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Explorations in Distributed Ray Tracing and Photometry of

Large Scenes

Connor Weisenberger

Abstract

This work encapsulates three explorations into different implementations of distributed ray

tracing, that is to say, ray tracing that has been distributed across multiple machines. Our

goals lie in the rendering of scenes with more geometry than can fit within the memory of a

single computer, so we focus on the distribution of memory. Ultimately, this work discusses

a Spark standard (or classical) distributed ray tracer, a Spark photometric distributed ray

tracer, and a single-machine Akka Typed photometric ray tracer with some basis for future

distribution. Individual timing results for each ray tracer are included, but they cannot be

compared due to differences in their generation. Qualitative comparisons between the ray

tracers and their approaches are made, and recommendations are given to future researchers

in this niche.
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Chapter 1

Background

1.1 Ray Tracing

Ray tracing is the process of intersecting some rays with some geometry to create an image.

Further specifics vary depending on the implementation, but in the standard implementation

rays are cast from the “eye” of a metaphorical viewer out in all directions within their field

of vision and checked for intersections against some geometry. Rays that intersected the

geometry then generate new rays from the point of that intersection towards the lights.

Whether these rays collide with geometry before they would hit the light determines whether

the ray’s origin point is lit. All of that information (intersection point, object of intersection,

light visibility) is then brought back together and used to determine the color of the pixel

that matches that point where the original ray from the eye hit the geometry. If that

original ray doesn’t hit the geometry, we know that pixel (where the ray was fired from)

will be the background color.

There are also many opportunities for expansion on this basic ray tracing model (re-

flections, refraction, motion blur in animated scenes, many others that are more complex).

1
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One simpler example is reflections (allowing rays to reflect off of the first few (exact number

up to the user) geometries they hit, often based on the reflectiveness of the hit surface).

These expansions are what give ray tracing it’s notoriety for realism and detail, but they

aren’t the focus of this research. This research is primarily motivated by a desire to test

out and learn about potential frameworks for a future, more visually complex ray tracer

that could be used to generate visually interesting and realistic images of large numbers of

bodies in space.

Ray tracing is interesting for graphics research because depending on the implemen-

tation, it can model a number of impressive visual details (complicated reflections, glare,

shadows, etc) due to the relatively realistic way in which it creates images (compared to

rasterization, the currently dominant way of generating images). Storing the geometry for

ray tracing is more memory intensive - objects outside of the scene can still interact with

the image and thus must be included in every computation. We use a KDTree to offset some

of the actual computational cost, but all of the geometry is still represented in memory [6].

This memory reliance, along with long computation times for scenes with complex geome-

try or lighting behavior, seems to be the primary roadblock to more widespread use of ray

tracing [9].

This memory limitation is part of what makes the distribution of ray tracing interesting.

Ray tracing is an “embarrassingly parallel” problem, in that it is easy to distribute each ray

as they don’t mutate the scene, but as a memory-heavy computation it benefits greatly from

distribution. Distribution introduces some inefficiency in the form of connection latency,

but as scenes get larger the benefits of distribution grow to outweigh the costs of sending

data between machines.
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1.1.1 Photometric Ray Tracing

One such realistic implementation of ray tracing is photometric ray tracing. The primary

difference between photometric ray tracing and the standard ray tracing described above is

that in photometric ray tracing, the rays originate from the light sources. You may recall

that in the standard model, the rays originated from the “eye”. The photometric rays

continue from the light sources into the scene, where they are checked for intersections with

the geometry. If a collision occurred, rays are cast from the point of collision to the eye of

the camera, to determine whether or not this point is visible to the viewer. This process

is very similar to the standard process, but executed in a slightly different order. This

difference in order makes photometric ray tracing more similar to the real behavior of light

than standard ray tracing. Photons that start at the light sources mimic the behavior of

photons in the real world, and thus more complex, real world lighting behaviors are easier

to simulate.

