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Streptomyces acidiscabies’

Frank G. Healy,'* Kevin P. Eaton,' Prajit Limsirichai,' Joel F. Aldrich,’
Alaina K. Plowman," and Russell R. King*

Department of Biology, Trinity University, San Antonio, Texas 78212," Agriculture and Agri-Food Canada, Research Branch,

Fredericton Research Centre, Fredericton, New Brunswick, Canada E3B4Z7>

Received 31 March 2009/Accepted 18 May 2009

Organisms belonging to the genus Strepfomyces produce numerous important secondary metabolites and
undergo a sophisticated morphological differentiation program. In many instances these processes are under
the control of y-butyrolactone (GBL) autoregulatory systems. Streptomyces acidiscabies strain 84.104 produces
the secondary metabolite aromatic angucyclinone polyketide WS5995B. In order to explore the role of GBL
regulatory circuitry in WS5995B production and morphogenesis in S. acidiscabies, a gene cluster encoding GBL
autoregulatory signaling homologs was identified and characterized. Two GBL receptor homologs, sabR and
sab$, were found flanking a GBL synthase homolog sabA. Strains carrying mutations in sab$ produced elevated
levels of WS5995B and displayed conditional morphological defects reminiscent of defects seen in Streptomyces
bldA mutants. Notably, sabS possesses a TTA codon predicted to be recognized by tRNA'"". sab4A mutants
produced higher levels of WS5995B than the wild-type strain but to a lesser extent than the levels of WS5995B
seen in sabS mutants. Purified recombinant SabR and SabS were tested for their abilities to bind predicted
AT-rich autoregulatory element (ARE) boxes within the sabRAS region. SabS did not bind any DNA sequences
in this region, while SabR bound an ARE box in the region upstream of sabS. Quantitative reverse transcrip-
tion-PCR analysis revealed higher levels of sabS transcript in sabR mutants than in the wild-type strain,
suggesting that sabS expression is repressed by SabR. Based on these data, we propose that the S. acidiscabies
sabRAS genes encode components of a signaling pathway which participates in the regulation of WS5995B

production and morphogenesis.

Members of the genus Streptomyces are renowned for their
morphological complexity as well as their capacity to produce
a wide variety of important secondary metabolites, including
polyketides and nonribosomal peptides. In many instances, the
expression of structural genes encoding secondary metabolite
pathway enzymes is regulated by the interplay of low-molecu-
lar-weight hydrophobic, membrane-diffusible y-butyrolactone
(GBL) autoregulator compounds with specific cognate GBL
receptors. GBL autoregulator synthesis requires the autoregu-
lator GBL synthase, and as GBL is produced, intracellular
GBL levels increase. GBL receptors are transcriptional regu-
lators belonging to the TetR superfamily of transcription fac-
tors (34, 37). These proteins possess helix-turn-helix (HTH)
DNA binding domains which recognize AT-rich autoregula-
tory element (ARE) DNA sequence targets (34).

Typical GBL signaling relies on changes in ARE-receptor
interactions in response to increasing intracellular levels of
GBL. The best-studied GBL signaling system is that of Strep-
tomyces griseus (35). The GBL receptor ArpA binds target
DNA sequence in the upstream region of adpA, resulting in
repression of adpA expression by obstructing RNA polymerase
access to adpA promoter elements. Biosynthesis of the S. gri-
seus GBL A factor (2-isocapryloyl-3-R-hydroxymethyl-y-butyro-
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lactone) requires the product of the autoregulator gene afsA.
As A factor reaches sufficient levels within the cell, the binary
ArpA/A-factor complex dissociates from the target nucleotide
sequence, thereby allowing adpA expression. AdpA is required
for expression of a set of genes which constitute the AdpA
regulon. This includes genes required for morphological dif-
ferentiation, streptomycin biosynthesis, grixazone production,
and the production of other metabolites (16).

Other examples of GBL signaling systems in streptomycetes
which have been described include the SCB1 system of Strep-
tomyces coelicolor, which regulates production of both actino-
rhodin and undecylprodigiosin (42); the control of blue pig-
ment and nucleoside antibiotic biosynthesis by the IM-2-C6
system of Streptomyces lavendulae (23); and the virginiae bu-
tanolide control of virginiamycin production by Streptomyces
virginiae (31). Additionally, in at least some cases, secreted
compounds other than those produced by cognate GBL syn-
thases are capable of activating GBL signaling pathways in
Streptomyces. For example, Birké et al. (3) have reported
that a 324-amino-acid peptide known as factor C produced
by certain streptomycetes is capable of restoring phenotypic
defects of A-factor-deficient mutants of S. griseus.

Streptomyces acidiscabies strain 84.104 represents an inter-
esting bacterium to explore GBL signaling phenomena since it
produces both nonribosomal peptide and polyketide secondary
metabolite compounds. These include the nonribosomal cyclic
dipeptide thaxtomin A (25) and the angucyclinone polyketide
WS5995B (17, 21). WS5995B (Fig. 1) exhibits antimicrobial
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FIG. 1. Structure of WS5995B.

activity (17; also our unpublished results), whereas thaxtomin
A displays phytotoxic activity against susceptible plant hosts
(13, 29). Other phytopathogenic streptomycetes are known in
addition to S. acidiscabies which produce thaxtomin toxins.
Among these, it was recently shown that Streptomyces scabies
strain 87.22 possesses an AraC/XylS-type transcriptional reg-
ulator to control expression of thaxtomin synthetase structural
gene expression in response to cellobiose (18). The regulation
of thaxtomin biosynthesis has not been explored in S. acidis-
cabies, and, interestingly, S. acidiscabies is the only currently
available organism known to produce WS5995B.

The widespread utilization of GBL signaling systems in
the regulation of morphogenesis and secondary metabolism
among streptomycetes along with the poorly understood reg-
ulatory mechanisms governing production of the nonribosomal
peptide thaxtomin and the type II polyketide WS5995B in S.
acidiscabies prompted us to explore and characterize the pos-
sible roles played by GBL signaling in the production of these
two distinct types of secondary metabolites in S. acidiscabies.

GBL SIGNALING GENES IN S. ACIDISCABIES 4787

Our results reported here describe the identification and char-
acterization of a GBL signaling system consisting of the GBL
synthase homolog sabA and two adjacent flanking genes, sabR
and sabS, encoding GBL receptors. The results of genetic and
biochemical studies described here reveal a role for this GBL
system in regulating production of WS5995B. In our analysis of
GBL mutants and metabolite production profiles, we find no
changes in thaxtomin production relative to the wild-type
strain, suggesting that the GBL system described here does not
play a role in the biosynthesis of thaxtomin or its regulation. In
addition to GBL’s effect on WS5995B production, we also
report a conditional morphological defect in strains carrying
mutations in the GBL receptor sabS$, suggesting that SabS
plays a role in morphogenesis.

