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Fig. 5  Species differences in lateral geniculate nucleus (LGN) density and nucleus sphericus (NS) soma size 
Regions in the brain of the green anole (a visually communicating species) are shown on the left, and regions in the whiptail (a chemically commu-
nicating species) are shown on the right. A) The green anole has denser neurons in the LGN than B) the whiptail. C) The green anole has smaller 
neurons in the NS than D) the whiptail. Scale bar in each image is 50 µm. 

 

Table 3  PGLS regression analyses between visual and chemical behaviors, and measures of brain morphology 

Behavior measure Brain morphology Covariate β df t R2 P 

Visual rate LGN soma size Brain volume -0.005 2,3 -0.39 0.83† 0.364 

 LGN density  2.42 1,4 2.10 0.53 0.051 

 NR soma size  0.02 1,4 0.27 0.02 0.400 

 NR density  -0.80 1,4 -0.42 0.04 0.350 

Visual proportion LGN soma size Brain volume 0.02 2,3 0.24 0.83† 0.414 

 LGN density  -0.39 1,4 -0.05 <0.01 0.483 

 NR soma size  -0.24 1,4 -0.54 0.07 0.308 

 NR density  -5.62 1,4 -0.57 0.08 0.299 

Chemical rate NS soma size  0.026 1,4 1.51 0.36 0.103 

 NS density  -0.080 1,4 -0.06 <0.01 0.479 

Chemical proportion NS soma size  0.139 1,4 2.15 0.54 0.046 

 NS density  7.93 1,4 1.64 0.40 0.088 

† In analyses of LGN soma size, including brain volume as a covariate, R2 value represents the full model with both variables. 

 
The proportion of chemical display was positively 

correlated with the soma size of the NS (Table 3), such 
that species with larger soma sizes in the NS used a 
higher proportion of chemical communication than 
those with smaller soma. However, NS soma size was 
not associated with the rate of chemical display, and NS 
density was not associated with the rate or proportion of 
chemical display (Table 3). 

3  Discussion 

The comparative method has long been a central ap-
proach in the field of evolutionary neuroscience (re-
viewed in Kaas, 2009). One general finding from this 
rich literature is that the size of a brain region is fre-
quently associated with the behavioral functions it sup-
ports, i.e., Jerison’s (1973) principle of proper mass. A 
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well-known example of this relationship is the associa-
tion across birds between the relative volumes of brain 
regions involved in song production and the complexity 
of the species’ song (e.g., DeVoogd et al., 1993; Breno-
witz, 1997). Further, selection can act on the relative 
sizes of different regions of the brain independently of 
overall brain size (i.e., mosaic evolution) in taxa as di-
verse as mammals, birds, and fish (e.g., Barton and 
Harvey, 2000; Iwaniuk et al., 2004; Pollen et al., 2007; 
Smaers and Soligo, 2013; Gutiérrez-Ibáñez et al., 2014). 
The influence of natural selection on brain morphology 
is particularly relevant in the evolution of the sensory 
systems that allow an animal to interact with its envi-
ronment. For example, in primates and insectivorous 
mammals, nocturnal species have larger brain regions 
associated with olfaction than diurnal species, and di-
urnal primates have larger visual cortexes than their 
nocturnal counterparts (Barton et al., 1995). Further, the 
size and cell number of regions in the visual system of 
primates, and the sizes of their olfactory bulbs, have 
evolved in association with ecological factors such as 
diet, activity period, and social structure (Barton, 1998; 
Barton, 2006). Likewise, in cartilaginous fishes, the size 
of the optic tectum is also associated with ecology, as 
this region is smallest in fish living in ocean depths 
where vision is highly constrained (Yopak and Lisney, 
2012); yet, in these dark habitats, the volume of the ol-
factory bulb is enhanced, supporting chemical commu-
nication behaviors (Yopak et al., 2014). Similarly, in the 
present study, the two lizard species that rely on chemi-
cal communication (skinks and whiptails) primarily 
occur in a complex habitat (i.e., leaf litter) where visual 
signals may be less effective than chemical signals. 
Overall, we found support among six lizard species for 
the hypothesis that the behavioral use of a communica-
tion modality has convergently evolved with the neu-
roanatomy of brain regions associated with that modali-
ty. Our results provide evidence for evolutionary asso-
ciations between visual communication behaviors and 
neuron density in the LGN, and chemical communica-
tion behaviors and neuron size in the NS. 