Another key difference is that in the standard model, at least one ray must be fired for

each pixel in the scene. This generates some unrealistic bias in the image because points

that may not actually receive all that many photons from their light sources still get the

same treatment as those that do. In some ways, the photometric approach often ends up

supersampling the lit pixels to create softer shadowing and edges while not hitting other

pixels at all. The standard approach ensures every pixel is hit, but supersampling must

be explicitly performed. This difference, along with easier scatter calculations for light

refraction, give photometry the edge in image quality.

One more thing to note about photometric ray tracing is that, generally, more rays are

required to generate a photometric ray traced image than a standard ray traced image. This

is again because there is no one ray to one pixel guarantee in the photometric process. Thus,
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high quality photometric images are created by throwing repeated batches of photons into

the scene until a predetermined number of photons or satisfactory visual quality is reached.

Standard images are often done in one “take” because it is easy to know ahead of time how

many rays will be required for a certain image.

1.2 Distribution

We have observed that standard approaches to ray tracing have memory issues with large

geometry. Inevitably, it is necessary to ray trace scenes with a large amount of geometry,

and sometimes the memory representation of this geometry is larger than can fit within a

single computer’s memory. This is where the desire to distribute the ray tracing process

originates.

One note here is that “distributed ray tracing” is an overloaded term. It refers here to

the process of distributing ray tracing over a number of machines, but in other works it can

refer to a specific method of ray tracing that better captures certain visual phenomena [10].

This research and all three of these ray tracers were specifically motivated by a prior

collaboration between Dr. Lewis and the American Museum of Natural History, where a

number of high quality renderings of large sections of the rings of Saturn were needed [14].

These renderings were first done by stitching together smaller cells of the image - breaking

the scene up into smaller pieces and working on them sequentially. This worked, but was

slow and often tested the limits of memory even on a strong machine. Thus, it was decided

that there should be an analysis of possible methods to distribute this process, specifically

the memory load of large geometry.

The general idea of distribution is straightforward: when a single machine is too slow or

otherwise unfit (likely not enough memory), multiple computers, also known as a cluster,
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are used together to perform computations that would otherwise be impossible or much

slower. In a distributed environment, there are multiple semi-autonomous machines with

their own memory that pass information between themselves, often to solve a large problem.

Two methods of distribution explored in this work are Spark and Akka, both of which have

support for multiple languages but are utilized in this work with Scala [11], [3].

Other distributed ray tracers do exist [18], [20], [7]. They vary in performance, purpose,

and implementation quite considerably. Many are interactive ray tracers, which render the

scene “on-the-fly” in response to user movement of the camera [15], [7]. Some are designed to

work with specific hardware, often referred to as “tightly coupled parallel approaches” [18].

The use cases of distributing the ray tracing process vary. Some are hyper-performant, ded-

icated pairings of hardware and software designed to crunch rays as fast as possible, others

to improve the efficiency of already existing processes by utilizing underused machines [18].

There is a distinction among distribution, which is whether the distribution is performed for

memory’s sake or computation’s sake. Interactive ray tracers tend to be computationally

distributed. It actually seems that distributing the memory involved in ray tracing is at

least slightly rarer than distributing the computation, but this isn’t a survey paper and

we cannot prove that. The size of the scenes involved also varies with ray tracer. Some

use distribution to simply spread the computational load as opposed to our memory-centric

distribution.

1.2.1 Spark

One such implementation of this idea of distribution is called Spark. The Apache Foun-

dation, the maintainers of Spark, describe Spark as a ”multi-language engine for executing

data engineering, data science, and machine learning on single-node machines or clusters”.

Spark provides a number of implementations of their distribution model, but the one pri-
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marily used here is the Resilient Distributed Dataset (RDD). The RDD is a data structure

that stretches across all the worker nodes in your cluster where elements can be operated

on in parallel. Scala Spark provides a number of Scala Collections Library-esque functions

for RDDs, so using them is very intuitive and similar to standard collections logic. One

important note here is that these functions are almost entirely collection-wide, in that they

operate on every element of the collection. This and more about Spark will be elaborated

on later, but Spark’s requirement of collection-wide operation is a key difference between it

and Akka.