MATERIALS AND METHODS

Bacterial strains, plasmids, growth, and culture conditions. Bacterial strains
and plasmids used in this study are given in Table 1. Escherichia coli strains were
grown at 37°C in Luria-Bertani medium. Antibiotics ampicillin, kanamycin, apra-
mycin, and chloramphenicol, when used for selection in E. coli, were added to
medium at final concentrations of 100, 50, 100, and 30 pg/ml, respectively.
Growth and transformation procedures for E. coli strains were carried out using
standard methods (40). S. acidiscabies cultures were routinely grown at 30°C in
liquid tryptic soy broth medium in 250-ml baffled flasks containing 20 to 30 ml of
medium or on ISP2 solid medium (41). For analysis of WS5995B production,
Streptomyces cultures were grown at 30°C in liquid SGM (Streptomyces growth
medium) or on solid SGM (21) without added calcium carbonate. Growth of
Streptomyces strains in SGM was measured by determining wet weights of cells
that had been collected by vacuum filtration. Following conjugal transfer of
mutant alleles or complementing plasmids from E. coli donors, Streptomyces
transconjugants were selected on modified ISP4 medium. Modified ISP4 me-
dium was prepared as previously described (7, 41), except that calcium carbonate
was omitted, and the medium was amended with 0.5 g/liter yeast extract and 1
glliter tryptone. Additionally, after an autoclaving step, 0.1 volume of sterile 400
mM MgCl, was added to medium to give a final MgCl, concentration of 40 mM

TABLE 1. Bacterial strains and plasmids used in this study

Strain or plasmid

Relevant properties and/or function

Reference or
source

Strains
S. acidiscabies 84.104 Wild-type WS5995B producer 21
SabR4-9 S. acidiscabies 84.104 AsabR GBL receptor mutant This study
SabAS S. acidiscabies 84.104 AsabA GBL synthase mutant This study
AKP938 S. acidiscabies 84.104 AsabS GBL receptor mutant This study
E. coli DH5aMCR Cloning host; F~ mcrA A(mrr-hsdRMS-mcrBC) $b80dlacZAM1S5 A(lacZYA-argF)U196 endAl 13
recAl deoR thi-1 phoA supE44 N~ gyrA96 relAl
E. coli BW25113 Strain used for PCR targeted mutagenesis; AaraBAD hsdR514 8
E. coli S17-1 Donor strain for conjugal transfer; thi pro hsdR hsdM™" recA RP4 tra 13
E. coli BL2INDE3 Strain for recombinant protein expression Novagen
Plasmids
pUCI19 General cloning vector 13
pGBLBP1 pUC19 carrying sabRAS genes on a 7-kb Kpnl fragment This study
p0OJ260 Suicide vector for integration in Streptomyces; aac(3)IV oriColE1 RP4 oriT lacZo 13
pALE21 pOJ260 carrying sabRAS genes on 7-kb Kpnl fragment This study
pKD46 Vector carrying arabinose-inducible N Red recombinase; bla araC -y 3 exo repA101ts oriR101 8
pKD3 Template plasmid carrying Flp recognition target-flanked cat gene for creating PCR 8
mutagenesis cassette
pCP20 bla cat thermal induction of FLP synthesis 8
plJ86 Streptomyces complementation plasmid; oriColE1 SCP2* aac(3)IV ermE*p® Mervyn Bibb
plJ86::sabS plJ86 carrying wild-type sabS allele under transcriptional control of ermE*p This study
pET26b T7 RNA polymerase-dependent recombinant protein expression vector Novagen
pET26b::sabR pET26b carrying sabR encoding GBL receptor SabR This study
pET26b::sab$ pET26b carrying sabS encoding GBL receptor SabS This study

a

ermE*p, ermE* promoter.


http://jb.asm.org/

4788 HEALY ET AL.

TABLE 2. Oligonucleotide primers used in this study

Primer Sequence (5'-3")

GBL-F. ..CAAGCAGGAGCGCGCSRTCCGSAC

GBL-R.... ..CCTTGGACTGCAAGTGGAAGTASA

sabRex-F ... AAGGATCATATGGCTAAACAGGAGCGC

sabRex-R... AAGGATCTCGAGCGAAGCCACCCTTTCGGG

sabSex-F . . TTCCTTCATATGGCGAGGCAGTTACGC

sabSex-R. . TTCCTTCTCGAGGGACACGCACGCCGCCGT

ARE-F.... ..AGTCGGCAGTCTTCGAGTGT

GCTCGTCGATTCGTAACCAT

AREdupF............ TGAGAAACAAACGGCATGACCCGTTCITTT
ACCG

AREdupR........... CGGTAAAAGAACGGGTCATGCCGTTTGTTT
CTCA

sabRdelF ............. CCAAGCCATCGTGGAAGCGGCCGGTGAGG
TTTTCGACGAGCACGGTTACATGTGTAGG
CTGGAGCTGCTTC

sabRdelR............. CGAACGGCACCTGCTCGCCCAGCACCGCCT
GCGCCAGCGCCTCCTTGGACCATATGAAT
ATCCTCCTTAG

sabAdelF ... GTTCGTCCACCGCGCAGCCCTCGCCGAAAC
GTTTCTCACCGGCTGGGAGCTGTGTAGGC
TGGAGCTGCTTC

sabAdelR............. CGGCACCGGCCCGACCTCCAACCGGTGCGG
ATCCGTGGTGACTTCGAAGGCATATGAAT
ATCCTCCTTAG

sabSdelF .............. ATGGCGAGGCAGTTACGCGCCGAACAGAC
CCGCGCGACGATCATCACGGCGTGTGTA
GGCTGGAGCTGCTTC

sabSdelR.............. TCAGGACACGCACGCCGCCGTGATCTCCCG
CTCCAGCCTCGACGCCAGGCTCAGCATAT
GAATATCCTCCTTAG

sabRcomplF........ ACCTAAGCTTATCGGCCAACTCGGTCC
sabRcomplR ....... AACCAGATCTACGTTTCTTTCTCCGC
sabAcomplF.......ACCTAAGCTTTGTTCGGCCCGATCA
sabAcomplR ....... AACCAGATCTCGGGTCATGCCGTTTGT
sabScomplF......... ACCTAAGCTTTGTGTACAGGGGGTGAGA
sabScomplR ........AACCAGATCTCGATCCGAACAGCGCCG
hrdBF... ..GAAGACCGCCGCCAARAARACNRC
..GGGTGGCGCAGCTTGSWCATNGTYTT
CTGGATGAGGTCCAGGAAGA
CCGGTCAAGGACTACCTCAA

hrdBR..

sabRFrt... ..GTACTTCCACTTCCCGTCCA
sabRRrt.. CAACAAGGAACTGGTCAGCA
sabAFrt... ..ACACCCCGTTTTCTTCGAC
sabARTrt GACCCCACACTCGAAGACTG
sabSFrt ATCTGTTCGACCGACATGGT
sabSRit... CGCTTCGAGGGAGGAGTAG
sabSQRTF ..GCGCCCTGTACTTCCACTT
sabSQRTR ..TGGGACTGGAGTTCCATGAT

hrdBORTF.......... CTCTTCCTGGACCTCATCCA
hrdBORTR......... GGCGTACGTGGAGAACTTGT

in agar medium. Apramycin sulfate and nalidixic acid were each added to ISP4
medium at 25 pg/ml to select for Streptomyces transconjugants and to counter-
select E. coli donors, respectively.

Cloning of GBL signaling genes sabRAS in S. acidiscabies 84.104. All oligonu-
cleotide primers used in this study are presented in Table 2. Consensus degen-
erate hybrid oligonucleotide primers (39) were selected using protein alignments
of previously characterized GBL receptors. The oligonucleotide primer pair
GBL-F/GBL-R (Table 2) was used to amplify GBL receptor gene fragments
from S. acidiscabies 84.104 genomic DNA using “touchdown PCR” as previously
described (13). Cloned amplification products were sequenced and used as
probes for the identification of complete genes and flanking regions from gene
libraries using colony hybridization methods (13). The nucleotide sequence of
the sabRAS region was determined on both strands of a 7-kb Kpnl insert in
plasmid vector pUC19 (pGBLBP1) using a primer walking approach. Deduced
GBL receptor and synthase protein sequences were aligned using MUSCLE,
version 3.7. Alignments were refined using Gblocks, version 0.91b, and phylog-
enies were constructed with the maximume-likelihood method using PhyML,

J. BACTERIOL.

version 3.0. Phylograms were visualized and edited using TreeDyn, version
198.3 (9).

