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Academy of Sciences, Graz, Austria, 4Department of Physics and Astronomy, Trinity University, San Antonio, Texas, USA,
5Space Science Center, University of New Hampshire, Durham, New Hampshire, USA, 6Los Alamos National Laboratory,
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Abstract We introduce two novel techniques for estimating temperatures of very low energy space
plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving
spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of
the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma
may be described by a one-dimensional E⃗ × B⃗ drifting Maxwellian and that the potential field and motion
of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates.
The first technique involves the application of a constrained theoretical fit to a measured distribution
function. The second technique involves the comparison of total and partial-energy number densities.
Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations
of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the
temperatures calculated from these two order-of-magnitude-type techniques are in good agreement
with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based
measurements—generally between 0.2 and 2 eV (2000–20,000 K). We also find that the temperature is
correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density.
We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating
of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied
to similar data sets or used for a variety of purposes.

1. Introduction

The plasmasphere is cold, dense, and similar in composition to the ionosphere (mainly H+, He+, O+, and e−),
and its motion is largely governed by E⃗× B⃗ drift [Lemaire and Gringauz, 1998]. Many of the larger-scale dynam-
ics of the plasmasphere (e.g., erosion, plume formation, and plume wrapping) can be described by some
initially considered plasmasphere acted upon by a variable convective electric field [Goldstein and Sandel,
2005]. An understanding of the smaller-scale dynamics of the plasmasphere (e.g., shoulder formation and
plume bifurcation) requires the consideration of coupling between inner magnetospheric electric fields and
the ionosphere [Goldstein et al., 2003, 2005; Burch et al., 2004]. The development of further substructure
(e.g., anomalous heating/cooling, wave generation/dispersion, and localized plasma sources/losses) remains
an active field of research, particularly when cross-energy/cross-population interactions govern local dynam-
ics [Gallagher and Comfort, 2016].

In comparison with the density, thermal structures in the plasmasphere have received little attention. Our cur-
rent understanding of temperature structures in the plasmasphere is largely derived from measurements by
Retarding Potential Analyzers (RPAs) on board polar-orbiting spacecraft (e.g., Dynamics Explorer, INTERBALL,
and Polar) [Kotova, 2007; Chappell et al., 2008]. Such studies have shown that the temperature of the plasmas-
phere is highly variable, as it depends on L, MLT, geomagnetic activity, solar cycle, local density, coupling with
the upper ionosphere/thermosphere, and, most likely, the degree to which the plasmasphere overlaps other
inner magnetospheric plasmas [Comfort, 1986; Khazanov et al., 1996; Gurgiolo et al., 2005; Kotova, 2007;
Gallagher and Comfort, 2016]. RPA-based studies have increased our knowledge of the subglobal dynamics of
the plasmasphere, though they are typically limited by the latitude-altitude restrictions of the polar orbit of
the given spacecraft. Studies of equatorial thermal structures should be able to examine, in situ, high-altitude
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and low-latitude heating processes that have been used to explain discrepancies between modeled tempera-
tures and high-latitude observations. Such heating processes may be critically important for our understand-
ing of the role of the plasmasphere in global magnetospheric dynamics [Gallagher and Comfort, 2016]. For
example, heating of the dayside plasmasphere during the sunward surge/plume formation stages of con-
vection may significantly alter the properties of the plasmaspheric ions as they convect toward the dayside
magnetopause and reconnection site.

NASA’s Van Allen Probes, formerly the Radiation Belt Storm Probes, launched in 2012 [Mauk et al., 2013]. The
two probes are in a prograde, roughly equatorial orbit with an inclination of ∼10∘, a period of ∼9 h, and a
perigee and apogee of 0.1× 5.8RE . The Helium, Oxygen, Proton, and Electron (HOPE) instrument [Funsten et al.,
2013], part of the Energetic particle, Composition, and Thermal plasma (ECT) instrument suite [Spence et al.,
2013], consists of coupled electrostatic and time-of-flight analyzers. HOPE measures fluxes for its four singly
charged namesake particle species over a nominal energy range of 1–50,000 eV for five polar angles and 16
elevation (spin) angles. Full 3-D flux measurements are obtained at approximately the spacecraft spin rate
(spin rate of ∼1/11 Hz and HOPE sample rate of ∼1/12 Hz), where ion and electron fluxes are measured on
alternate spins. Spacecraft potential measurements are provided by the Electric Field and Waves (EFW) instru-
ment [Wygant et al., 2013]. Studies of the charging of Van Allen Probes in the plasmasphere have showed
that the spacecraft potential can exceed the low-energy threshold of HOPE (1 eV) or upward of 100% of the
nominal low-energy threshold of HOPE [Goldstein et al., 2014; Sarno-Smith et al., 2015, 2016]. Even nominally,
the low-energy threshold of HOPE is greater than the bulk kinetic and thermal energies of the plasmasphere.
The observable portion of the ion distribution may increase when the ram velocity of the spacecraft (V⃗SC) and
the bulk velocity of the plasmasphere (u⃗) are such that |||V⃗SC − u⃗||| ≥ ||u⃗||, though the partial-energy ion density
observed by HOPE can be less than a tenth of the total energy number density of the plasmasphere [Goldstein
et al., 2014].

In this study, we calculate the scalar temperature of the low-energy (≲ 10 eV) proton component of the plas-
masphere using data from Van Allen Probes HOPE and EFW. In the next section we provide an overview of the
data products used in this study. In section 3 we describe two techniques for calculating the temperatures of
low-energy protons. The first technique involves the application of a theoretical fit to the fraction of the dis-
tribution function observed by HOPE. The second technique involves the comparison of the partial-energy
number density, calculated over the energy range of HOPE (see Appendix A), with the total energy number
density, calculated using the waves or spacecraft potential data. In section 4 we apply these techniques to
HOPE data during multiple plasmasphere intervals on 15 January 2013. In section 5 we summarize our results
and discuss the means by which these rough techniques may be improved upon in the future.

