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HIV Resistance Prediction using Feed Forward Neural Networks 

and Sequence Expansion Methodologies 

 

Abstract 

HIV is a chronic and debilitating disease affecting the lives of 

millions of people globally. While therapies to treat HIV are available, 

drug resistance is a consistent problem. For this reason, an effective 

means of determining drug resistance for a given isolate is needed. In this 

experiment, we use a simple Artificial Neural Network (ANN) model 

trained on phenotypically labeled sequences from HIVdb for resistance 

classifications. We also observe an interesting data processing method, 

and determine train and test set division before such data processing is 

optimal for network performance. 
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Chapter 1: Introduction 

HIV is a pandemic disease which affects the lives of approximately 

36 million people worldwide, annually killing 940,000 as of 2017. About 

1.8 million of these cases are new. The Human Immunodeficiency Virus 

(HIV) targets the host immune system, causing a decrease in defense 

against infections and some cancers. If allowed to progress, Acquired 

Immune Deficiency Syndrome (AIDS) can develop, with symptoms 

including severe infections like tuberculosis, weight loss, fever, and 

lymphomas. There is currently no known cure for HIV/AIDS, however a 

number of treatment options do exist (WHO 2018). A recent case though 

was reported cured through bone marrow transplants, and although the 

incident is not fully understood nor yet fully applicable to general HIV 

patients, it has sparked interest in new potentials for managing the 

disease. 
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1. The HIV Virion and a History of 

   Antiretrovirals 

The HIV virion itself is composed if 15 proteins categorized as 

either structural, enzymatic, gene regulatory, or accessory. They are: MA , 

CA , NC , p6, SU , and TM , PR , RT , IN, Tat, Rev, Nef, Vif, Vpr, and Vpu. 

All structural proteins include MA (matrix), CA (capsid), NC 

(nucleocapsid), p6, SU (surface), and TM (transmembrane). All enzymatic 

proteins include PR (protease), RT (reverse transcriptase), and IN 

(integrase), and are of greatest interest here, as they are crucial in the HIV 

life cycle, unique to the virus, and so are ideal for drug therapy. Most such 

treatments target specific stages in the HIV life cycle driven by these 

enzymatic proteins, namely reverse transcription, genome integration, 

and protein assembly (NIH 2018). The four main classes of drugs used in 

these treatments are nucleoside reverse transcriptase inhibitors (NRTI’s), 

non-nucleoside reverse transcriptase inhibitors (NNRTI’s), protease 

inhibitors (PI’s), and integrase inhibitors. The first of such drugs 

developed was an NRTI called ​azidothymidine (AZT), discovered in 1964 

by the National Cancer Institute and originally used in cancer therapy. 
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Since then, a multitude of antiretrovirals (ARV’s) have been created, with 

more than 30 drugs currently available, making treatment of HIV more 

manageable and effective. However, HIV mutates quickly, allowing some 

people to become resistant within a matter of days. To counter drug 

resistance, a triple drug therapy called highly active antiretroviral therapy 

(HAART) was developed, which combines multiple drug classes in a single 

treatment, acting as a high genetic barrier to resistance (NIH 2019). Still, 

due to the lack of proofreading by reverse transcriptase during viral 

replication, high mutation rates can still generate resistant strains (Ji 

1992). It is estimated that 8-20% of untreated carriers in North America 

are to some degree drug resistant (WHO 2018). And so an efficient means 

of resistance testing is needed for prescribing effective antiretrovirals, 

given that current testing is both expensive and time consuming. 
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2.  Resistance Classifiers and Related Works 

 

A solution to efficient resistance testing is a genotypic 

interpretation algorithm, such as Stanford’s HIVdb Program. Most 

such algorithms though are rules based, using known mutation 

sites along the HIV genome to determine likelihood of resistance. 

For instance, a large class of mutations used in the HIVdb Program 

for resistance in RT are Thymidine Analog Mutations (TAM’s). 

