental Settings
	5.3 Experimental Results
	5.3.1 Compute Time
	5.3.2 Accuracy
	5.3.3 Bucket Statistics

	6 Conclusion
	A
	A.1 Finding Best-Case Mode Guarantee

	Bibliography