2. Data Products and Preparation

HOPE omnidirectional fluxes are used throughout this paper. These data files were from the third release
(labeled rel03) of the level 3 (L3) pitch angle-resolved fluxes and were obtained from the ECT data repository
(http://www.rbsp-ect.lanl.gov) on 12 April 2016. These specific versions and dates may be important as, in the
future, these data may be subject to retroactive calibration.

We differentiate between the energies reported by HOPE and the initial energies of the ambient plasma, prior
to perturbation by the charged and moving spacecraft. The reported and ambient particle energies differ
most significantly near the low-energy threshold of HOPE, where (a) the ram energy of the spacecraft;
(b) the electric potential of the spacecraft, a consequence of photoionization; and (c) electric potential within
the surrounding plasma, a consequence of charge separation in the spacecraft wake may be comparable to
the bulk kinetic and thermal energies of the plasma. Approximately, the effect of (a) is to alter the “effective”
bulk velocity of the plasma in the rest frame of the spacecraft. The approximate effect of (b) is to add an offset
between the reported energies and the initial energy of the plasma being measured. The effect of (b) is
accounted for first, as the conversion from flux to phase space density (PSD) requires knowledge of the energy
of the plasma. As in previous studies [Comfort et al., 1985], we assume that the structure of the spacecraft
potential field is negligible, such that the reported energies ( ) may be adjusted according to  ′ = + qΦSC,
where the spacecraft potential (ΦSC) is obtained from EFW data. The effect of (a) is accounted for during the
calculation of the effective bulk velocity of the plasma, as is discussed in the following section. We do not
account for the effects of (c).
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Other RBSP data used in this study include (a) spacecraft ephemeris, (b) densities derived from the waves
data, (c) the spacecraft potential and potential-derived densities, and (d) the spin resolution magnetic field
strength. The spacecraft ephemeris was obtained from the HOPE data files. The waves-derived densities
were taken from Goldstein et al. [2014], which also described the method for analyzing the waves data and
determining subsequent densities. Spacecraft potential and potential-derived density data were obtained
from the EFW data repository (http://www.space.umn.edu/rbspefw-data). Magnetic field data were obtained
from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) data repository
(http://emfisis.physics.uiowa.edu/).

3. Techniques for Estimating Temperatures
3.1. Overview and Common Assumptions
In this paper, we discuss two novel techniques for calculating the temperatures of very low energy plasmas
(≲ 1 eV) from in situ data taken from an electrostatic analyzer mounted on a charged and moving spacecraft.
The techniques are useful when the bulk of the plasma is below the effective energy range of the instrument;
otherwise, a number of other assumptions may be used to enable more direct or simplified calculations of
the temperature by fitting or numerical integration [cf. Comfort, 1986]. These two techniques may be easily
generalized to similar instruments and various plasma particle species, though the focus of this study is HOPE
observations of the proton component of the plasmasphere.

These two (not entirely dissimilar) methods for calculating temperatures share a number of assumptions. First,
as discussed in the previous section, we assume that the relationship between the ambient ( ′) and measured
( ) plasma energies are related by  ′ = + qΦSC in the frame of the moving spacecraft.

Next, we assume that the bulk velocity of the plasma in the spacecraft frame, u⃗, is equivalent to the difference
of the E⃗× B⃗ drift and the spacecraft velocities, i.e., u⃗ = u⃗E×B − V⃗SC. The magnetic field, B⃗, is determined in situ by
the EMFISIS magnetometer. The electric field, E⃗, is taken to be the sum of the corotation and convection elec-
tric fields. Corotation is assumed to occur at exactly the rotation rate of the planet; i.e., we do not account for
subcorotation. The convective electric field is approximated by a Volland-Stern potential [Volland, 1973; Stern,
1975] model, which is parameterized by the solar wind electric field and a shielding factor of 2 [Goldstein and
Sandel, 2005; Goldstein et al., 2014]. Errors in the modeled magnetospheric electric field enter into the tem-
perature estimation methods (outlined in the following two sections) in a complex manner. Generally, errors
in u⃗E×B are inconsequential at small L, where u⃗ is dominated by V⃗SC. At large L, errors in the modeled electric
field might add considerable errors in the temperature depending on (a) the method used to determine the
temperature, (b) the difference between the bulk kinetic, thermal, and smallest observable energies, and
(c) the strength of the convective electric field. For our case study, we found that large (±200%) purpose-
fully added errors in Econv can alter the fit-determined and partial-energy number density (PEND)-determined
temperatures by ∼10% and ∼1% (respectively) at L ≥ 4. We also found small differences in the temperature
(less than 1% at L < 4 and ∼6% at L ≥ 4) when in situ measurements or the Earth-centered tilt-free dipole
model were used to calculate the magnetic field, despite the fact that a large (∼25%) mean deviation from
the tilt-free dipole model was observed. (For a more detailed discussion on these errors, see Appendix B).

The velocity of the spacecraft is calculated by first-order differentiation of the spacecraft ephemeris. Note
that this method of calculating u⃗ neglects the fact that the low-energy threshold of HOPE may vary with the
instrument look direction; the lowest possible “detectable” energy may vary by less than a tenth of an eV if
the aperture of HOPE is aligned or antialigned with the spacecraft velocity.