1.2.2 Akka

Another approach to distribution and parallelism is explored within Akka. Akka provides

a framework for distributed message passing. What this means in practice is that the

programmer defines some behaviors (called actors in Akka Classic) that dictate the responses

to these messages. Some major benefits of this are that the system is quite resilient (not

as out-of-the-box resilient as Spark is, but the functionality is present) as there are few if

any single points of failure. Akka provides functionality to define actions to occur should

a Behavior become unresponsive or otherwise fail, which also improves resilience. Again,

these features are supported by Akka but do require some explicit setup by the programmer,

which is more than Spark requires.

Another benefit of Akka is that the behaviors (actors) and their messages are lightweight.

Akka boasts that a single machine can handle ‘up to 50 million [messages per second]’ and

that 2.5 million actors can fit into a gigabyte of heap space [3]. This surely scales with the

sizes of the messages and actors, as well as the specifications of the machine, but Akka is

certainly performant.

One major change occurring in the Akka space at the time of this work is the move to
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Akka Typed. This will be further discussed in Section 4.1, but the general theme of the

changes is a move to more explicit type definition, particularly in regards to what messages

an Actor or Behavior receives. Lightbend, the sponsors of Akka, currently suggest that new

projects are created with Akka Typed [2]. There is still support for Akka classic, and the

two can even be intermingled in the same project, but it certainly seems that Akka Typed

is the future of Akka. As an example of this, all of the documentation readily available on

Lightbend’s page is for Akka Typed. The classic documentation is still available for now,

but is relegated to it’s own section, away from the current documentation [1].

1.3 Geometry

The geometry used in this simulation was provided by [17]. We use a single timestep, which

contains the data for roughly 2.3 million spherical particles. In scenes with more than one

of these timesteps, referred to henceforth as “panels” or “geometry files”, we tile them such

that side by side they align with the edges of the image. It is important that the image

is entirely filled in for proper tests because in the standard model of rendering rays are

still cast into empty space and that results in less computation than a filled image. The

photometric model doesn’t have this issue, but to aid in comparisons between the two we

use the same geometry tiling scheme.

Each file has a 1:10 aspect ratio, so we can make square tiled images that entirely fill

the frame for scenes with 10n2 panels of geometry. The first of these is 10 (1 row of 10),

then 40 (2 rows of 20), then 90 (3 rows of 30). None of our attempts at any scenes with

90 or more tiles have successfully completed, whether due to cluster size or issues at scale

remains to be seen.

One interesting note about the geometry panel (data from Saturn ring simulations)
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is that it features a moonlet, roughly in the center, which has a “propeller” structure

of surrounding particles (that S-shaped feature extending from the moonlet) [19]. These

propeller structures are the primary visible characteristic of the moonlets, so it’s neat that

we can see them in our renderings of the geometry tiles as well (they are quite visible in

Figure 3.2).

Another interesting note is that all of our scenes make use of perfect spheres to represent

the ring particles. This is viewed as tolerable because each sphere is so relatively tiny

compared to the entire scene, but adding additional geometry functionalities is on the list

of potential future work.

1.4 Cluster Configuration

Trinity University has a cluster of 8 machines referred to as the Pandora Cluster. A single

machine in this cluster has an Intel®Xeon®CPU E5-2683 v4 @ 2.10GHz CPU (32 cores)

and 16 GB of RAM.

The Spark machines utilize the cluster with one driver node and 7 worker nodes which

actually contain the RDDs. The cluster itself does require some configuration for Spark,

but once configured it can easily accept jobs from a single machine and also includes a web

UI for viewing the details of both active and past jobs.

While not expressly used in this work, the Akka cluster ray tracers have one FrontendNode

and seven BackendNodes. The frontend nodes handle leading the backend nodes, the image

itself, and the distribution of geometry amongst the backend nodes, whereas the backend

nodes handle the geometry and the intersections (the most memory and computationally

intensive tasks).