TAM’s typically confer AZT and D4T resistance, and are classified 

into two main types. Type 1 TAM’s include the mutations M41L, 

L210W, and T215Y, while type 2 TAM’s include D67N, K70R, 

T215F, and K219Q/E, with the main difference between these types 

being that type 1 confers greater resistance to ABC, DDI, and TDF 

compared to type 2. Another class called multi-nucleoside 

mutations include the Q151M mutation which occurs in concert 

with a number of accessory mutations: A62V, V75I, F77L, and 

F116Y. By itself, this mutation can confer high level resistance to 

AZT, D4T, DDI and ABC, but with accessories can confer additional 

mid level resistance to 3TC, FTC and TDF (NRTI Resistance Notes).  
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Other algorithms use classification methods such as Artificial 

Neural Networks (ANN’s), Sparse Dictionary Classification, 

Random Forest, and Support Vector Machines to make qualitative 

predictions (Khalid 2018; Shen 2016; Yu 2014; Yu 2013) . A number 

of these experiments have unique data processing methods, some 

of which incorporate protein structural data. For instance, Yu ​et al. 

2014 reported using Delaunay triangulation to encode 3D residue 

position. Khalid ​et al. ​ incorporated hydrophobicity data and 

protein secondary structure into support vector machines.  In this 

experiment we apply a simple ANN model, while also 

implementing a data processing method, which uses sequence 

expansion to handle data ambiguity. This data processing method 

has been used in a number of studies with reportedly good results, 

and for this reason we wanted to explore certain characteristics 

(Amamudy 2018; Yu 2014; Yu 2013). In Yu 2014, initial sequences 

for HIV Reverse Transcriptase (RT), and HIV Protease (PR) were 

acquired from Stanford’s HIVdb and then expanded using the 

above mentioned algorithm, producing approximately 60,000 total 

sequences. Each sequence had a set of drug resistant labels, which 

were encoded such that for a given PR sequence, a label value < 3.0 
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was denoted as 0, and a value > 3.0 was denoted as 1, while RT 

cut-off values varied according to the drug. Amino acids for a 

particular sequence were then encoded into an adjacency matrix 

using Delaunay triangulation, where each entry is the average 

distance between two types of amino acids based on the typical 

protein structure. While reports from this work indicate good 

performance, we note that the Delaunay triangulation may overly 

compress protein structure data and so format things in a way that 

is less biologically significant. 

Amammudy also implements the expansion algorithm for 

RT and PR data, though with some slight modifications. Before 

expansion, they removed non B subtypes from the data set, and 

then performed the expansion with set cut-off values, meaning 

that sequences were limited in the number of expanded sequences 

they could create. They then encoded the amino acids with an 

integer value of 1 to 22. Neural networks with various architectures 

were made to train on different drug labels from the expanded 

data, and networks with the best performance were chosen. We 

note a number of potential issues here as well. Firstly, the amino 

acid encoding method used implies higher similarity between 
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certain residues when compared to others, which is not necessarily 

true. Secondly, choosing of arbitrary and variant architures for 

each drug label is not best practice, especially when the specific 

architectures chosen for each label are not indicated.  

Due to these exceptional results, despite our skepticism 

about several algorithmic choices, we attempted to replicate the 

methods used in Amammudy and evaluate the impact of some of 

their analysis choices. Particularly, we tested the effects of 

expansion generally on network performances, and attempted to 

characterize the importance of dividing training and test sets 

either before or after applying the sequence expansion method. 

  

Chapter 2: Materials and Methods 

1. Sequence Acquisition and Processing 

1916 PhenoSense RT sequences were acquired from Stanford’s 

HIVdb. Each sequence entry contained the list of mutated amino 

acid positions for an isolate, as well as the degree of drug 

resistance for a set drug list. The degree of resistance for each drug 

was experimentally determined using Viralogic’s Phenosense 
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assay, with a value greater than 1 indicating above standard 

resistance. The drug set was a combination of NRTI’s and NNRTI’s: 

3TC, ABC, AZT, D4T, DDI, TDF, EFV, NVP, ETR, and RPV. In order 

to better understand the data, we performed an analysis of subtype 

distribution, and found that subtype B was most prevalent. 