Isotropy is also assumed, such that the distribution of the plasma can be studied one-dimensionally. (Note
that while the assumption of isotropy has been used in past studies [cf. Comfort et al., 1985], anisotropic dis-
tributions have also been reported in the plasmasphere [Fuselier and Anderson, 1996]). This assumption is
not required by but is useful for the simplification of the fit-based technique for calculating temperatures
(discussed in the following section). The assumption of isotropy is required by the partial-energy number
density (PEND) technique, as is discussed in section 3.3. Following from this assumption of isotropy, all
temperatures calculated in this paper represent a scalar approximation of the possibly differing, directional
temperatures. Note that if the plasma is anisotropic, then the scalar temperatures that can be calculated with
these techniques should still be T =

(
T∥ + 2T⊥

)
∕3. Thus, while this is not an accurate description of either

the parallel or perpendicular temperatures of an anisotropic plasma, these techniques may still be useful for
identifying absolute heating/cooling.
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Finally, we assume that the plasma can be well-represented by a (drifting and 1-D) Maxwellian-type Gaussian
distribution. As the bulk (≥ 90%) of the plasmaspheric ions are below the measurable threshold of HOPE, this
or some similar assumption is required, such that the observations of HOPE may be extrapolated to lower ener-
gies. Previous measurements reported from Dynamics Explorer retarding ion mass spectrometer (DE-RIMS)
show that the very low energy component of the plasmasphere (≲10 eV) is generally well-represented by
a Maxwellian [Comfort et al., 1985; Comfort, 1996]. A kappa-like tail may also be present at higher energies
than the Maxwellian-like bulk of the distribution. Since it is not easily separated from the ring current, which
may overlap the plasmasphere, the focus of this investigation is the low-energy (≲10 eV) portion of the
distribution.

Appendix B provides an examination of the theoretical and practical errors associated with this fit-based
technique.

3.2. Fit-Based Method for Estimating T
The first method for calculating temperatures involves a least squares fit of the HOPE-measured omnidirec-
tional phase space densities with a 1-D drifting Maxwellian of the form

fp(v) = np

( mp

2𝜋kTp

) 3
2

exp

[
−

m
(

v − ueff

)2

2kTp

]
, (1)

where fp is the proton phase space density, np is the total energy number density of protons, Tp is the scalar
proton temperature, v is the velocity coordinate, and ueff is the effective bulk velocity, i.e., the E⃗ × B⃗ velocity in
the moving frame of the spacecraft. We convert HOPE-measured omnidirectional proton differential number
fluxes, or Jp( ′), to proton phase space densities, fp( ′), with the relation

fp( ′) = Jp( ′)
mp

2 ′ . (2)

The measured values of fp( ′) are weighted by their uncertainty, which is taken to be Poisson counting

uncertainty, e.g., fp( ′) = fp( ′) ± 𝜖( ′)80
√

Cp( ′)∕80, where Cp( ′) is the angle-integrated proton counts

per energy, 𝜖( ′) is an energy-dependent factor of proportionality related to the geometric factor of the
instrument, and 80 is the total number of angular bins (5 × 16). To determine 𝜖( ′), we simply use 𝜖( ′)≡
fp( ′)∕Cp( ′), which is directly calculated from the counts and flux data provided in the HOPE data files. (Note
that a more rigorous definition of 𝜖 should account for nonuniformities in the distribution of counts per look
direction.)

The fit is applied to all data points within  ′≤3bulk (using the properties of a Gaussian, only∼0.3% of the plas-
masphere number density should be above  ′≥3bulk for bulk ≈therm, where therm and bulk are the thermal
and drift kinetic energies, respectively). We exclude instances where fewer than three data points are available
in this energy range, as the residual error should be 0 when the number of data points matches the number
of open parameters. Solutions are degenerate when there are fewer data points than the number of open
parameters.

The total energy proton number density, np, is not constrained prior to the fit, despite the fact that np is likely
very similar in value to the total number densities from EFW and EMFISIS over the majority of the plasmasphere
interval examined in this study. We do not constrain np because (a) the composition of the plasmasphere may
vary, and constraining np might negatively affect the general application of this technique, (b) it is not possible
to calculate the composition over all energies from HOPE data alone, so it is difficult to accurately account for
the error in any assumption on the composition of the plasmasphere, and (c) if np is not constrained, then it
is possible to compare its fit-determined value to the total number densities from EFW/EMFISIS as a rough
check for the quality of a given fit.

3.3. PEND Method for Estimating T
Another technique for determining temperatures is what we are calling the partial-energy number density,
or PEND, technique. This technique requires (a) a measure of the total number density, (b) a measure of the
partial-energy number density (see Appendix A), and (c) an estimate for the bulk kinetic energy. As with the fit
technique, the PEND technique assumes that the plasma can be described by a drifting isotropic Maxwellian.
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Figure 1. A graphical representation of equation (5). Values of ΦSC and ranges of all axes (except temperature, which is the dependent variable) have been
selected as representative of their values during the plasmasphere intervals of the 15 January 2013 event, which are shown in Figure 2.

If these assumptions are realistic, then the fraction of the plasma number density that appears in the energy
window of HOPE should be

n
(
 ≥  ′

HOPE,min

)
n( ≥ 0)

= 1 − erf

(
j√
2

)
, (3)

where n( ≥ 0) is the total number density obtained from either the spacecraft potential or upper hybrid
frequency, n

(
 ≥  ′

HOPE,min

)
is the partial-energy number density obtained from direct numerical integration

of HOPE fluxes, and j is the number of Gaussian standard deviations (commonly denoted as 𝜎) between the
bulk kinetic energy and the low-energy threshold of HOPE. For a 1-D Maxwellian-type Gaussian with a thermal
energy equal to TE = kT∕2, the standard deviation is twice the temperature, so

2jT ≡

(

′
HOPE,min − bulk

)
, (4)

which can be used along with equation (3) to solve for temperature in terms of measurable quantities, as
written in equation (5).

T =

√
2
(
 ′

HOPE,min − bulk

)
erf−1

[
1 −

n(≥ ′
HOPE,min

)

n(≥0)

] . (5)

Figure 1 provides a graphical representation of the coupling between the temperature, density ratio, bulk
energy, and spacecraft potential in equation (5). Generally, Figure 1 shows that when the temperature is large,
a larger portion of the distribution function is located within the energy range of HOPE.

For all instances in this study where the PEND technique has been applied, we have calculated the partial-
energy number density over the range  ′

HOPE,min ≤  ≤ 20 eV (rather than the energy range  ≥  ′
HOPE,min).