Chapter 2

Distributing Ray Tracing with

Spark

2.1 Spark

Spark is introduced in Section 1.2.1. Anybody who is familiar with Spark outside of this

paper might have the idea that Spark is for big SQL-esque operations, as this is likely high

on the list of its most common uses, but it is certainly not limited to that role. Traditional,

business-class applications of Spark likely make use of Spark Dataframes, which support

columnar data (and are more readily applied to database-adjacent use cases than RDDs).

This research makes use of RDDs (Resilient Distributed Datasets), which are slightly lower-

level than their Dataframe counterparts. RDDs function very similarly to other collections

(in Scala) and have similar member functions.

RDDs essentially spread a collection out over a cluster, broken apart into “partitions” that

can be worked on by their owner machine without disturbing or inhibiting other machines.

When the RDD is needed for some work, that work is distributed out to each machine, and

9
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Figure 2.1: Zoomed in one panel rendering generated by the standard Spark Ray Tracer in
[8]. The moonlet is the larger sphere in the bottom center.

more specifically to each executor, that contains any of the RDD’s partitions.

Each partition exists solely on a single machine. They are the atomic unit of the RDD.

Two to three partitions per CPU core is often best [4]. In both this standard Spark ray

tracer as well as the photometric Spark ray tracer, we assign each partition one file of

geometry, stored as a KDTree.

2.2 Methods

This Spark standard ray tracer was our first step in a larger journey towards rendering ray

traced images of scenes with more geometry than can fit within the memory of a single
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Figure 2.2: Diagram depicting the functional sequence of our Spark implementation of the
standard ray tracing process.

machine. This is the only ray tracer we designed that utilized the standard process, and

that was primarily because of our focus on distribution: we were more concerned with

whether we could distribute the ray tracing process efficiently with Spark at all than we

were with anything more than basic “extra work” done on the ray tracing.

As this was the first iteration, it started truly from scratch. We had access to Dr. Lewis’

SwiftVis2 library for Geometry and Ray data types as well as some supporting functions

(notably a function that intersects rays with geometry), but the large majority of the code

was built from the ground up. The resulting iterations were also smaller steps than the

later ray tracers, particularly the Akka photometric ray tracer. In the case of the Spark

photometric ray tracer, this was because we were less experienced with the first ray tracer

than the second (perhaps obviously). In the case of the Akka photometric ray tracer, this

was also in part because Akka simply required more work to create a ray tracer than Spark

(and thus the steps were necessarily larger).

For a detailed explanation of the intermediate iterations, please consult our prior publi-

cation entirely dedicated to this work, which discusses each iterative step [8]. In this work,

we will only discuss the final product.

The final version of the Spark distributed ray tracer, from a one thousand foot view,

distributes each panel of our geometry to each executor node in the cluster, then sends any
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generated rays to each section of geometry to determine intersection and whether points

are lit, and thus how the pixels should be colored.

Describing the process more specifically, the initial rays are created from the camera

such that they go outwards from the eye through the correct “pixel” in the screen. A copy

of each of these rays is sent to every machine in the cluster to check for collisions against

that machine’s geometry. This sounds memory inefficient, but the memory requirements

of the geometry scale much faster than the memory requirements of the rays, so this is

viewed as a tolerable solution. After all, the thing that often exceeds the memory of a

single machine (and that we are thus trying to distribute) is the geometry. It is important

to remember that in some form, the rays must be checked in some way for collisions against

every geometry (we use a KDTree to mitigate the cost of this somewhat, but at the core

level it is still true: we must send every ray to every KDTree of geometry and thus if the

geometry is spread across machines, the rays must be duplicated.) Each intersection is then

stored as a Scala Option type of IntersectData, which includes information about where

and when the intersection occurred. This information is then used to determine which

intersection occurred first (and is thus the only significant intersection). From here, we

want to determine if that point of significant intersection is going to be lit by the scene’s

lights. To do this, we create rays from each point towards the lights in the scene, duplicate

them and send them to every panel of geometry, then check those rays for intersections and

take the significant one the same way we did when finding the original intersections. If an

intersection is found, we know the original point of intersection is shaded, if none is found

we know the point is lit. This information is then used to determine how the appropriate

pixel should be colored.