Accordingly, we subtracted non subtype B entries from the data set 

to eliminate possible noise. The data was then parsed, with the 

sequence data placed inside of our input tensor, and the resistance 

data inside of our target. The data sets were then encoded for 

proper input into the network. For each entry in the sequence data, 

the amino acids were converted to a sequence of integers, where 

each amino acid is represented by a number from 1 to 22, and the 

total length of the sequence is set to the length of HIVdb’s RT 

consensus sequence. The target is converted to a sequence of 0’s 

and 1’s, where 1 indicates the degree of resistivity reported for a 

drug is greater than 1, and 0 indicates a resistivity <= 1.  
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2.  Sequence Expansion Algorithm 

Next, we implemented the sequence expansion algorithm. Due to 

the method of sequence recording and natural diversity of HIV in 

samples, there are ambiguous sites along a sequence, usually 

represented as either an X or a combination of amino acids (AA’s) 

separated by a comma. An ‘X’ here means that the site was not 

recorded, and multiple AA’s mean that several residues were 

recorded. For instance, if we consider ‘X’ to be any amino acid, a 

single ambiguous sequence with an X can represent 22 possible 

real sequences. For each sequence then, we calculated the number 

of possible sequences which could be derived from ambiguous 

sites. Then, if the number of possible sequences for an expansion 

exceeded a cut-off value, we removed that sequence from the data. 

To understand the effects of the cut-off on model performance, we 

attempted three different cut-off values of 1000, 300, and 50, 

generating three unique data sets. After expansion, we recorded 

64,000, 37,000 , and 11,000  sequences total in each set, and also 

counted negative to positive labels for each drug in each set to 

monitor effects of expansion on data balance.  
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3.  Network Structure, Training, and Testing 

Next, we constructed 11 simple feed forward neural networks, each 

with 1 hidden layer of 20 nodes using Pytorch. We chose the built 

in Multi Label Margin Loss as our loss function, and set the 

learning rate at 1e-4. We then trained each of the 11 networks 

differently. One of the networks was trained using the entire input 

and target, which we termed the MultiDrug network. The other 10 

networks were trained using only a subset of the target, so that the 

target was a single value representing resistivity for a single drug. 

Each network then specialized in the prediction of a single drug, 

which we labeled Single Drug networks. Before training, we divided 

the input data into train and test sets, with the division being 70% 

to 30%. We then trained and tested all networks for 10 epochs, 

recording accuracy, precision, fallout, and recall, with a cutoff for 

true predictions at 0.7. After training and testing, AUC (Area Under 

the ROC Curve) curves were generated for each network. 

Training and testing sets were then generated using two 

different methods, specifically pre-expansion and post expansion. 
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Out of curiosity in exploring the methods used in Amamudy 2018, 

we wished to observe the effects of dividing our data set at these 

distinct points. 70% to 30% train and test sets were then generated 

before expansions, and then expanded independently, while a 

separate train and test set were derived from the initial data after 

expansion. We then encoded, and passed these sequences into 11 

networks for training and testing in the same way as described 

previously for our post expansion set, and then again for the 

pre-expansion set for each of the three expanded sets. 

We also trained and tested in the absence of expansion 

using “one-hot” encoding. We did this in an attempt to determine 

the potential effects of this encoding technique on network 

performance. 
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Chapter 3: Results 

We created AUC curves for each drug, or rather for each Single Drug 

network at three distinct values for expansion cut off and at two points 

before and after we expanded. We did this to measure network 

performance in conjunction with the expansion, and to provide insight 

into when expansion should be occurring. 
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1.  3TC 

  

  
  
 
 
Figure 1 ​: 3TC Single Drug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 2 ​: 3TC Single Drug Networks Post Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
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2.  ABC 

 

 
 
Figure 3 ​: ABC SingleDrug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 4 ​: ABC SingleDrug Networks Post Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
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3.  AZT 

 

 
Figure 5 ​: AZT SingleDrug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 6 ​: AZT SingleDrug Networks Post Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
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4.  D4T 