This is done to exclude fluxes at higher ring current-like energies, which we do not consider as an exten-
sion of the cold (assumed Maxwellian-like) plasmaspheric population (i.e., the PEND temperature does not
change significantly if 10 eV ≤  ′ ≤ 10 keV is chosen as the high-energy cutoff). Note that the exact value
of this upper bound does not affect the resulting values of the temperature significantly, as particle fluxes at
ring current-like energies are generally insignificant compared to fluxes at plasmasphere-like energies. This
is in contrast to the fit method, which uses a more dynamic value of 3bulk as the high-energy cutoff for the
data used in the temperature calculation. Unlike the fit method, which is sensitive to non-Maxwellian-like
data points, the PEND method is not affected by non-Maxwellian-like data, so long as the density of the
non-Maxwellian-like plasma is very small.

The advantages of the PEND technique are that (a) it can be applied much more easily than the
fit-based technique and (b) it is expected to be less error-prone than the fitting technique when the bulk
kinetic and thermal energies of the plasma are well below the effective low-energy threshold of HOPE
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(
bulk + therm ≪  ′

HOPE,min

)
. The uncertainties in the PEND technique are a function of the error in the bulk

velocity estimation and as the Poisson uncertainty in the count rates and the truncation error for the first-order
integration scheme used to calculate the partial-energy number density (see Appendix A). Error in the mod-
eled bulk velocity, which is difficult to account for exactly and explicitly, should have only a minimal impact
on the PEND-determined temperature, as the bulk energy (tenths of an eV) is generally much less than the
low-energy threshold of HOPE (upward of 1 eV).

One of the disadvantages of the PEND technique is that it requires some assumption regarding the com-
position of the plasma, as the total number density from either EFW or EMFISIS is being compared to
partial-species number densities from HOPE. In this study, we have applied the PEND technique assuming
that the ion plasma is composed entirely of protons. If the composition was reasonably well-constrained, it
may be possible to also use this technique to estimate temperatures for minor ion species, though we have
not done so in this study. Another disadvantage is that the PEND technique does not provide any information
regarding how “Maxwellian like” the plasma actually is, whereas numerical analysis can be used to extract
error estimates for the fit-based technique. Another disadvantage of the PEND technique is that, as compared
to the fit-based technique, there is little room for improvement. A fundamental aspect of the PEND tech-
nique is that the total density (a directionless measurement) is compared to fluxes from HOPE (a directional
measurement), and as such, any information regarding anisotropy is lost. While the fit-based technique may
be developed in the future to obtain parallel and perpendicular temperatures separately, the PEND technique
is inherently a method for calculating scalar temperatures.

4. Event Study
4.1. Event Overview
We analyze data from Van Allen Probes A over the course of two orbits (∼18 total hours) on 15 January 2013,
starting at 02:00 UT. During this interval, the solar wind velocity decreased from an initial value of ∼500
km/s to ∼425 km/s and the IMF BZ oscillated aperiodically within ±4 nT. Geomagnetic activity was negligible,
with a minimum Dst of −26 nT and a maximum Kp of 2. The variable inner magnetospheric electric field,
which is taken to be 0.15 times the solar wind electric field for BZ ≤0 and 0 for BZ ≥0 [Goldstein et al., 2014],
reached a maximum value of 0.25 mV/m. Significantly stronger convection was observed 2 days later, on
17–18 January 2013.

An overview of the 15 January 2013 event is shown in Figure 2. Van Allen Probes A (henceforth referred to as
RBSP-A) was initially located in the duskside inner plasmasphere at L = 1.8 and MLT=20, having just exited
the inner radiation belt, outbound from perigee. RBSP-A exited the plasmasphere at ∼04:00, as judged by the
decrease in low-energy proton flux observed by HOPE (Figure 2a) and the sharp decrease in the total number
densities extracted from the waves data and obtained from the spacecraft potential (Figure 2d). The entries
and exits to and from the plasmasphere are also accompanied by sharp increases and decreases (respectively)
in the spacecraft potential (Figure 2h). The plasmasphere intervals in Figure 2 were defined by the total energy
electron number density, ne > 20 cm−3 [Goldstein et al., 2014]. RBSP-A reached apogee at ∼06:00 UT, L=6, and
MLT = 2.5. The probe reentered the plasmasphere on the dawnside at 08:20 UT, L=5, and MLT=5.2. Low-
energy measurements from HOPE were no longer available after RBSP-A reentered the inner radiation at 10:20
UT, inbound toward perigee. For 40min following 10:20 UT, RBSP-HOPE entered its perigee mode, where ener-
gies below ∼23 eV are not measured. The parameters for the second orbit were similar to those of the first
orbit. For the second orbit, RBSP-A exited the plasmasphere in the outbound direction at 12:35 UT and reen-
tered the plasmasphere in the inbound direction at 17:45 UT. The equatorial location of the spacecraft during
these two orbits is shown in Figure 2j.

During the first two (outbound and inbound) plasmasphere intervals, the spacecraft potential (Figure 2g)
was 0 ≤ ΦSC ≤ 2 V, which corresponds to 0% and 200% of the nominal low-energy threshold of HOPE,
respectively. The effective bulk speed (|u⃗′|), or the magnitude of the difference of the modeled E⃗ × B⃗ drift
and spacecraft velocities

(|u⃗′|= |u⃗EB − V⃗SC|), varied between 8 and 4 km/s. For protons, this corresponds to
bulk kinetic energies of 0.3 and 0.08 eV, respectively. For a Maxwellian proton distribution with a temperature
and bulk energy of 1/3 eV, approximately 5% of the distribution should be within the energy threshold of
HOPE for ΦSC =0. This is roughly consistent with the ratio of the total (derived from EFW and EMFISIS) and
partial-energy (calculated directly from HOPE; see Appendix A) densities shown in Figure 2e.
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Figure 2. Overview of RBSP-A and solar wind data for two orbits of RBSP on 15 January 2013. Vertical grey dashed lines delimit plasmasphere intervals from
ring current and radiation belt intervals. Omnidirectional energy intensity-time spectrograms for (a) protons, (b) helium, and (c) oxygen. The reported energy
values have been shifted according to  ′ = + ΦSC, and the solid black line is the effective low-energy threshold