Mutag is and comp tation of sabRAS genes. The 7-kb Kpnl fragment
from pGBLBP1 was cloned into the KpnlI site of plasmid vector pOJ260, and the
resulting plasmid (pALE21) was introduced into E. coli strain BW25113 carrying
plasmid pKD46, encoding bacteriophage lambda Red recombinase. Cultures
carrying both of these plasmids were grown in LB medium containing apramycin
and ampicillin. BW25113(pALE21/pKD46) was grown in SOB medium contain-
ing 1 mM L-arabinose to induce expression of Red recombinase, as previously
described (8). Oligonucleotide primer pairs sabRdelF/sabRdelR, sabAdelF/
sabAdelR, and sabSdelF/sabSdelR (Table 2) were selected to generate in-frame
deletions of sabR, sabA, and sabS on plasmid pALE21, respectively. These
primers were used to amplify the chloramphenicol acetyltransferase gene from
template plasmid pKD3, with resulting products carrying 5’ ends with homology
to sabR, sabA, or sabS in pALE21 (8, 11). Gel-purified PCR products were
electroporated into washed suspensions of BW25113(pALE21/pKD46) as de-
scribed previously (8), and transformed cells carrying mutagenized pALE21 were
selected on LB agar containing chloramphenicol. Overnight cultures of resulting
chloramphenicol-resistant colonies were grown in LB medium containing chlor-
amphenicol, and plasmids were extracted from these cultures. Plasmids thus
obtained were used to transform suspensions of competent E. coli DHS5« cells to
chloramphenicol resistance. Plasmids extracted from these transformants were
used to transform BW25113(pCP20) to apramycin resistance in order to excise
the chloramphenicol resistance gene as described previously (8).

PALE21 derivatives carrying deletions in sabR, sabA, and sabS were used to
transform either E. coli strain S17-1 or the ET12567(pUZ8002) strain to apra-
mycin resistance. Resulting transformants were used for intergeneric conjugal
matings with S. acidiscabies 84.104 recipient strains as previously described (13),
with the exception that mating mixtures were plated on 25 ml of modified ISP4
medium instead of AS-1 medium. Following overnight growth of mating mixtures
at 30°C, transconjugants were selected by overlaying plates with 5 ml of soft
nutrient agar containing nalidixic acid and apramycin sulfate (150 wg/ml each) to
give final concentrations of 25 pg/ml in agar medium. Incubation of plates was
continued at 30°C for 3 to 5 days until transconjugants were visible on agar
surface. Transconjugant colonies were then transferred to ISP2 medium con-
taining nalidixic acid and apramycin. Liquid cultures of transconjugants were
grown nonselectively in tryptic soy broth for two or three serial transfers to allow
for loss of integrated plasmid. PCR assays were used to screen apramycin-
sensitive derivatives for loss of plasmid and retention of mutant alleles. These
mutants were used to study the roles of GBL signaling genes in secondary
metabolite biosynthesis and morphological differentiation on solid medium.

In order to verify linkage of mutant phenotypes with deleted GBL alleles,
the primer pairs sabRcomplF/sabRcomplR, sabAcomplF/sabAcomplR, and
sabScomplF/sabScomplR were used to amplify the wild-type sabR, sabA, and sabS
open reading frames (ORFs), respectively, from S. acidiscabies 84.104 genomic
DNA using high-fidelity Pfu polymerase (New England Biolabs). Amplification
products were purified and digested with restriction enzymes HindIII and BglII.
Plasmid pIJ86 was also digested with HindIII and BglII, and the ORFs encoding
these GBL signaling genes were ligated into pIJ86 using T4 DNA ligase
(New England Biolabs). The resulting plasmids, plJ86::sabR, plJ86::sabA, and
plJ86::sabS, harboring wild-type genes under the transcriptional control of the
ermE* promoter were used to transform E. coli S17-1 or ET12567(pUZ8002),
and conjugations were performed using these strains as donor and the AsabR,
AsabA, or AsabS strain as recipient. Resulting transconjugants were selected on
ISP4 medium amended with apramycin and nalidixic acid.

Analysis of WS5995B production. S. acidiscabies 84.104 wild type and GBL
deletion mutants were grown on ISP2 medium, and mycelial fragments were
used to inoculate tryptic soy broth liquid medium (20 ml in 250-ml baffled
Erlenmeyer flasks). Cultures were grown at 30°C and 180 rpm for approximately
20 h. Two milliliters of these cultures was used to inoculate 280 ml of SGM in
2.8-liter baffled Fernbach flasks. Culture medium was collected at various times,
and cells were removed by vacuum filtration. Wet cell weight determinations of
cultures were made, and filtrates were extracted using Strata-X solid-phase
cartridges as described by the manufacturer (Phenomenex).

Extracted metabolites were dissolved in methanol and investigated by thin-
layer chromatography (TLC) analysis on silica gel plates (250 wm; Whatman).
UV and visible absorbance spectra were collected using a Beckman DU640B
spectrophotometer. Quantitative high-performance liquid chromatography anal-
ysis was done using a Hewlett Packard 1090 liquid chromatograph equipped with
diode-array detector and a Phenomenex C,;g Luna (5 pm; 150 by 4.6 mm)
column. Detection wavelength range was from 200 to 600 nm. Solvent A was
H,O - H;PO, at 99.9:0.1; solvent B was 100% CH;CN. Samples of extracts were
injected and chromatographed at a 1 ml/min flow rate. Extract components were
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eluted with a linear gradient of 25% B to 60% B over 21 min. Identification and
quantification of WS5995B in culture filtrate extracts were accomplished using
authentic WS5995B standard preparations (21).

Cloning, expression, and purification of recombinant SabR and SabS. The
sabR and sabS ORFs were amplified from S. acidiscabies 84.104 genomic DNA
using high-fidelity Pfu polymerase and the oligonucleotide primer pairs sabRex-
F/sabRex-R (for SabR expression) and sabSex-F/sabSex-R (for SabS expression)
(Table 2). Amplification reaction products were purified and digested with re-
striction enzymes NdeI and Xhol. The expression vector pET26b (Novagen) was
also digested with Ndel and Xhol, and sabR and sabS OREF restriction digestion
products were ligated into the vector to produce recombinant protein expression
constructs pET26b::sabR and pET26b::sabS. Competent cells of E. coli strain
BL21(ADE3) were transformed with these plasmids, and transformants were
selected on LB agar containing kanamycin. Transformants were grown in 500 ml
of LB medium containing kanamycin at 30°C. When the culture reached an
optical density at 600 nm of approximately 0.6, protein expression was induced
with the addition of IPTG (isopropyl-B-p-thiogalactopyranoside) to a final con-
centration of 80 wM. Cultures were grown for an additional 6 h and then
harvested by centrifugation. Cell pellets were washed once in buffer containing
20 mM sodium phosphate, 500 mM NaCl, and 20 mM imidazole, pH 7.4, and
then resuspended in 1 to 2 ml of the same buffer containing 1 mM dithiothreitol
(DTT) and 1 mM phenylmethylsulfonyl fluoride. Cell suspensions were dis-
rupted by passage through a French pressure minicell at 16,000 Ib/in>. The cell
lysate was centrifuged at 20,000 X g for 30 min, and the resulting soluble protein
fraction was loaded onto a 1-ml HisGraviTrap column (GE Healthcare). Protein
fractions were eluted with 20 mM sodium phosphate-500 mM NaCl, pH 7.4,
containing increasing amounts of imidazole. Fractions were analyzed using so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE), and the frac-
tions containing pure SabR or SabS (as judged by electrophoretic homogeneity)
were pooled and desalted on PD-10 desalting columns (GE Healthcare). Pro-
teins obtained in this manner were stored at —20°C or —70°C in 50 mM Tris-Cl,
pH 7.6, 200 mM NaCl, 1 mM DTT, and 50% glycerol. Protein determinations
were made using a Bradford assay with bovine serum albumin as the standard.