 

 
Figure 7 ​: D4T SingleDrug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 8 ​: D4T SingleDrug Networks Post Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
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5.  DDI 

 

 
Figure 9 ​: DDI SingleDrug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 10 ​: DDI SingleDrug Networks Post Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 
 
 
 
 

20 



6.  EFV 

 

 
Figure 11 ​: EFV SingleDrug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 12 ​: EFV SingleDrug Networks Post Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
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7.  ETR 

 

 
Figure 13 ​: ETR Single Drug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 14 ​: ETR Single Drug Networks Post Expansion for Train (Blue), 
and Test (Green) at cut-off values of 50, 300, and 1000 going from left to 
right. 
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8.  NVP 

 

 
Figure 15 ​: NVP Single Drug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 16 ​: NVP Single Drug Networks Post Expansion for Train (Blue), 
and Test (Green) at cut-off values of 50, 300, and 1000 going from left to 
right. 
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9.  RPV 

 

 
Figure 17 ​: RPV Single Drug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 18 ​: RPV Single Drug Networks Post Expansion for Train (Blue), 
and Test (Green) at cut-off values of 50, 300, and 1000 going from left to 
right. 
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10.  TDF 

 

 
Figure 19 ​: TDF Single Drug Networks Pre Expansion for Train (Blue), and 
Test (Green) at cut-off values of 50, 300, and 1000 going from left to right. 
 

 

 
Figure 20:​ TDF Single Drug Networks Post Expansion for Train (Blue), 
and Test (Green) at cut-off values of 50, 300, and 1000 going from left to 
right. 
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11.  MultiDrug 

 

 
Figure 21 ​: MultiDrug Networks Pre Expansion for Train (Blue), and Test 
(Green) at cut-off values of 50, 300, and 1000 going from left to right. 

 

 
Figure 22 ​: MultiDrug Networks Post Expansion for Train (Blue), and Test 
(Green) at cut-off values of 50, 300, and 1000 going from left to right. 
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12.  One-Hot 
 

TDF RPV EFV 

 
DDI NPV ETR 

 
D4T AZT ABC 

 
3TC Mult 

 
Figure 23 ​: AUC’s for Single Drug and Multi Drug networks using one-hot 
encoding without expansion during training. 
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13. Label Distribution 
 
 
 
 

A. B. 

 
C. D. 

 

 
 
Figure 24:​ The number of negative and positive labeled samples for each 
drug at (A). Expansion cut-off=0, (B)Expansion cut-off=50, (C) Expansion 
cut-off=300, (D) Expansion cut-off=1000.  
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Chapter 4: Discussion 

We wished to elucidate qualities of this expansion technique as it 

relates to classification algorithms for antiretroviral resistance generally. 

Given that the technique has become more widely used, it is import to 

further explore characteristics peculiar to the method. 

 

1. Effects of Expansion and Comparing Pre to 

Post Methods 

Firstly, we note that across all Single Drug networks, an increase in 

expansion cut-off value seems to optimize network performance. 

This holds true for training, test, post expansion, and pre 

expansion sets, indicating that the technique successfully improves 

unsupervised learning. Importantly, between most train and test 

AUC’s, there was minimal change in curve structure, indicating 

that overfitting is minimized. However, in Single Drug groups DDI, 

RPV, TDF, NPV, ETR, and EFV we observe a noticeable shift and 
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occasional flattening of AUC’s in pre expansion test sets when 

compared to training set counterparts (Figures 9, 11, 13, 15, 17, 

19). The corresponding AUC’s in post expansion sets though 

maintained their structure between train and tests sets (Figures 10, 

12, 14, 16, 18, 20 ). This initially suggests that only pre expansion 

sets observed overfitting. However given that both pre and post 

expansion groups are trained and tested on the same data, we 

think this result is indicative of a fault in post expansion methods. 