(
 ′

HOPE,min
=HOPE,min + ΦSC

)
. (d) Number

densities calculated from HOPE over its full energy range (see Appendix A) and total densities extracted from the waves data (labeled EMFISIS) and the spacecraft
potential (labeled EFW). (e) The fraction of the total plasma number density that appears within the energy range of HOPE (red: nHOPE∕nEFW, blue: nHOPE∕nEMFISIS).
(f ) The temperature of cold plasmaspheric protons, calculated with the fit-based (black) and PEND (red) techniques. (g) The ratio of the temperatures from the
two techniques. (h) Spacecraft potential from EFW. (i) The solar wind electric field, positive for southward IMF BZ and zero otherwise. (j) The position of RBSP-A
in the X-YSM plane for the first (red) and second (blue) orbits, where the initial position, final position, and position at 10:30 UT are labeled with an asterisk,
a diamond, and a plus sign, respectively.
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Figure 3. (a) Energy-time spectrogram. (b) Fractional uncertainty (
√

Counts∕Counts). Shown in black in Figures 3a and 3b is the effective low-energy threshold
of HOPE (1 eV + ΦSC). (c–f ) Example Maxwellian fits (red) to spacecraft potential-adjusted HOPE flux data (black), which are determined using the modeled
effective bulk velocity (blue). Uncertainties in the HOPE fluxes (black vertical lines) are generally not visible, as they are generally smaller than the symbols
(asterisks) used to denote fluxes, which appear large given the large ranges of the Y axes. Figure 3c is an example of a “good quality” fit, where a large amount
of the low-temperature plasmasphere appears above  ≥ min,HOPE due to the large spacecraft velocity. Figure 3b is a medium-quality fit, where the bulk
velocity and the temperature are both small. Figure 3c is a good quality fit, where the spacecraft velocity is small but the plasma is warm. Figure 3d is a poor
quality fit, where the plasmasphere is hot but the spacecraft potential is large, the spacecraft velocity is small, and there is significant overlap between the
ring current and the plasmasphere.

4.2. Summary of Deduced Temperatures
The temperature of the low-energy ( ≲ 10 eV) component of the protons is shown in Figure 2f. The tem-
perature is calculated when HOPE is in its nominal mode of operation and the total number density, derived
from the spacecraft potential and/or upper hybrid frequency (labeled nEFW and nEMFISIS in Figure 2d), exceeds
20 cm−3. The methods used to calculate the temperature are described in detail in section 3.

The ratio of the two temperatures, which are calculated with the fit-based and PEND techniques, is shown
in Figure 2g. There is an average 32% difference between the temperatures from the fit-based and PEND
techniques. The best agreement between these two methods occurs when there is little overlap between
plasmas with ring current-like and plasmasphere-like energies. When there is a significant amount of overlap
between these two populations, the fit-based method generally predicts a higher temperature than the PEND
method. As fluxes of the higher-energy ring current plasmas are significantly lower than the fluxes in the
lower energy range of the plasmasphere, the overlap between the two populations has less of an impact on
lower-order moments (e.g., density) than higher-order moments (e.g., temperature). An example of a poor fit,
determined for an interval with considerable overlap between low-energy and ring current energy protons,
is shown in Figure 3f. Examples of good and intermediate quality fits are shown in Figures 3c–3e.

Semiperiodic oscillations are visible in the fit-based temperature (Figure 2f ) and the low-energy portion of
the energy intensity-time spectrograms (Figures 2a–2c), which occur with a period of roughly 260 s, or ∼22
spin periods. Similar oscillations are also seen in the partial-energy number density (Figure 2d) and in TPEND,

Figure 4. Temperatures of the low-energy protons as a function of (a and c) low-energy plasma density and (b and d) ring current density for the outbound
pass through the duskside plasmasphere (Figures 4a and 4b) and inbound pass through the dawnside plasmasphere (Figures 4c and 4d). Black and red colors
indicate the method used to calculate the temperature and correspond to the fit-based and PEND methods, respectively. Black and red solid lines are fits of
the form T = BnA; A and B are listed in Table 1.
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Figure 5. Plasma parameters for the second full orbit of 15 January 2013. (a) Temperature of the cold protons versus
total number density of low-energy (≤ 30 eV) plasma with linear fits of the form T = BnA (A and B are listed in Table 1).
(b) Temperature versus L. Black (red) data are for temperatures calculated using the fit-based (PEND) technique.

though with significantly smaller amplitudes that are not apparent in this plot range. These are assumed to
be an artifact of the instrument rather than a physical property of the plasma. The rate at which HOPE sweeps
through energy direction space is slightly out of sync with the spacecraft spin rate, which leads to an oversam-
pling of a portion of energy-solid angle space. The peaks and (troughs) of these oscillations likely correspond
to instances where the oversampled portion of the solid angle is antialigned (aligned) with the bulk velocity
of the plasma in the spacecraft rest frame. These oscillations are most pronounced when the temperature
and bulk energies are low, which is consistent with the theory that they result from a harmonic between the
directions of the oversampled phase space and the effective bulk velocity. Thus, these oscillations should not
appear if the effects of oversampling were carefully removed, which is not done in this study.

Previous studies have shown that typically, the temperature of the ion component of the plasmasphere is in
the range 2000–20,000K, or 0.2–2 eV [Kotova, 2007]. As mentioned in section 1, many of these studies have
used 1990s era data from RPAs mounted on low-altitude high-latitude orbiting observatories. As shown in
Figure 2f, our two methods for estimating order-of-magnitude scalar temperatures from RBSP-HOPE data pre-
dict a temperature range of roughly 0.2–2 eV, with the fit-based method predicting larger temperatures than
the PEND method in regions where the bulk of the plasmaspheric ions are below the effective energy range
of HOPE. There are also steep gradients in the proton temperature that are observed during similarly steep
gradients in the total plasma number density (red and blue dotted lines in Figure 2d), a feature that has
previously been observed in high-latitude DE-RIMS data [Comfort, 1986].