The LGN directly receives input from the retina, the 
source of visual information, and it sends further pro-
jections to other regions of the brain in the telencepha-
lon (Aboitiz and Montiel, 2007). Due to the LGN's cen-
tral role in processing visual signals, species that have 
an increased number of neurons in the LGN could po-
tentially process larger amounts of visual information, 
or could process visual information more efficiently. 
Indeed, across primate species, the number of neurons 

in the LGN increases as the number of neurons in the pri-
mary visual cortex increases, and visual resolution in-
creases in association with these neural densities (Ste-
vens, 2002). In lizards, subtle changes in visual displays 
can communicate complex information. For example, in 
Sceloporus and Anolis lizard displays, the shape, num-
ber, or speed of push-ups in a display, and the body pos-
ture from which push-ups are performed, can commu-
nicate information about the status or identity of an an-
imal (Martins, 1993; Ord and Martins, 2006). Thus, an 
increase in the neural density of the LGN could allow 
visually oriented lizard species to process subtle but 
important information about its social environment. 

Because the NS is a secondary projection of the 
VNO (Halpern, 1987), species that communicate pri-
marily using chemical signals likely rely on information 
processed by the NS more frequently than other species.  
In support of this hypothesis, previous work has deter-
mined that squamate species with highly developed 
olfactory systems have larger NS (Lanuza and Halpern, 
1998), and the present study suggests that this may re-
sult from larger soma in the NS in chemically commu-
nicating species (Fig. 5 and Table 3). Larger neurons in 
the NS could allow the NS to receive a larger number of 
axonal connections from the VNO, which could then 
allow the NS to process more chemosensory informa-
tion. Additionally, because action potentials require 
energy (Attwell and Laughlin, 2001), neurons that fire 
more frequently may require more energy-producing 
mitochondria to meet their energy needs (Kann and 
Kovács, 2007). An increased number of mitochondria 
would take up a larger amount of space in the cell, 
leading to the need for a larger cell body.  

In contrast to our predictions, we found no relation-
ships between the neural morphology of the NR and 
visual behaviors. Thus, the diversity of cellular mor-
phology in the NR (Table 2) could be related to many 
fundamentally important behaviors in addition to the 
visual displays examined here, including navigation 
through a habitat, capturing mobile prey, and identify-
ing territorial boundaries. Further, in pigeons Columba 
livia, the NR is associated with the detection of looming, 
such as occurs when a flying predator grows larger in 
one’s field of view as it approaches (Wang et al., 1993; 
Sun and Frost, 1998). As one of the most common and 
threatening predators of all of the lizards in this study is 
birds, the functional use of the NR in an ecological 
context may be quite similar across these species. Thus, 
the reliance of all six of the lizard species in this study 
on visual cues could suggest why neither soma size nor 
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density in this region served as a predictor for the visual 
communication behaviors quantified here. 

The visual and chemical systems in lizards may fur-
ther evolve in response to constraints resulting from the 
investment made in the primary sensory system. For 
example, trade-offs in the relative volume of brain re-
gions involved in the auditory and visual systems have 
been shown in bats (Baron et al., 1996) and owls (Gu-
tiérrez-Ibáñez et al., 2013), and trade-offs in neural den-
sity in the primary visual cortex and hippocampus have 
been found in carnivores and primates (Lewitus et al., 
2012). Although there was no negative correlation be-
tween neuron size or density in visual vs. chemical re-
gions in this study (results not shown; all P > 0.3), this 
may be due to the small number of species included in 
this study. We urge continued study of reptilian neuroa-
natomy to address the hypothesis of evolutionary con-
straint in sensory investment in this group. 