We’ll now discuss in a closer to code fashion exactly how this ray tracer functioned. If

you wish to actually view the code yourself, you should be able to find it on Dr. Lewis’
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Github account (MarkCLewis) in the SparkRayTracer repository [22]. One note about this

Spark ray tracer that is also true of the photometric Spark ray tracer is that it was designed

very functionally. The entire process is done by passing the results of some functions into the

inputs of others with very little outside mutation, and this was a benefit to the development

and debugging of these ray tracers. The same cannot be said of our Akka implementation,

though only because Akka simply doesn’t work in the same fashion.

The render function is passed the geometry (an RDD[KDTreeGeometry[BoundingSphere]])

the scene’s lights (List[PointLight]), the actual image to be drawn to and it’s size, and

the number of desired partitions (one for each file of geometry). It begins by calling

makeNPartitionsRays with information about the number of partitions and how the cam-

era is positioned and oriented. This is all the information required to generate rays from

the camera into the scene, and then duplicate those rays for as many partitions as required

by the application. This function outputs an RDD[(Int, (Pixel, Ray))].

From there, the duplicated rays are joined with the geometry that has been passed in

so that the intersections can be performed. Both of these RDDs contain tuple data types

where the first element is an integer, the partition number. The result of this is that each

geometry is paired with a copy of every ray. The datatype of this operation is RDD[(Int,

((Pixel, Ray), KDTreeGeometry[BoundingSphere]))]].

Once the join is complete, the intersections can begin. The joined ray-geometries are

passed into the intersectEye function, which performs the intersection between each ray

and each KDTree of geometry. The output of this operation is an RDD[(Int, (Pixel, (Ray,

Option[IntersectData])))], where the leading Int is again the partition number, with

it’s associated pixel, and then the ray that was cast and it’s associated Option[IntersectData].

The IntersectData contains information about the location and time of the collision, and

the Option that contains it represents the possibility that there was no collision.
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At this point, we have as many potential intersections of each ray as there were partitions

of geometry. Some of their associated Option types may be empty, but there are invariably

still cases where a ray hit geometry in multiple panels, and thus we need to determine which

of the potential collisions should’ve happened first (and thus been most significant).

2.3 Results

Number of Geometry Panels Time [sec]

10 105 ± 9

40 166 ± 5

Table 2.1: Benchmark timing results generated by the Spark standard (non-photometric)
Ray Tracer on the Trinity University Pandora Cluster in [21].

Table 2.1 contains timing results generated by this Spark-distributed standard ray tracer

running on the Pandora Cluster. Timing results for both 10 and 40 panel images (full

square tilings of our geometry) were generated from the average of five runs and include a

one standard deviation margin of error.

It is interesting to note that this ray tracer scales sub-linearly as the number of geometry

files is increased. The exact cause of this behavior isn’t known, but is attributed generally to

the idea that Spark is more efficient when it’s operating on larger data (within the bounds

of the cluster’s memory).



Chapter 3

Distributing Photometric Ray

Tracing with Spark

This work is discussed specifically and with more focus in [21].

3.1 Photometry

Photometric ray tracing could be generalized as “regular ray tracing, but in reverse”. This

isn’t quite correct (particularly for more realistic lighting behaviors), but it is true that

in photometric ray tracing the rays begin with the light sources, which is often where the

process ends for standard ray tracing. In photometry, rays are fired from the light sources

into the scene, checked for collisions against the geometry, and then checked for visibility

from the camera at the point of the intersection with geometry.

One key difference between photometric ray tracing and standard ray tracing is that the

standard ray tracing process knows how many rays it needs to fire for a ”complete” image

before it starts - the photometric process does not. This is because in the photometric
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process (with abstract geometry) it isn’t possible to know which pixel a ray will correspond

to until essentially the entire process for that ray is completed. In contrast, the standard ray

tracer can fire exactly as many rays as there are pixels (or more if desired). The standard

ray tracer is able to know exactly which pixel an outgoing ray will correspond to.