Electrophoretic mobility shift assays. DNA fragments encompassing ARE
sequences within the sabRAS region were amplified from template plasmid
pGBLBP1. The oligonucleotide primer pair ARE-F/ARE-R was used to amplify
a 208-bp DNA fragment encompassing the upstream region of sabS. ARE-F (40
pmol) was first end labeled in a separate reaction using [y->*P]JATP (6,000
Ci/mmol; PerkinElmer) and polynucleotide kinase (Roche) according to the
manufacturer’s recommendations. Labeled primer products were separated from
unincorporated nucleotide using Micro Bio-Spin columns (Bio-Rad) and used in
PCR along with oligonucleotide primer ARE-R, plasmid template pGBLBP1,
and high-fidelity Pfu polymerase. Amplified labeled PCR product was separated
from excess primer using QiaQuick PCR spin columns (Qiagen). DNA binding
assays contained 2.5 X 10% cpm of labeled DNA, 50 ng of calf thymus DNA, 50
mM NaCl, 10 mM MgCl,, 10 mM Tris-Cl, 1 mM DTT, and 50 pg/ml bovine
serum albumin, pH 7.4. Various amounts of recombinant SabR or SabS were
added to the reaction tubes. For competition experiments, unlabeled competitor
duplex DNA corresponding to ARE sequence was prepared by briefly heating
and annealing stoichiometric amounts of complementary oligonucleotides
AREdupF/AREdupR and adding these to DNA binding reaction mixtures.
Binding reactions (10 wl) were carried out for 20 min at 30°C, after which
reaction products were electrophoresed through nondenaturing 5% polyacryl-
amide gels in 0.5X Tris-borate-EDTA buffer (40). Gels were dried under vacuum
and exposed to a phosphorimager screen (Amersham Biosciences). Exposed
screens were scanned using a Typhoon Trio+ Variable Mode Imager (Amer-
sham Biosciences); band intensities of scanned screens were quantified using
ImageQuant TL software (Amersham Biosciences). Experiments were repeated
at least four times for each protein and ARE substrate combination.

RNA extraction and reverse transcriptase PCR assays. Cultures of S. acidis-
cabies wild-type 84.104 and of sabR, sabA, and sabS mutants were grown in
tryptic soy broth or SGM to mid-log phase, and cells were collected by centrif-
ugation. Cell pellets were briefly homogenized using a tissue grinder and treated
with lysozyme. Total RNA was extracted from cells using an RNeasy minikit
following the manufacturer’s guidelines (Qiagen). Following extraction, RNA
samples were treated with RNase-free DNase I (New England Biolabs). Reverse
transcription reactions were carried out using Superscript Il reverse transcriptase
(Invitrogen) and reverse transcriptase primers sabRRrt, sabARrt, and sabSRrt
(Table 2). PCR amplification of DNase-treated samples prior to cDNA synthesis
yielded no amplification products, indicating that nucleic acid PCR amplification
products observed following reverse transcription were produced solely from
cDNA templates derived from RNA. Following cDNA synthesis, reverse tran-
scription reaction products were used for PCR amplification using the primer

GBL SIGNALING GENES IN S. ACIDISCABIES 4789

pairs sabRFrt/sabRRrt, sabAFrt/sabARrt, and sabSFrt/sabSRrt. PCR was car-
ried out for 30 cycles, and amplification products were electrophoresed through
1% agarose gels in Tris-acetate-EDTA buffer. PCR amplification product band
intensities on gels were imaged using a VersaDoc system (Bio-Rad) and quan-
tified using Quantity One software. Normalization of amplification products
from cDNA templates using GBL primers was done using the 4rdB gene encod-
ing the principal sigma factor of S. acidiscabies 84.104. hrdB was cloned from S.
acidiscabies 84.104 genomic DNA using degenerate oligonucleotide primers de-
signed from alignments of conserved regions of principal sigma factors from S.
coelicolor (SCO5820), Streptomyces avermitilis (SAV_2444), and S. griseus
(EMBL accession X75952) (Table 2). The deduced amino acid sequence of the
cloned S. acidiscabies 84.104 hrdB gene displayed 95% identity with S. coelicolor
HrdB (not shown). The oligonucleotide primer pair hrdBFrt/hrdBRrt was used
for amplification of irdB ¢cDNA from RNA samples.

Quantitative reverse transcription-PCR (qRT-PCR) was performed using an
Applied Biosystems 7500 real-time PCR system and SYBR green Quantitative
RT-PCR Kit with Moloney murine leukemia virus reverse transcriptase, RNase
inhibitor, and JumpStart Tag DNA polymerase (Sigma). Specific primers used
for amplification of sabS (sabSQRT) and /rdB (hrdBQRT) are given in Table 2.
Amplicon specificity was checked using qRT-PCR dissociation curve analysis.
The relative increase in sabS expression in wild-type and sabR mutant strains was
determined using the Relative Quantification Method (Applied Biosystems 7500
System). Briefly, threshold cycle (C7) values were normalized to irdB mRNA
levels for RNA samples from each strain, and mean relative expression ratios
were calculated using the AAC method. Values given for the relative increase in
expression represent the means of three independent experiments.

Nucleotide sequence accession number. The nucleotide sequence of the
sabRAS region described here has been deposited in the NCBI database
under accession number FJ821515.

RESULTS AND DISCUSSION

Identification and characterization of GBL signaling genes
in S. acidiscabies 84.104. Degenerate PCR primers were de-
signed to amplify 5’ ends of genes encoding GBL receptor
proteins from the WS5995B and thaxtomin producer S. acidis-
cabies strain 84.104. GBL receptor genes encode an N-terminal
region unique to GBL receptors and the HTH DNA binding
domain representative of members of the TetR transcriptional
regulator superfamily (14, 37). Amplification using oligonucle-
otide primers selected to anneal to these DNA sequences
resulted in the production of an expected ~150-bp fragment
from S. acidiscabies 84.104 genomic DNA (data not shown).
The amplification product was cloned and sequenced; the de-
duced translation product displayed a high degree of similarity
to N-terminal sequences of GBL receptors carrying N-terminal
HTH domains. The amplification product was radiolabeled
and used to obtain the complete sequence as well as flanking
sequences from an S. acidiscabies genomic library. A library
clone containing a 7-kb Kpnl fragment and carrying GBL
receptor and autoregulator homologs was identified and se-
quenced (Fig. 2).