In sum, visual and chemical modalities provide the 
primary means by which many animals interact with 
their social and physical environments, and the neuroa-
natomy of the brain regions that process information 
from visual and chemical signals is thus critical to a 
species’ habitat use, social interactions, prey capture, 
and predator evasion. Although we found evidence for 
the convergent evolution of neural morphologies asso-
ciated with visual and chemical modalities across a dis-
tantly related group of lizard species, our results also 
revealed the diversity of patterns of neural size and den-
sity in this group. By examining the structure of brain 
regions associated with behaviors that rely on sensory 
perception, we gain a more nuanced understanding of 
the cellular traits that underlie the fundamental mechani-
sms of animal ecology. 
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Supplementary Table 1  Summary of brain morphology measues [average (SE)] for individual lizards in six species 

Species 
Brain volume 

(mm3) 
LGN soma size

(µm2) 
LGN  

density 
NR soma size

(µm2) 
NR density 

NS soma 
size (µm2) 

NS density 

Anolis carolinensis 17.6 27.9 (1.21) 64.8 (4.52) 28.2 (0.90) 46.5 (5.78) 32.8 (0.86) 18.3 (1.98) 
Anolis carolinensis 26.7 25.6 (0.80) 70.8 (3.07) 32.1 (0.82) 31.5 (2.66) 30.4 (0.91) 34.0 (1.97) 
Anolis carolinensis 27.0 26.5 (0.96) 56.0 (3.03) 28.0 (0.76) 44.5 (3.59) 30.0 (1.45) 22.5 (2.50) 
Anolis carolinensis 32.8 25.7 (1.18) 51.0 (5.35) 29.3 (0.87) 48.5 (1.71) 28.5 (1.27) 14.8 (2.98) 
Anolis carolinensis 30.0 27.2 (0.90) 50.5 (5.30) 35.3 (0.93) 26.0 (3.27) 31.2 (1.44) 24.0 (1.37) 
Anolis carolinensis 28.8 28.7 (1.11) 47.5 (6.65) 28.8 (0.89) 36.0 (5.62) 32.8 (2.07) 19.0 (1.25) 
Anolis carolinensis 28.6 28.5 (1.18) 51.3 (1.11) 31.9 (0.85) 30.0 (2.55) 30.2 (1.28) 29.0 (1.26) 
Anolis carolinensis 24.7 28.6 (1.33) 56.8 (2.85) 31.5 (0.77) 42.3 (6.99) 30.8 (1.17) 25.8 (3.41) 
Anolis carolinensis 26.2 27.5 (1.25) 52.5 (4.09) 25.7 (0.71) 34.3 (2.25) 29.7 (0.97) 23.3 (2.95) 
Anolis carolinensis 25.9 25.2 (0.92) 66.0 (1.78) 25.3 (0.82) 25.5 (1.33) 32.7 (1.09) 19.8 (3.94) 
Leiocephalus carinatus 75.6 35.4 (1.38) 35.3 (1.03) 28.2 (0.94) 26.3 (1.93) 36.9 (0.97) 31.0 (4.99) 
Leiocephalus carinatus 77.1 34.8 (2.06) 26.8 (11.0) 32.0 (1.37) 20.3 (1.25) 33.7 (1.02) 45.0 (6.65) 