4.3. Coupling Between Plasma Parameters
In Figure 4, the cold proton temperature is shown as a function of the densities of cold and warm plasma.
Here we only show data from the first full orbit of 15 January 2013. As shown in Figure 4, the cold ion density
and the temperature are anticorrelated. Similar trends have been identified implicitly in a number of studies,
where the temperature and density are negatively (positively) correlated with L [cf. Comfort, 1986]. We have
quantified this relationship by fitting the data with functions of the form T = BnA, which are shown in
Figures 4a, 4c, and 5a and listed in Table 1. The hot ion density and the temperature are positively correlated,

Table 1. Parameters and 2𝜎 Uncertainties (95% Confidence) for Best Fit Lines of the Form T = BnA,
Which Are Shown in Figures 4a, 4c, and 5aa

Outbound (Figure 4a) Inbound (Figure 4c) Orbit 2 (Figure 5a)

A −0.33 ± 0.095, −0.39 ± 0.066 −0.47 ± 0.096, −0.39 ± 0.066 −0.41 ± 0.014, −0.38 ± 0.036

B 10.37 ± 2.04, 6.34 ± 2.01 4.51 ± 2.10, 6.25 ± 2.01 6.24 ± 2.03, 6.01 ± 2.01
aNormal lettering: fit-determined temperatures, bold lettering: PEND-determined temperatures.
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Figure 6. (a) High-latitude plasmaspheric temperatures and densities over the course of one orbit of DE-RIMS on 4
November 1981 (digitally extracted from Figure 2 of Comfort et al. [1988]). (b) Correlated densities and temperatures,
which have been extracted digitally from Comfort et al. [1988] and fit with a function of the form T = BnA.

which may indicate that collisional or wave heating of the plasmasphere takes place in the ring current–
plasmasphere overlap region [Khazanov et al., 1996; Gallagher and Comfort, 2016]. The aforementioned trends
are visible regardless of the method used to calculate the temperature. The previously discussed oscillations
in the fit-based temperature, which appeared to be more pronounced during the inbound passes through
the plasmasphere (Figure 2f ), are also visible in Figures 4c and 4d.

For the second orbit (∼11:00–19:20 UT), as compared to the first orbit (∼02:00–08:20), there was relatively
little overlap between ion fluxes with ring current-like and plasmasphere-like energies (see Figures 2a–2c).
As such, it is easier to isolate the relationship between the cold ion temperature and L, which is shown in
Figure 5. This positive correlation between the temperature and L has been shown in previous studies [Comfort
et al., 1985; Comfort, 1996; Kotova et al., 2008] and is consistent with (a) the inverse correlation between the
temperature and cold ion density and (b) the inverse relationship between the cold ion density and L.

The parameters of the fit lines, shown in Figures 4a, 4c, and 5a and listed in Table 1, can be compared to
previous off-equatorial measurements of the plasmaspheric proton temperature and density from DE-RIMS
data. Figure 6a shows data from Figure 2 of Comfort et al. [1988], which reported correlated variations in the
density and temperature versus L shell during a DE-RIMS orbit on 4 November 1981 (Kp= 1, MLT=19.7). The
densities and temperatures were digitally extracted from the Comfort et al. [1988] figure, then plotted against
one another and fit with a function of the form T =BnA. This is shown in Figure 6b, which also explicitly shows
the inverse relationship between density and temperature discussed in the first paragraph of this section. The
decay constant in the fit of Figure 6b is −0.15, which is approximately half of the average decay constant we
have identified with RBSP-HOPE data. We consider the difference between this high-latitude decay rate and
the equatorial decay rates listed in Table 1 to be further evidence that the ionospheric plasma, which is the
source of the plasmasphere, becomes heated upon interacting with hot plasmas near the equator.

5. Conclusions and Future Work

We have introduced two new techniques for estimating the temperatures of cold ions using, primarily,
data from electrostatic analyzer-based instruments. Both techniques assume that the cold plasma can be
represented by an isotropic and E⃗ × B⃗ drifting Maxwellian. The fit-based technique involves fitting a con-
strained Maxwellian distribution function to energy flux spectra. The PEND technique involves comparing the
partial-energy number density, calculated over a known energy range, with the total plasma number density,
calculated from the upper hybrid frequency or estimated from the spacecraft potential. We have applied these
techniques to obtain temperatures of the proton component of the plasmasphere from HOPE data during
two orbits of RBSP on 13 January 2015. We found that both techniques yielded temperatures in the
range ∼0.2–2 eV, which is roughly consistent with results from previous RPA-based studies [Kotova, 2007].
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We also found that using these techniques, we were able to reproduce many of the thermal properties of the
plasmasphere that have been previously identified, including anticorrelations between the temperature and
(a) the cold plasma number density and (b) L shell. We also identified a rough positive correlation between
the temperature of the plasmasphere and the density of hot ring current-like ions.

Several caveats should be considered before either method for determining temperatures is implemented.
First, both techniques may overestimate the temperature of the plasmasphere for cases where the relative
densities of cold and hot ions are comparable, though the PEND method is significantly less susceptible to
errors of this kind than the fit-based method, by virtue of the fact that PEND is inherently a method for
determining a high-order moment (temperature) from a low-order moment (density). Though standard 𝜎

uncertainties are more easily obtained for temperatures obtained via the fit-based method, we note that these
uncertainties are small compared to additional error sources, namely, the error resulting from the phase space
oversampling caused by the difference in the spacecraft and HOPE spin phases (see discussion in section 4.1).
Again, due to its low-order nature, the PEND technique is less susceptible to errors of this type than the
fit-based technique. (Additional sources of error for both techniques are discussed in Appendix B).