Sequence analysis identified the GBL receptor gene ho-
molog sabR. SabR has a predicted anhydrous molecular mass
of 23.47 kDa. The predicted SabR translation product is 48%
identical to the S. virginiae butanolide receptor BarA (22). The
translation start of sabR is separated from the translation start
of the divergently transcribed GBL synthase autoregulator ho-
molog sabA by 89 nucleotides (Fig. 2). The SabA gene product
has a predicted anhydrous molecular mass of 36.64 kDa. SabA
is 48% identical to the BarX autoregulator of S. viriginiae (20).
The 3’ end of the sabA coding region is separated from the 5’
end of a second GBL receptor gene homolog, sabS, by 33
nucleotides (Fig. 2). Two possible translation initiation codons
were identified for SabS. Translation from the 5'-most initia-
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arpA afsA S. griseus
scbR schbA S. coelicolor
barA barX S. virginiae
farA SJarX S. lavendulae

FIG. 2. Genetic organization of the sabRAS region in S. acidisca-
bies 84.104. GBL receptor gene homologs sabR and sabS and GBL
synthase homolog sabA are indicated by arrows below scale, given in
kilobases. ARE on the diagram represents a 26-bp ARE DNA se-
quence (not drawn to scale) bound by SabR (Fig. 7). For comparative
purposes, a partial list of characterized receptor/synthase partners
from other streptomycetes is given below the sabRAS gene map al-
though these gene pairs are not necessarily organized in the same
manner as shown in figure.

tion codon would result in a protein with a predicted anhy-
drous molecular mass of 25.44 kDa and is 70% identical to
CprB of S. coelicolor (32). A second in-frame translation ini-
tiation codon is also observed (see Fig. 6), and translation from
this codon would result in the production of a protein with
anhydrous molecular mass of 24.12 kDa. Both initiation
codons are preceded by appropriately spaced Shine-Dalgarno
sequences complementary to the 3" end of S. acidiscabies 16S
rRNA (45).

Both GBL receptor homologs SabR and Sab$ have distinct
N-terminal HTH motifs as well as conserved residues thought
to constitute a hydrophobic GBL binding pocket, based on
structural studies of the GBL receptor CprB (32). Protein
sequence alignments using SabA and other GBL synthases
required for GBL biosynthesis, most notably AfsA, showed
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that SabA contains conserved residues involved in GBL bio-
synthesis (19).

In order to evaluate the evolutionary relationships of SabR,
SabS, and SabA to other GBL signaling gene components,
phylogenetic trees were constructed using these proteins and
homologous proteins, and these results are presented in Fig. 3.
Inspection of the tree in Fig. 3A shows SabR to be somewhat
related to the GBL receptors TylP and TylQ while SabR is
distantly related to SabS. SabS, on the other hand, is most
closely related to CprA. Results presented in Fig. 3B reveal
SabA to be closely related to a possible GBL synthase,
AAM78023.1, found in Streptomyces carzinostaticus (W. Liu et
al., unpublished results). The phylogenetic data presented here
largely support results of previous phylogenetic analyses sug-
gesting that GBL receptor genes and their cognate synthases
are evolving independently with respect to one another (34).

Characterization of sabR, sabA, and sabS mutants. In order
to study the roles of sabRAS genes in S. acidiscabies, in-frame
deletion mutants of each gene were constructed using a mod-
ification of the bacteriophage lambda Red recombinase
method developed by Datsenko and Wanner (8) and later
adapted to Streptomyces (11). Our approach involved PCR
amplification of the template plasmid pKD3 cat antibiotic re-
sistance gene and electroporation mutagenesis of a derivative
of the suicide plasmid vector pOJ260 (pALE21) which carries
the cloned mutagenesis target genes and the origin of conjugal
DNA transfer oriT (2). Previous conjugation experiments using
S. acidiscabies utilized AS-1 medium for plating of conjugation
mixtures (12, 13). More recent conjugation studies with S.
acidiscabies in our lab have shown that improved results could
be obtained using ISP4 medium amended with yeast extract
and 40 mM MgCl,. Experiments using this medium resulted in
10- to 30-fold increases in observed transconjugant frequency.

B 100 [ 2i21224587_ScbA
e 2i182440682_AfsA
£2il6445341_JadWl

SabA

gi28 192510_S_carzinostaticus_ AAM78023.1
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FIG. 3. Phylogenetic analysis of sabRAS gene products. (A) Phylogram showing relationships between Streptomyces GBL synthases and SabA.
(B) Phylogram showing relationships between Streptomyces GBL receptors and S. acidiscabies SabS and SabR proteins. Proteins are represented
by gene identification (gi) numbers and names in the NCBI/GenBank protein sequence database; SabR_S.ansochromogenes represents GBL
receptor SabR found in Streptomyces ansochromogenes. Bootstrap values are indicated at branches.
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AsabS/
plJ86::5abS

FIG. 4. Phenotypic properties of sabR, sabA, and sabS mutants. (A) Pigment production characteristics of sabR, sabA, and sabS deletion
mutants on SGM. wt, wild-type strain S. acidiscabies 84.104. (B) Complementation of sabS deletion mutant on SGM with plasmid plJ86::sabS.
(C) Complementation of sabA deletion mutant on SGM with plasmid plJ86::sabA. (D) Complementation of conditional morphological defect of

sabS mutant on ISP2 medium with plasmid plJ86::sabS.

Lower increases were seen with the addition of 10, 20, and 30
mM MgCl,, and no difference in transconjugant numbers was
observed between 40 mM and 50 mM MgCl, amendments
(data not shown). Similar transconjugant frequencies were ob-
tained using either E. coli conjugal donor strain S17-1 or
ET12567(pUZ8002).

The wild-type strain and the AsabR, AsabA, and Asab$ mu-
tants were grown on ISP2 medium, SGM, and oatmeal agar
medium to identify differences in colony morphology and/or in
the appearance of pigmented secondary metabolites. SGM
supports production of the yellow pigmented angucyclinone
polyketide WS5995B (21), whereas oatmeal-based medium
supports production of high levels of thaxtomins in S. acidis-
cabies (28). After growth in oatmeal broth medium, no differ-
ences in growth yields between the wild-type and mutant
strains were observed (data not shown). Similarly, following
extraction and silica gel and reverse-phase TLC analysis of
oatmeal broth culture filtrates, no differences in thaxtomin
production were seen between the wild-type and mutant
strains (data not shown).

While no changes in thaxtomin production were seen be-
tween the wild type and the mutants, a comparison of the wild
type and the AsabA and AsabS strains grown on solid SGM
showed that these two mutants produced higher levels of a
yellow diffusible pigment than the parent strain (Fig. 4A). No

significant differences in pigment production relative to the
parent strain were observed in AsabR mutants on SGM or
oatmeal agar medium (data not shown). To verify that the
pigment overproduction phenotypes observed in sabA and
sabS mutants were due to the mutant sabA and sabS$ alleles, the
wild-type alleles of these genes were cloned into plasmid pIJ86
under the transcriptional control of the constitutive ermE*
promoter (1). Normal wild-type levels of pigment production
were seen in mutant transconjugants carrying the plasmids,
demonstrating that pigment production phenotypes were due
to mutations in sabA4 and sabS (Fig. 4B and C).