Leiocephalus carinatus 67.2 34.7 (1.53) 29.5 (2.06) 33.0 (3.13) 19.0 (0.70) 34.6 (1.06) 30.5 (2.50) 
Leiocephalus carinatus 60.9 33.7 (1.02) 39.5 (2.25) 37.6 (2.37) 22.5 (3.50) 35.3 (0.99) 32.5 (0.83) 
Leiocephalus carinatus 77.6 32.2 (1.05) 37.3 (2.93) 32.6 (1.11) 25.0 (2.35) 32.5 (0.95) 32.5 (5.82) 
Leiocephalus carinatus 63.7 31.7 (1.18) 31.3 (3.35) 32.6 (1.12) 31.5 (2.63) 34.6 (0.98) 33.5 (0.83) 
Leiocephalus carinatus 65.9 36.1 (1.21) 28.8 (2.17) 30.5 (1.07) 36.0 (2.86) 32.9 (1.17) 29.0 (6.24) 
Leiocephalus carinatus 66.3 31.9 (1.09) 41.0 (3.22) 35.7 (1.42) 39.5 (2.50) 30.8 (0.86) 35.5 (9.15) 
Leiocephalus carinatus 69.1 36.2 (1.58) 37.0 (6.98) 32.2 (1.52) 30.0 (4.65) 32.2 (1.14) 37.0 (6.66) 
Leiocephalus carinatus 68.8 37.9 (1.00) 24.5 (3.69) 33.0 (1.29) 35.3 (3.68) 32.0 (1.06) 31.5 (2.50) 
Sceloporus olivaceus 87.1 30.9 (1.09) 48.8 (3.15) 23.2 (0.87) 51.3 (5.44) 35.5 (1.51) 30.5 (9.50) 
Sceloporus olivaceus 58.1 31.4 (1.09) 48.3 (2.02) 27.2 (1.07) 40.3 (5.85) 40.3 (1.39) 30.5 (2.50) 
Sceloporus olivaceus 74.4 34.1 (1.41) 43.0 (3.81) 27.3 (0.80) 70.0 (9.17) 42.7 (1.32) 32.5 (0.05) 
Sceloporus olivaceus 73.8 32.8 (1.27) 36.0 (4.64) 25.9 (0.79) 52.5 (4.44) 40.4 (1.30) 40.3 (3.92) 
Sceloporus olivaceus 63.7 25.4 (1.17) 35.5 (0.57) 25.8 (0.69) 48.8 (2.50) 42.2 (1.30) 48.5 (4.18) 
Sceloporus olivaceus 61.3 32.0 (1.31) 36.0 (1.10) 27.6 (1.17) 52.8 (2.50) 35.4 (1.39) 29.8 (3.19) 
Sceloporus olivaceus 82.3 27.8 (1.25) 44.8 (1.49) 26.0 (0.92) 55.5 (5.17) 39.5 (1.22) 30.0 (1.00) 
Sceloporus olivaceus 65.9 28.8 (1.06) 37.3 (1.55) 25.0 (0.70) 63.5 (4.97) 33.9 (1.28) 47.0 (3.22) 
Sceloporus olivaceus 58.0 29.8 (1.39) 36.0 (3.34) 24.8 (0.84) 54.3 (4.77) 37.5 (1.65) 34.5 (0.50) 
Sceloporus olivaceus 66.0 30.9 (1.03) 40.3 (1.98) 25.1 (0.87) 48.8 (5.99) 38.0 (1.62) 34.8 (1.49) 
Hemidactylus turcicus 18.5 31.2 (1.46) 49.0 (3.03) 27.6 (0.70) 25.0 (2.08 37.5 (1.31) 51.0 (1.55) 
Hemidactylus turcicus 22.6 26.1 (1.06) 44.8 (3.47) 29.7 (1.74) 25.5 (1.71) 35.3 (1.03) 38.0 (2.17) 
Hemidactylus turcicus 22.2 26.0 (1.00) 54.0 (3.56) 28.7 (0.99) 27.5 (1.19) 38.5 (1.11) 37.5 (4.88) 
Hemidactylus turcicus 24.1 26.4 (0.96) 52.8 (8.37) 28.3 (0.73) 46.0 (4.56) 34.7 (1.32) 30.0 (2.17) 
Hemidactylus turcicus 20.5 30.5 (1.24) 49.8 (4.44) 28.8 (0.91) 36.8 (7.62) 41.0 (1.27) 34.0 (6.50) 