This difference is significant - it has performance implications (negative for the photo-

metric process), but also allows for more realistic lighting behavior. One example of this

is in diffuse lighting “bounces”, which are impossible in a standard ray traced application

[13].

Another distinction, less significant than the prior but still important, is that photo-

metric ray tracing can be easily done in ”batches” (and it often makes sense to do so, at

least in our experience). If the geometry is quite large, it can be more time efficient to

fire a large batch of photons, see how the image comes out, and then repeat if you’d like

more detail or if you feel that not all of the appropriate geometry has been illuminated.

Batching is certainly possible in a standard ray traced application (imagine generating two

1 ray per pixel images and then averaging their pixels together to get something akin to

anti-aliasing), but likely less frequently implemented because standard ray tracers know

they’ll have a completed image when all of their rays are fired.

One final distinction, and perhaps the most important of them all, is that photometric

ray tracing is much less efficient than its standard counterpart. This is because many of the

rays fired in the photometric process yield collisions which are either completely obscured

by closer geometry or are off-screen, and thus more rays are required than in the standard

process. More rays simply means more computation, and thus more time to compute.
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Figure 3.1: Diagram depicting the photometric ray tracing process.

3.2 Methods

This ray tracer was also created with an iterative development process, although the first

iteration was actually the final version of the standard spark ray tracer. A lot of that code

was modular and much of the logic and structure of the standard ray tracer could be shared

with the photometric ray tracer.

The general process we followed in the photometric Spark ray tracer was thus fairly

similar to the standard ray tracer. The geometry is created and setup identically. All of

the scene parameters (camera location, coordinate system information, all the information

associated with how the geometry coordinate system is related to the actual output image—

also known as the view) are also .

The photometric Spark renderer is also similar to the standard Spark ray tracer in that it

was designed relatively functionally. It follows the same style of using functions to generate

the inputs of other functions with little outside mutation, and we reap the same rewards

as in the standard Spark renderer (easier code maintenance, readability, expandability,

modularity).
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Figure 3.2: 24 million photon rendering of 10 panels generated in [21] by the photometric
Spark ray tracer.
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Figure 3.3: Diagram depicting our Spark implementation of the photometric ray tracing
process.

This ray tracer is unique among the three discussed here in that it was specifically set

up to run batches of photons. The Akka Photometric Ray Tracer could be expanded to

include this functionality but it doesn’t currently have it.

The Spark photometric ray tracer, in it’s final form, begins by creating the RDD of Ge-

ometry. It’s type is RDD[(Int, KDTreeGeometry[BoundingSphere])], where the leading

integer is a numeric key that determines what partition of the RDD the KDTree resides in.

This geometry, along with the lights, the image, the view, the size, and the number

of partitions, is passed into a Render function. The render function begins a while loop

that controls the batching. Within that while loop, five functions are called to do the

photometric ray tracing process for the current batch.

The first of these functions is called generatePhotonRays. It accepts as arguments the

lights in the scene as well as the RDD of geometry, and returns an RDD[ColorRay], where

ColorRay is a case class containing a color (of the light) and a ray. This RDD is generated

by creating a number of rays from the light to each KDTree of the geometry. This approach

is slightly different than the one in the Akka Photometric Ray Tracer, which randomly fires

rays into the entire scene. This approach guarantees a certain uniformity of ray distribution
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amongst the panels of geometry. We haven’t noticed a difference in output images, but it

is possible that this approach is slightly more consistent with output images.

The output RDD[ColorRay] of generatePhotonRays is passed into a function called

purgeNonCollisions along with the geometry RDD and the number of partitions. The

goal of this function is to intersect the rays with each KDTree of Geometry and remove

any rays that missed the geometry entirely. It is important to remember that even though

we fired rays into specific KDTrees of the geometry, they still must be checked for in-

tersections with the entire geometry. Thus, they are first duplicated for each of the

KDTree[Geometry], and then joined with the geometry such that we have an RDD[(Int,

(KDTreeGeometry[BoundingBox], ColorRay))], where the leading Int determines the

partition, and a copy of each ray is tupled with each geometry.