In addition to differences in pigment production by sabS and
sabA mutants, we also observed morphological differences in
sab$S mutants when the organism was cultured on ISP2 agar
medium, a rich medium in comparison to mannitol-based
SGM or oatmeal-based medium. Mutants grown on ISP2 me-
dium largely failed to produce aerial hyphae from substrate
mycelium, even after prolonged growth (Fig. 4D). Partial res-
toration of normal morphological development was observed
in sabS mutants on ISP2 when they carried wild-type sabS on
the multicopy plasmid pIJ86 (Fig. 4D). This effect was not
observed when the sabS mutant was cultured on mannitol- or
starch-based medium, such as SGM (Fig. 4B). While aerial
hyphal development of sabS mutants was not impaired on
SGM, we did observe a more compact, tighter colony morphol-
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ogy of sabS mutants on SGM plates. Partial restoration of
normal colony morphology was observed in sab$S mutants on
SGM when they carried wild-type sab$S on the multicopy plas-
mid plJ86 (Fig. 4B).

The conditional morphological defect observed on ISP2 me-
dium is reminiscent of effects seen in, e.g., S. coelicolor bldA
mutants or other strains (e.g., adpA mutants) with defects in
genes containing UUA codons when cultured on rich, high-
osmolarity medium such as R2YE (24, 27, 33). Morphological
defects can be suppressed in such mutants when cells are
cultured on mannitol-based medium. The bld4 gene encodes
tRNA'*" and recognizes rare UUA codons in high-GC content
Streptomyces mRNA transcripts. Numerous genes containing
TTA codons have been identified, and many of these are genes
involved in morphogenesis or secondary metabolism (5). No-
tably, the sab$ gene sequence possesses a TTA leucine codon
in the 5’ end of the gene. The codon sequence occurs at either
nucleotides 13 to 15 (the 5th triplet codon) or at nucleotides 52
to 54 (the 18th triplet codon), depending on which translation
start codon is used (see also Fig. 6A). Based on alignments
with other GBL receptor homologs, the amino acid position
occupied by leucine in SabS resides in the N terminus of the
protein in a region preceding the DNA binding HTH domain.
Further, this amino acid position is usually occupied by glu-
tamic acid (12 out of 18 proteins examined); there are no other
occurrences of leucine at this position in accessible GBL re-
ceptor sequences we examined. Although specific target genes
subject to regulation by SabS have not yet been identified,
these results suggest that SabS could function as a transcrip-
tional regulator of genes related to morphological develop-
ment. These studies are currently under way.

To more thoroughly investigate the nature of the diffusible
yellow pigment compound produced in excess in sabS and sabA
mutants, the mutants and wild-type strains were grown in lig-
uid SGM, and culture filtrates were extracted using solid-phase
methods. Extracts were analyzed using silica gel TLC and com-
pared with preparations of pure WS5995B. Extracts of the
Asab$ and AsabA culture filtrates contained higher levels of a
yellow pigment that was also present in the wild-type culture
filtrate extracts, indicating overproduction of a metabolite in
the mutant strains. The compound also displayed chromato-
graphic properties on TLC plates similar to pure WS5995B.
The yellow compound was recovered from preparative silica
gel medium, and absorbance scans revealed that the material
exhibited spectroscopic properties identical to those of pure
WS5995B (data not shown). The properties of silica gel-puri-
fied compound as determined by analytical high-performance
liquid chromatography were also identical to those of pure
WS5995B (data not shown). While higher levels of WS5995B
were found in both AsabS and AsabA mutants, the amounts of
WS5995B produced by the AsabS mutant were substantially
higher than in the Asab4 mutant.

In order to investigate how the sabS mutation affected
WS5995B production rates, growth of the wild-type and Asab$
strains was measured over the course of WS5995B production.
Detailed metabolite kinetics studies were not done with the
sabA mutant. For studies of metabolite yields relative to
growth in sabS mutants, it was necessary to follow growth
kinetics by cell mass determinations rather than by using ab-
sorbance spectroscopy since growth of the organisms in SGM
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FIG. 5. Growth and WS5995B production characteristics of S. aci-
discabies 84.104 wild type and a AsabS deletion mutant. Cell weight
and WS5995B production of the wild type and the AsabS mutant are
given, as indicated on the figure. Given large differences in WS5995B
production for the wild-type and mutant strains, note that the right-
hand y axis is segmented to allow inspection of WS5995B production
rates for both strains. Over the 12-h interval from 36 h to 48 h, the rate
of WS5995B production was 1.36 uM - h™ L,

is not dispersed sufficiently enough to allow accurate analysis
using spectroscopic methods. Growth kinetics of the wild-type
and GBL receptor mutant Asab$ were similar (Fig. 5). Trace
amounts of WS5995B were detectable in extracts from both
strains within 24 h. While the onset of WS5995B production
began at approximately the same time for both strains, notable
differences in the patterns and rates of production of WS5995B
were seen between the wild-type and mutant strains. Produc-
tion rates of WS5995B by AsabS varied over a 72-h time
course, whereas production by the wild-type strain remained
constant. After 36 h, a rapid increase in the rate of WS5995B
production was observed in the mutant relative to the wild-type
strain (1.36 pM - h™* for Asab$ versus 0.1 pM - h™* for the
wild type). At 48 h, the rate of production in Asab$S decreased
to that of the wild-type strain. At 60 h, WS5995B production
increased again to 6 uM - h™!. After about 72 h, WS5995B
production in both strains reached plateau levels and began to
decline soon thereafter.

SabR binds an ARE sequence element which overlaps the
sabS translation initiation site. In order to explore the bio-
chemical properties of the GBL receptors SabR and SabS, the
respective ORFs were amplified separately and cloned into
the plasmid expression vector pET26b. The proteins were ex-
pressed and purified as recombinant derivatives carrying C-
terminal hexahistidine sequences. Following the preparation of
soluble extracts from IPTG-induced E. coli cultures, the pro-
teins were purified using standard immobilized metal affinity
chromatography methods. Both proteins were recovered from
columns in elution buffer containing 300 mM imidazole. Frac-
tions were analyzed using sodium dodecyl sulfate-PAGE, and
appropriate fractions were pooled and used for mobility shift
assays.

We were interested in identifying ARE DNA sequences
within the sabRAS region which were recognized by SabR
and/or SabS. Using pattern search tools (38), we identified two
sites within or in the proximity of the sabRA intergenic region
with weak but significant similarity to previously characterized
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sabS—ARE AAACAAACGGCATGACCCGTTCTTTT
afsA CAAGATACAGAATAATCGGTTTTTTT
scbA TAAGATACAGACTGAGCGGTTTTTTT
barA-BARE3 TAAGATACATACCAACCGGTTCTTTT
scbR ATCGGAACCGGCAATGCGGTTTGTTC
barB-BARE1 AGGCAAGCGAACCGCTCGGTTTGCTG
barB-BARE2 CCAAAAACAAGGCAACCGGTCTGGTT
papR1 TGACAAACCGACCGTGCCGTTTTTTT
spbR—-ARE1 AAAGATACGTACCCACCGGTTTTGTT
SpbR-ARE2 TAAGATACGAACCCGCCGGTTTICTTT
strR—-ARE1 CAGGATCGCGCCACGGCGGCTGATTC
strR—ARE2 TTCGGCAATCAAACTGCGGTTTATTT
tylS TGACAAACCGTCCGCTCCGTTTTTTT
vmsR TCACAAACCGTATAGTCTGTTTTCAT
ccaR GGAAAAACGTACCCCGGGGTCGGTTT
farX AAAAATATATACCAACCGGTTTTTTC
farA TAAGATACGAACGGGACGGACGGTTT

FIG. 6. S. acidiscabies 84.104 ARE sequence and ARE consensus. (A) Position of the ARE (boxed) relative to possible SabS translation
initiation sites and the upstream region of sabS. Double-stranded DNA sequence is shown. Two possible alternative start codons and Shine-
Dalgarno sequences are underlined, and the N terminus of the deduced SabS peptide sequence is shown below the DNA, with leucine specified
by a TTA codon indicated by an asterisk. (B) Nucleotide sequence alignment of the predicted ARE sequence from S. acidiscabies (sabS-ARE) with
previously characterized Streptomyces ARE boxes. (C) Sequence logo illustrating conservation of bases within aligned ARE sequences.