Specifically, in high expansion cut-off groups, up to 1000 samples 

are derived from a single entry, producing high sequence similarity 

in the data set. The subsequent post expansion train and test sets 

derived then likely have high similarity, producing tests that are 

then not distinct from training, appearing to perform well, but are 

considerably invalid. Pre expansion train and test set division is 

then the optimal approach when using this technique. 

Despite potentially exaggerated test performance in post 

expansion sets, pre expansions sets performed as well or better 

than post expansion sets for all drugs except ETR (Figures 13, 14). 

While we are uncertain why ETR’s performance was notably lower, 

it may be attributable to a lack of ETR resistant samples in the data 
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set (Figure 24). Though, RPV has a similar deficit in resistant 

samples and yet performs well, suggesting another factor is 

involved. RPV actually performs well regardless of expansion 

cut-off, and appears to outperform RPV post expansion across all 

expansion cut-offs. We are unsure what may be causing RPV to 

perform so well, but a lack of resistant samples (Figure 24) may 

cause the model to always label negative, creating the appearance 

of learning. Though, this still does not explain RPV post 

expansion’s relatively poorer performance, and in light of ETR’s 

similar condition, it may be another factor altogether. 

 

2. How Our Work Compares 

In comparison to our results with those of Amammudy, we see that 

we were not able to fully recreate their results, and that in general, 

our networks performed substantially worse across all drugs.  For 

all NRTI’s and NNRTI’s, Amamudy reported test r-squared values 

greater than 0.91, which is better than even the best of our Single 

Drug networks. While we note that AUC’s are not equivalent to 

r-squared values, we would still expect graphs with areas 
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approaching 1. Given that we had mostly replicated their design, 

we can attribute this difference in results to two likely sources. 

First, we anticipate that Amammudy is likely performing the post 

expansion technique, as they do not indicate any distinction 

between pre and post techniques, and so the ordering of their 

methods implies that the post expansion method was used. Doing 

this could potentially over inflate test performance and so skew 

their results. But even our post expansion sets could not generate 

comparative results, and so we believe there to be another 

potential cause. This cause may be the use of a variety of unique 

network architectures for each Single Drug network. The use of 

these unique architectures likely optimized performance further, 

though as stated previously doing this is not considered best 

practice, and is certainly not easily replicable as the final unique 

architectures were not indicated. In Yu 2014, accuracies greater 

than 91% were reported using an ANN model. However, it appears 

that they may also be using the post expansion technique, though 

their exact neural architecture is not well discussed, making 

comparison limited. 
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3. The MultiDrug Network and Ambiguity 

Distribution 

The MultiDrug networks performed poorly across all groups 

(Figures 21, 22). The change in expansion cut-off has no apparent 

trend across train or test sets in either post expansion or pre 

expansion. This result confirms that of Amamudy ​et al​., and 

assures us that our model is comparable. 

We also tracked the quantity of negative and positive labels for 

each drug across expansion cut-off  as a way of determining the 

effects of expansion on data balance (Figure 24). In particular, our 

concern was that ambiguous sequences were distributed 

disproportionately in the data, such that there were more 

ambiguous sequences labeled negative or positive for a drug, 

resulting in unbalanced data after expansion. However, drug 

labeling balance appears mostly constant across expansions. This 

indicates that the initial data set is more diverse and well 

distributed with ambiguous sequences than originally expected.  
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Chapter 5: Concluding Remarks 

1.  Future Considerations 

We had here explored a very specific quality of a certain algorithm 

used in HIV resistance prediction. In future endeavors, however, 

we would like to explore other routes of intrigue. Of particular 

interest is the encoding of protein structural and chemical data 

into classifiers. A number of authors here mentioned and also not 

mentioned have reported successful use of such data in classifiers, 

and so research into these classifiers to optimize network 

performance may be an avenue. We have also discussed other 

means of amino acid residue encoding which may confer more 

detailed information to a classifier, especially in the case of 

hydrophobicity and charge. A means of further characterizing the 

expansion method is still needed also. Creating a sort of expansion 

profile for a given data set which can indicate the degree of 

expansion possible for each individual original sequence may be 

useful in determining if the algorithm is a good fit for that data set.  
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