Hemidactylus turcicus 19.9 32.3 (1.55) 46.3 (5.44) 36.0 (1.75) 26.0 (1.22) 37.3 (1.56) 39.0 (2.99) 
Hemidactylus turcicus 15.4 27.4 (1.01) 54.5 (2.50) 34.0 (1.51) 37.5 (3.38) 34.5 (1.14) 40.5 (1.63) 
Hemidactylus turcicus 22.1 27.7 (1.07) 56.0 (4.99) 30.3 (1.04) 34.8 (2.29) 33.9 (1.22) 54.5 (0.54) 
Hemidactylus turcicus 21.8 33.3 (1.76) 49.0 (1.27) 30.9 (1.26) 22.5 (0.50) 33.6 (1.09) 33.0 (4.34) 
Hemidactylus turcicus 16.9 29.7 (1.35) 31.3 (1.70) 35.0 (1.21) 21.3 (0.63) 36.2 (1.24) 39.5 (8.13) 
Scincella lateralis 9.2 21.1 (0.82) 51.0 (4.24) 24.5 (0.97) 65.8 (11.6) 40.5 (1.24) 41.0 (4.76) 
Scincella lateralis 9.1 23.5 (1.02) 44.3 (4.80) 26.0 (1.07) 48.0 (6.98) 37.7 (1.07) 47.5 (3.33) 
Scincella lateralis 8.0 23.7 (0.77) 46.3 (5.92) 26.6 (0.89) 51.8 (5.22) 41.3 (2.41) 38.0 (2.66) 
Scincella lateralis 10.3 24.9 (0.95) 52.0 (8.46) 27.6 (0.99) 42.3 (4.91) 37.8 (1.38) 34.5 (3.33) 
Scincella lateralis 10.5 24.8 (0.90) 55.3 (7.11) 27.7 (1.09) 39.0 (8.62) 36.6 (1.20) 44.5 (1.78) 
Scincella lateralis 8.5 23.4 (0.70) 54.0 (7.55) 29.0 (1.12) 21.5 (2.33) 38.2 (1.31) 38.5 (4.29) 
Scincella lateralis 8.2 24.5 (1.14) 21.5 (2.98) 30.4 (0.76) 57.8 (9.24) 39.8 (1.60) 38.0 (2.86) 
Scincella lateralis 9.7 25.6 (1.46) 39.3 (3.98) 28.0 (1.00) 50.0 (6.17) 36.0 (1.40) 41.3 (3.60) 
Scincella lateralis 10.4 22.0 (1.10) 41.0 (5.86) 26.2 (0.92) 37.3 (9.40) 35.4 (1.30) 38.8 (1.98) 
Aspidoscelis gularis 70.6 28.9 (1.18) 34.8 (3.20) 28.7 (0.90) 46.5 (5.81) 38.9 (1.73) 31.5 (0.50) 
Aspidoscelis gularis 68.6 32.0 (1.40) 31.3 (3.47) 31.0 (1.40) 36.0 (3.14) 40.2 (2.67) 34.8 (2.98) 
Aspidoscelis gularis 59.0 32.7 (1.28) 33.3 (4.77) 27.8 (1.00) 45.3 (1.55) 38.7 (1.28) 36.5 (3.50) 
Aspidoscelis gularis 69.3 31.3 (1.75) 33.3 (3.35) 28.5 (0.73) 40.0 (1.22) 38.5 (1.29) 39.5 (1.99) 
Aspidoscelis gularis 74.8 29.8 (1.39) 32.0 (2.12) 29.4 (0.82) 44.5 (2.63) 46.1 (1.63) 40.9 (1.72) 
Aspidoscelis gularis 66.8 30.5 (1.35) 33.0 (1.47) 30.3 (1.17) 43.0 (6.20) 39.6 (1.58) 31.5 (2.54) 
Aspidoscelis gularis 67.9 31.4 (1.50) 38.5 (4.17) 27.1 (0.85) 45.0 (4.02) 40.9 (1.72) 37.0 (3.00) 
Aspidoscelis gularis 54.7 28.3 (1.46) 38.8 (2.98) 27.1 (0.92) 47.8 (3.71) 38.8 (2.14) 21.5 (3.42) 
Aspidoscelis gularis 44.9 31.0 (1.40) 48.0 (3.32) 30.2 (0.84) 52.3 (3.90) 49.0 (2.70) 34.5 (4.50) 
Aspidoscelis gularis 67.1 32.6 (1.65) 36.0 (1.95) 29.7 (0.98) 48.5 (2.98) 35.1 (1.80) 39.3 (2.33) 

 
 

  
  