At this point, the intersection can be performed, and non-collisions are filtered out. At

this point, all that remains are the actual collisions, but we still might have rays that have

collided with geometry in multiple KDTrees, and thus we need to see if there are multiple

collisions, and which would’ve occurred first. Once this is determined, we discard the

unnecessary rays and all that we have left is an RDD[(ColorRay, IntersectData)] that

contains only rays that have collided with the geometry and even then only the significant

collisions.

Then, the result RDD of the prior function is passed into yet another function, called

ScatterPhotonRays, along with the location of the eye, or camera in the 3D rendering

space. This function exists to first identify what quantity of light would’ve actually scattered

towards the eye with that angle of collision, this is expressed as a percentage. Then, a

ColorRay is generated containing a ray from the point of collision to the eye and the color

as scaled by the scatter percentage. These ColorRays are generated in an RDD, which the

function outputs as an RDD[ColorRay].
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At this point, the rays that collided with geometry before reaching the eye need to be

removed. To accomplish this, we pass the prior function’s RDD[ColorRay], the geometry,

and the number of partitions to the purgeCollisions function. This function is very

similar to the purgeNonCollisions function, but not quite similar enough that we felt it

necessary to abstract them to one generalized function.

This purgeCollisions function begins by grouping a copy of each ray with each panel

of geometry, identically to purgeNonCollisions. Then, the intersections are performed.

Again, we must now aggregate the duplicate rays sent to different geometry panels back into

one place to determine which of them is significant. This time though, we aren’t looking

for one collision out of many to mark as significant, we’re instead looking for duplicated

rays where every duplicate missed it’s panel of geometry. This is a slightly different bit

of logic, but we essentially use an “or” folding operation on the duplicate rays to bubble

any collision to the surface. This generates one “most significant” collision for each ray. If

there was a collision, the ray is removed. If there was no collision, the ray is included in the

output RDD[ColorRay].

From here, we are left with an RDD[ColorRay] full of rays from points of light intersection

with the scene towards the eye, that are unobstructed by geometry. All that remains to do is

convert these rays to their pixel locations. This is a difference from the standard ray tracer,

which already knows which pixel a ray corresponds to at this point. To do this, we pass

the output RDD, the view, and the size of the image into the convertRaysToPixelColors

function, which has a self-documenting name.

The convertRaysToPixelColors function essentially does some math to convert every

ColorRay into a pixel location and a color. We won’t discuss the actual math here, as it’s

pure ray tracing math, but checks are done to ensure that the ray is approaching from the

front, and then that the pixel would be on the screen. This generates an RDD[(Pixel,
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Figure 3.4: Rendering of 40 panels (2 rows of 20) created by the Spark photometric ray
tracer.

RTColor)], which will only ever be as large as the number of rays sent and is thus small

enough to be “collected” (returned to single-machine, local memory). Once collected, these

pixel-color tuples are iterated over and added to the image, and the process is complete, at

least for this batch. At this point the user is prompted with whether they’d like another

batch, and the ray tracer potentially begins this process again.
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Total Number of Photons Time [sec] (10 Panels) Time [sec] (40 Panels)

4,000 657 ± 13 1038 ± 17

40,000 845 ± 15 1301 ± 10

400,000 1048 ± 20 1580 ± 29

4,000,000 1486 ± 31 2089 ± 26

Table 3.1: Benchmark timing results generated by the Spark photometric Ray Tracer in
[21].

3.3 Results

Table 3.1 contains timing results generated by the Spark photometric ray tracer running

on the Pandora cluster described in 1.4 at 10 panels and 40 panels of geometry, for [21].

The numbers displayed here were arrived at by averaging runtimes for five trials. A one

standard deviation margin of error has been included.