There is significant room for development of both the fit-based and PEND techniques. For both techniques,
it would be desirable to fit the higher-energy ( ≥ 30 eV) component of the plasma independently, then
subtract these fit-determined fluxes from the measured fluxes at lower plasmasphere-like energies. For the
previously discussed reasons, this subtraction should have a larger impact for the fit-based technique and
should only be necessary when the relative densities of the two populations are comparable. It would also be
desirable to expand the fit-based technique such that temperatures can be obtained from two- or three-axes
directional fluxes. In doing so, it would be possible to obtain a complete temperature tensor. Differences
between perpendicular and parallel temperatures may be critically important for understanding sources,
losses, and the nature of the coupling between the cold and overlapping plasmas. It would be desirable to
expand the fit-based and PEND methods such that they could be used to determine the temperatures of
minor ion species and cold electrons. The accuracy of both methods may also be improved in the future if a
more sophisticated model of the E⃗ × B⃗ drift were used, for example, if the shielding and sub-auroral polariza-
tion stream (SAPS) electric fields were included, if subcorotation were considered [Burch et al., 2004], or if a
more sophisticated model of the magnetic field was considered.

In the future, we will apply these techniques to calculate the temperature of the plasmaspheric plume using
data from the Hot Plasma Composition Analyzer on board the Magnetospheric Multi-Scale mission. Other
future studies may include (a) a reanalysis of this event using data from both of the Van Allen Probes, such that
the temporal and spatial variations in the ring current-plasmasphere overlap region could be discriminated,
and (b) an analysis of the waves data and collision frequency to determine the nature of the plasmaspheric
heating.

Appendix A: Partial-Energy Number Density Calculation

As in Goldstein et al. [2014] and Sarno-Smith et al. [2015], we use the discrete Riemannian sum

ns ≅ 4𝜋

√
ms

2

∑
i

√
 ′

i

(
Δi

i

)
Ji,s (A1)

to directly obtain partial-energy number densities for each ion species, s, over the spacecraft potential-
adjusted energy range of HOPE

(
 ′

i = i + eΦSC

)
. Note that the term Δi∕i is not calculated in

potential-adjusted (primed) energy coordinates, as it is a response function of the instrument. The HOPE
omnidirectional flux data are used for this calculation, and isotropy is assumed. The reported energy resolu-
tion (Δi∕i) is 16% at 1 eV and 12% at 50 keV [Funsten et al., 2013]. The variation of Δi∕i over this range is
given in the HOPE flux data files. Goldstein et al. [2014] used this method to calculate partial densities over the
energy range 30 eV≤  ≤ 50 keV, compared the results with the densities calculated by the HOPE team (which
excludes energies below ∼30 eV), and found the two methods to produce nearly identical densities. The
error in this method for calculating partial-energy number densities should scale with the (≥second-order)
truncated terms in this first-order numerical integration scheme and with the Poisson uncertainty from the
instrument count rate.

GENESTRETI ET AL. PLASMASPHERE TEMPERATURE 320



Journal of Geophysical Research: Space Physics 10.1002/2016JA023047

Appendix B: Error Analysis

Standard 𝜎 uncertainties can be obtained for the fit-determined temperature during the least squares fitting
process. For the time interval examined in this study (see section 4), 2𝜎T (95% confidence level) was generally
low, with typical values being ∼10% of the temperature (mean 2𝜎T∕T of 8%). We do not consider this method
of uncertainty evaluation to be exceedingly useful, as 2𝜎T∕T is visibly and considerably smaller than addi-
tional sources of error, e.g., error that arises from the periodic differences in the HOPE and spacecraft spin
phases (see oscillations in Figure 2f and the discussion in section 4.1). Additional errors should come from (1)
overlap between the plasmasphere and ring current, (2) non-Maxwellian characteristics of the exceedingly
cold portion of the plasmasphere, i.e., the portion of the distribution that is below the energy range of HOPE
(note that errors from non-Maxwellian characteristics of the plasma within the energy range of HOPE should
be accounted for by 𝜎T ), and (3) differences between the model-determined bulk velocity and the actual
bulk velocity of the plasmasphere. The phase space density data used in the fitting technique is weighted by
Poisson error, so error source (1) should only be considerable when the relative densities of the two popula-
tions are comparable. When the densities are comparable, we expect that the fit method would overestimate
the temperature and underestimate the density. Both (2) and (3) are either difficult or impossible to account
for explicitly.

Using median values of the density (770 cm−3, determined from EMFISIS and EFW), effective bulk velocity
(5.61 km/s, determined from the modeled E⃗ × B⃗ drift speed and calculated spacecraft velocity), spacecraft
potential (0.47 V, determined from EFW), and temperature (0.50 eV), we generated artificial Maxwellian dis-
tribution functions at the HOPE energy cadence over the range HOPE,min ≤ ≤ 30 eV. Random Poisson noise
was added to the flux values for each energy step using the standard Interactive Data Language (IDL) random
number generator function. These artificial distribution functions were then fitted using the same technique
that was outlined in the top of this section. This process was repeated 500 times, such that the difference
between the fit-determined temperature and the predefined temperature of the artificial distribution func-
tions could be compared for multiple random-noise cases. We found that the fit-determined temperature
differed from the predefined temperature by 9.0% with a standard deviation of ±6.8%, which is similar to the
mean value of 𝜎T discussed above (8%). This error in the temperatures determined from these artificial distri-
bution functions changed by less than ±1% when the initial guess used in the fit technique was changed by
±50%, which is consistent with similar tests of fit-determined temperatures calculated from real HOPE data.

The average error in the fit-determined density was 23% ± 19% for artificial Maxwellian distributions defined
by the median values of plasma, field, and spacecraft parameters listed above. This is similar to the standard
error in the fit-determined density (2𝜎n∕n) for real HOPE data, which was 20%. This is far lower, however,
than the mean difference between the fit-determined and EFW/EMFISIS densities, which was 80%. These very
large differences between the real (EMFISIS/EFW) and fit-determined densities likely come from error sources
(1)–(3). The fit-determined density is, at all times, greater than the partial-energy number density calculated
by numerical integration of HOPE fluxes, which is expected.