ARE sequences in other streptomycetes. These sites were
found centered at —12 with respect to the sabR translation
start and at +14 with respect to the sabA translation start (data
not shown). A radiolabeled 294-bp PCR product was gener-
ated which encompassed the sabRA intergenic region and 5’
ends of both genes, including predicted ARE sites. This la-
beled fragment was used in gel mobility shift assays to detect
binding by SabR and/or SabS. Numerous reaction conditions
were tested, and no specific binding activity was observed for
either SabR or SabS, indicating that no ARE sequences are
present in the sabRA intergenic region (not shown).

Pattern searching was also carried out to identify potential
ARE sequences in regions upstream of sabS. Results of this
analysis revealed one sequence with very strong similarity to
previously characterized streptomycete ARE sequences, lo-
cated in the upstream region of sabS§ translation initiation site
(Fig. 6). A 209-bp radiolabeled PCR amplification product
encompassing this ARE was used for gel mobility shift analysis
to detect DNA binding activity with SabS and SabR. No DNA
binding activity was detected with SabS in mobility shift assays
under various conditions using this DNA substrate. The ap-
pearance of a single shifted complex was detected with SabR,
however; results of these mobility shift experiments are shown
in Fig. 7. A shifted complex using the DNA fragment encom-
passing the ARE sequence within the sabS region was ob-
served at SabR concentrations as low as 2 nM. In order to
verify specific SabR binding to the ARE sequence within the
209-bp radiolabeled fragment, mobility shift assays were done
with the inclusion of unlabeled duplex ARE competitor DNA.
DNA-SabR complex dissociation occurred with added compet-
itor (Fig. 7, lane 8). An apparent dissociation constant, K,, of
14 nM was calculated from fractional binding plots of imaged
mobility shift data. These data demonstrate that SabR specif-

ically binds an AT-rich ARE box which covers the upstream
region of sabS.

Given that SabR interacts with an ARE sequence which
encompasses one of two possible sabS translation initiation
codons, we propose that sabS translation initiation most likely
occurs at the second initiation codon, with the ARE centered
at —38 with respect to translation initiation. Other lines of
evidence suggest sabS is translated from this second initiation
codon, resulting in production of the smaller SabS protein.
Namely, translation from the 5'-most initiation codon pro-
duces an N-terminal sequence not seen in other GBL recep-
tors, based on protein alignments (data not shown). Also, as
SabR represses sab$ expression (see below), the transcription
level control of sab$ expression could most easily be explained
by binding of SabR to regions upstream of sabS$ translation
initiation. This region also includes sequences with high prob-

o
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FIG. 7. SabR-ARE DNA mobility shift assay. A **P-labeled 209-bp
DNA fragment encompassing the ARE box was incubated with various
amounts of recombinant SabR, and binding reaction products were
electrophoresed through a 5% native PAGE gel in 0.5X Tris-borate-
EDTA buffer. Lane 1, no SabR; lane 2, 1.5 nM SabR; lane 3, 3 nM
SabR; lane 4, 6 nM SabR; lane 5, 12 nM SabR; lane 6, 18 nM SabR;
lane 7, 24 nM SabR; lane 8, 24 nM SabR plus 150 nM unlabeled 34-bp
ARE duplex competitor DNA.



http://jb.asm.org/

4794 HEALY ET AL.

RNA extracted from strain:

<+ S <S>
Y g, B, %

D -

1 2 3 4

FIG. 8. Reverse transcriptase PCR analysis of sabRAS gene expres-
sion. Strains used for RNA extraction are given across four vertical
columns, as indicated at top; PCR amplicons analyzed from cDNA
samples are given over four horizontal rows, as indicated at right. irdB
represents a principal vegetative sigma factor. No bands are seen for
an sabR amplicon from sabR RNA samples or for an sab$S amplicon
from sabS RNA samples because amplicon regions were removed in
construction of these deletion mutants. The sab4 amplicon is seen
from sabA RNA samples because the amplicon region was retained in
the creation of an sabA deletion strain.

abilities of promoter elements (data not shown). These areas
of inquiry are currently being investigated.

sabS$ expression is elevated in sabR mutants. In order to test
how GBL genes might regulate one another, RNA samples
were extracted from GBL mutants and wild-type strains. Re-
verse transcriptase was used along with the appropriate reverse
oligonucleotide primers for the synthesis of cDNA from
mRNA templates. cDNA products were then used for PCR
amplification of sabR, sabA, and sab$S amplicons to measure
relative levels of these genes. Results of these assays are shown
in Fig. 8. Compared with RNA samples from wild-type cul-
tures, no significant differences were found in expression levels
of sabA among sabA, sabR, or sabS mutants (Fig. 8, row A). In
all strains sabA expression is lower than the levels of sabR,
sabS, and hrdB expression observed in wild-type and mutant
strains. The expression of GBL synthase genes has been shown
to be lower than expression levels of their cognate receptors in
other streptomycetes. For example, barX expression in S. vir-
giniae is notably lower than the expression of the cognate
receptor gene barA (20).

No amplification product is seen for the sabR gene from
sabR mutant RNA samples (Fig. 8, row A, lane 2). This is
because the sabR amplicon sequence resides within the region
of sabR that was removed during construction of the sabR
deletion mutant. Thus, we were unable in these experiments to
determine whether sabR expression was altered in sabR mu-
tants. We could conclude from our results, however, that there
were no significant differences in sabR expression between
sabA, sabS, and the wild-type strain (Fig. 8 row B, lanes 1, 3,
and 4). The failure of SabS to bind sequences in the upstream
region of sabR and consequently repress sabR expression is
consistent with this finding.

The sabS amplicon sequence also occurs within a region of
sabS which was removed in construction of the sab$ deletion
mutant; we were therefore unable to assess effects of the sabS
mutation on sabS expression levels (Fig. 8, row C, lane 4).
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FIG. 9. qRT-PCR analysis of sabS expression in wild-type 84.104
and sabR mutants. Graph shows average relative increase in sab$
expression in the wild type (wt) and sabR deletion mutant from three
independent experiments. Expression differences were computed using
the AAC, method. Significance was calculated by analysis of variance,
and error bars represent standard error.

However, modest but reproducibly elevated levels of sab$ were
detected in sabR mutants compared with the wild-type strain;
levels of PCR product obtained from amplification of cDNA
from sabR strains were higher than those of products obtained
from amplification of cDNA from the wild-type strain (Fig. 8,
row C, compare lanes 1 and 2). Also, sabS levels in sabA
mutants and wild-type strains were similar (Fig. 8, row C, lanes
1 and 3).

In order to confirm the RT-PCR results observed for sabS
expression in wild-type and sabR mutant strains, qRT-PCR
assays were performed. The results of these experiments show
that sabS$ expression is elevated in sabR mutants, providing
supportive evidence for the negative regulatory role of SabR in
sab$ expression (Fig. 9). Given that our mRNA samples were
obtained from mid-exponential-phase cultures, we suspect that
GBL was already present in the cultures. If, as we predict,
SabR binds GBL and GBL binding occurs at extremely low
concentrations (15), binary SabR/GBL complexes have prob-
ably already begun to dissociate from sab$ promoter, resulting
in the appearance of sabS transcripts in the wild-type RNA
samples. We therefore suspect that the differences in sab$
expression between the wild type and sabR mutants would be
even greater with RNA samples recovered from the organisms
at earlier time points.

Taken together, the results we describe in this experimental
study suggest a role for GBL signaling gene homologs sabRAS
in regulating both production of the aromatic polyketide
WS5995B and morphogenesis in S. acidiscabies. Deletion of
sab§ results in overproduction of WS5995B, which could most
easily be explained by postulating that SabS functions as a
negative regulator of WS5995B polyketide synthase (PKS)
gene expression. Conversely, the conditional defect in morpho-
logical development observed with sabS mutants grown on rich
medium suggests that SabS acts to positively regulate morpho-
genesis. Given this dual role proposed for Sabs, it is plausible
that Sab$S functions in a manner similar to that of other tran-
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scription factors which function as intermediates in the pro-
cessing of GBL signaling inputs to multiple outputs. For ex-
ample, in Streptomyces pristinaespiralis the GBL receptor SpbR
controls pristinamycin production through binding at the pro-
moter region of the pristinamycin pathway-specific activator
papR1. Additionally, SpbR plays a role in morphological de-
velopment (10). It is likely that SabS responds to a ligand and
that target gene expression is mediated through this interac-
tion. While SabS does not bind ARE sequences in the sabRAS
region, it is plausible that, given its similarity to other GBL
receptors, SabS binds ARE sequences elsewhere in the ge-
nome in a manner which would result in negative regulation of
expression of a type II PKS gene cluster encoding enzymes
required for WS5995B biosynthesis and in positive regulation
of genes involved in morphogenesis. Whether such control
phenomena would be exerted directly or indirectly, through
pathway-specific promoter interactions such as occurs at, e.g.,
papR1 is unknown. We are currently developing methods to
identify DNA binding sites for SabS to elucidate the position of
Sab$ within a regulatory network which would govern second-
ary metabolism and morphological development. Using a strat-
egy similar to the one we used for the identification of GBL
receptor genes (48), we have also identified type II PKS gene
sequences from S. acidiscabies genomic DNA which may en-
code WS5995B PKS and pathway activators regulated by SabS-
DNA interactions.

While it is tempting to speculate that SabS and SabR bind
GBL compounds produced by S. acidiscabies since they are
clearly homologous with other characterized GBL receptor
proteins and since they lie immediately adjacent to the GBL
synthase homolog sabA4, we have no direct evidence at this time
that either protein binds GBL compounds. It is for this reason
that we refer to SabS and SabR as GBL receptor homologs,
pending biochemical verification of GBL binding properties of
these proteins. There are instances of GBL receptor homologs
which do not appear to bind GBLs. For example, regulation of
alpomycin biosynthesis in Streptomyces ambofaciens occurs
through interactions between the GBL receptor homolog
AlpZ and a ligand exhibiting chemical properties inconsistent
with those of GBL compounds (4). Also, it has been reported
that the S. virginiae GBL receptor BarB does not exhibit GBL
binding activity (30). Moreover, based on phylogenetic argu-
ments, it has been proposed that “GBL receptors” predate
GBL synthases and initially functioned as DNA binding pro-
teins prior to acquiring GBL binding properties (34). Thus,
SabR and/or SabS may bind ligands other than GBL com-
pounds.

As GBL compounds are typically produced in minute quan-
tities and are recovered through extraction into organic sol-
vent, large volumes of culture (=400 liter) and solvent are
required for extraction to obtain quantities of material suffi-
cient for absolute structural characterization of GBLs from
Streptomyces (see, for example, reference 43). For these tech-
nical and economic reasons, we have not approached the ques-
tion of a GBL structure from S. acidiscabies. However, using
electrospray ionization mass spectrometry methods with cul-
ture extracts as described by Yang et al. (49), we have detected
fragment ions bound by our purified GBL receptors with
masses consistent with molecules possessing lactone functional
groups such as those found in GBL compounds (data not
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shown). The proximity of sabA to both sabR and sabS$ along
with the conservation of residues in SabA predicted to be
required for GBL synthase activity (19) invites the specula-
tion that sabA encodes a GBL synthase. Technical chal-
lenges exist in the biochemical characterization of SabA.
For example, since we do not have a GBL structure from our
organism, we lack information regarding SabA enzymatic
substrates.

Nonetheless, we find changes in WS5995B production and in
morphological properties in S. acidiscabies GBL signaling
pathway homolog mutants consistent with disruption of an
autoregulatory GBL-like pathway. Let us assume, for example
that sabA encodes a GBL synthase which produces a GBL
ligand that, in turn, binds the divergently expressed GBL re-
ceptor SabR. Then, elevated production of WS5995B observed
in sabA mutants could be attributed to SabR-mediated repres-
sion of sabs$, resulting in derepression of WS5995B PKS ex-
pression. The observation that sabR mutants appear phenotyp-
ically similar to the wild-type strain can be explained by
assuming that if SabR represses sab$S expression and if SabS
also binds GBL produced by SabA, the normal course of
threshold accumulation of GBL produced by SabA would still
result in dissociation of SabS from target regulatory sequences.
Thus, sab$ repression of PKS gene expression is still ultimately
subject to control by GBL binding so that SabS can only re-
press PKS expression until GBL accumulates, and at that point
one would observe nearly wild-type levels of WS5995B, even in
a sabR mutant, since it would still synthesize GBL.

The significance of the TTA leucine codon in sab$ is not
known. Recent bioinformatics analyses of four sequenced
Streptomyces genomes shows that TTA-containing genes are
often associated with secondary metabolite biosynthetic gene
clusters, particularly in those genes encoding likely regulatory
functions (5). While the genome of S. acidiscabies has not been
sequenced, we assume that UUA codons are recognized by a
bldA-type tRNA, as seen in other streptomycetes (24, 26, 46,
47). Our RT-PCR data suggest that sab$ expression is elevated
in sabR mutants. If SabR represses sabS expression in the
absence of a ligand (e.g., a GBL) and if the intracellular ac-
cumulation of ligand results in derepression of sab$ expres-
sion, we suspect that translation of the GBL receptor SabS
would be dependent on bld4 tRNA.

The AdpA transcriptional regulator is encoded by a UUA-
containing gene; it is present in all Streptomyces genomes se-
quenced to date and has been characterized in both S. griseus
and S. coelicolor. AdpA plays a central role in morphogenesis
and secondary metabolism in both organisms, and the gene
possesses UUA codons in both organisms. Yet only the S.
griseus adpA gene appears to function in a GBL-dependent
regulatory cascade (6, 36, 44). AdpA-dependent expression of
target genes in S. griseus occurs following derepression of adpA
expression as a result of dissociation of A factor-ArpA com-
plexes from adpA promoter. Given the central regulatory role
of AdpA, it is possible that SabS could function downstream of
AdpA in the bldA-dependent regulation of morphogenesis and
WS5995B biosynthesis. Future research will be directed toward
further characterization of the network governing secondary
metabolism and morphogenesis in this organism.
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