Inaccuracies in the estimated plasma bulk kinetic energy, bulk

(
= 1

2
m |||u⃗E×B − V⃗SC

|||2)
, are a source of error for

both the fit-based and PEND methods. For the PEND method, it is relatively straightforward to derive an ana-
lytical relationship between an initial error inbulk and the resulting error in the temperature, T . We define⋆

bulk
to be an inaccurate value of the bulk kinetic energy

(
⋆

bulk = bulk

[
1 + 𝜖

])
and T⋆ to be an inaccurate tem-

perature, which is calculated from equation (5) with ⋆
bulk, e.g., T⋆ = T

(
⋆

bulk

)
. Using equation (5), the relative

error in the temperature can be written as

T − T⋆

T
=

⋆
bulk∕bulk

 ′
HOPE,min∕bulk − 1

=
𝜖

 ′
HOPE,min∕bulk − 1

, (B1)

where  ′
HOPE,min is the minimum particle energy that can be observed by HOPE, taken in this study to be

 ′
HOPE,min =HOPE,min+eΦSC ≈1 eV + eΦSC, where HOPE,min is the lowest energy channel of the instrument (1 eV

for HOPE during its nominal survey mode) and ΦSC is the spacecraft potential.

Equation (B1) shows that errors in the bulk kinetic energy should produce larger errors in the temperature if
and when the bulk kinetic energy approaches the minimum energy that can be observed by the instrument
(note that this was not observed in our case study, however). Because V⃗SC can be calculated directly from
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ephemeris data, errors in bulk should come predominantly from the modeled magnetospheric electric field,

E⃗M, which is described in section 3.1 and used to calculate u⃗E×B

(
= E⃗M × B⃗∕B2

)
.

Equation (B1) can be expanded further to isolate this particular source of error. We define an absolute error in
the magnetospheric electric field, 𝛿E , such that


⋆
bulk =

m
2

|||||||
(

E⃗M + 𝛿E

)
× B⃗

B2
− V⃗SC

|||||||
2

, (B2)

and

𝜖 =
1 + 𝛿E × B⃗∕B2 ⋅

[
𝛿E × B⃗∕B2 + 2E⃗M × B⃗∕B2 − 2V⃗SC

]
[

E⃗M × B⃗∕B2 − V⃗SC

]2
. (B3)

The largest values for 𝜖 are obtained when 𝛿E × B⃗∕B2 is aligned with the bulk velocity in the spacecraft frame,
E⃗M × B⃗∕B2 − V⃗SC, so

𝜖 ≤

[
1 +

|||||
𝛿E × B⃗∕B2

E⃗M × B⃗∕B2 − V⃗SC

|||||
]2

. (B4)

This can be combined with equation (B1) to obtain an ultimate expression for the relative error in the
temperature as a function of 𝛿E .

T − T⋆

T
≤

[
1 +

|||| 𝛿E×B⃗∕B2

E⃗M×B⃗∕B2−V⃗SC

||||
]2

 ′
HOPE,min∕bulk − 1

. (B5)

This shows that the error in the PEND method should be large when (a) the bulk kinetic and minimum
observable energies are similar and/or when (b) the velocity of the spacecraft, V⃗SC, is small. If either of these
conditions are met, then errors in the bulk velocity will translate to large errors in the temperature.

Similarly, additional errors will arise if the temperature is calculated from an inaccurate measurement of the
partial-energy number density, n⋆

ESA = nESA(1 + 𝜖n), calculated from the electrostatic analyzer (ESA) data. The
difference would most likely result from inexact calibration of the geometric factor at the instrument’s lowest
energy channels, as this calibration is difficult in either the laboratory or in space. The inaccurate temperature,
T⋆, which is calculated from n⋆

ESA, can be expressed as

T − T⋆

T
=

erf−1
(

1 − n
nESA

)
− erf−1

(
1 − n

nESA(1+𝜖n)

)
erf−1

(
1 − n

nESA

) . (B6)

This should only be a considerable error when the bulk kinetic and minimum observable energies are similar,
as when this is the case, the partial-energy and total energy number densities should be comparable. For this
case, we can approximate equation (B6) with the Taylor expansion of the inverse error function for nESA ≈n as

[
T − T⋆

T

]
nESA→n

≈
1

1+𝜖n
− 1

1 − nESA

n

+ 

([
1 − n

nESA

]3
)
. (B7)

In equation (B7), we have only included the first term of the Taylor expansion, so the expression has a
truncation error on the order of

(
1 − n∕nESA

)3
.

Similar to equation (B5), equation (B7) shows that small errors in the input parameters (in this case,
partial-energy number density) become a substantial source of error in the PEND method when the bulk
kinetic and minimum observable energies become comparable. Conversely, the fit-based method for deter-
mining the temperature should be less error prone when bulk →  ′

HOPE,min, as only the width, rather than the
amplitude, of the ESA-measured distribution function is required for this method.
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In our case analysis of the plasmasphere intervals of 15 January 2013, we analyzed the differences in the
temperature when large errors were purposefully introduced to the magnetospheric electric field and the
ESA-measured partial-energy number density. When the magnitude of E⃗M was altered by ±100%, time-
averaged differences of 3.3% and 1.2% were seen in the temperatures from the fit-based and PEND methods.
These differences became much more significant at L> 4, where average differences of 17% and 3% were
seen in the temperatures from the fit-based and PEND, respectively. When the ESA-measured partial-energy
number densities were increased by 100%, the PEND temperature increased by 2.1%±1.7%. When the
partial-energy number densities were decreased by 50%, the PEND temperature decreased by 1.9%±1.6%.
The greater stability of the PEND technique as compared to the fit-based technique is to be expected for this
event, as there were no instances where nHOPE was larger than 1% of the total energy number density.

In the future, the full multidimensional space of the fit technique should be explored in order to better
define its “working range.” These dimensions include (1) total energy number density, (2) fractional total-to-
partial-energy number density, (3) effective bulk velocity, (4) spacecraft potential, and (5) overlap between
low- and high-energy plasmas. Additional work might be done in the future to determine “acceptable” levels
of error in model-determined parameters, such as those that are used to determine the bulk kinetic energy.
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