It is again interesting to note that for both number of photons as well as number of

geometry panels, the scaling is sub linear, and similarly to the standard Spark ray tracer,

we don’t have an exact cause of this but we suspect it to be a result of Spark being more

efficient as the load is increased, up to a certain maximum where the limits of the memory

begin to be tested.

Runtimes are also generally longer in similar photometric versions than standard, as

more rays are required by the photometric renderer to achieve the same number of mod-

ified pixels. To be relatively confident that you’ve illuminated every pixel that should be

illuminated, many many more rays are required than the standard ray tracer.



Chapter 4

Distributing Photometric Ray

Tracing with Akka

A previous student worked quite extensively on creating an Akka Distributed Ray Tracer,

and ultimately completed it [12]. This section is a continuation of his work, and works to

bring his code up to the latest release of Akka such that other students or researchers may

potentially continue upon it even further.

4.1 Akka

Kurt Hardee’s prior ray tracer was written with a version of Akka now referred to as ‘Akka

Classic’. Akka has since released ‘Akka Typed’, which they suggest new projects should be

started with [2]. The primary difference, although there are a few, between Akka Classic and

Typed is that in Akka Typed the idea of an Actor has been replaced by a typed ‘behavior’.

What this means is that where you once had an Actor that could accept any message, you

now have a ‘behavior’ that only accepts messages of a certain type. In practice, there is

24
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often a sealed trait for each Behavior that is extended by it’s messages, which is passed as

the type argument to the Behavior (to specify which message type it accepts).

This necessitates a large if not hugely structural change. The majority of the ray tracing

logic in Kurt Hardee’s original code could remain the same, but implementation details

about how Actors were created, the structuring of the messages, and other associated details

had to be changed. Every message that contained an ActorRef needed to be clarified (what

kind of messages does that ActorRef accept?), and in some cases split into multiple messages

or built with a polymorphic ActorRef message type if more than one type of ActorRef was

previously being passed.

4.2 Methods

The primary goal in this section of the work was to create a distributed Akka Typed

photometric ray tracer. This was a continuation of the work of a prior student, Kurt

Hardee, who created a distributed Akka Classic photometric ray tracer [12]. We intended

on essentially following the architecture he laid out but in Akka Typed, such that it could be

built on further into the future when Akka Classic may not be as well supported. Ultimately,

the ray tracer we created was a single-machine Akka Typed photometric ray tracer. I enjoy

following an iterative development structure where multiple versions are created that build

off of each other, and that is what was done here. The general process was as follows: first

we created an Akka Typed photometric ray tracer that worked on small scenes of geometry,

then we made it work with a single panel of geometry, and then we made it work with the

full geometry (an arbitrary number of panels). The final step, which we began but did not

complete, was to clusterize our existing single-machine Akka ray tracer. The conversion

from a single machine application to a clustered application isn’t terribly difficult in Akka,
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but it does require the creation of a number of new actors and interactions with system

actors that didn’t exist in Akka Classic (the receptionist, the subscriptions actor).

The problem of creating an Akka distributed photometric ray tracer for the large space

scenes we desired was decomposed into three steps. First, to get an Akka actorized pho-

tometric ray tracer. This would be a single-machine application that would make use of

Akka’s actors to do the photometric ray tracing computation. Next, we wanted to get that

working with our paneled geometry (much larger and structured slightly differently than

the simple geometry). Finally, we intended to clusterize that process with Akka’s Cluster

functionality.

4.2.1 Initial Simple Geometry

In this step, we wanted to get the ray tracing logic Kurt Hardee had in his Akka Classic

photometric ray tracer correctly working and running in Akka Typed. We were able to cut

some corners as a result of having only a single ‘panel’ with a relatively very small amount

of geometry, but a large portion of the code generated in this step would remain viable

in the later steps. To keep things concise, we will only offer a detailed explanation of the

workings of the Initial Simple geometry version, with notes on the changes required for the

arbitrary number of geometry panels version.

When this was completed, we were able to feel more confident about the accuracy of the

ray tracing code. This is one of the primary benefits of the iterative programming cycle.

If you end each iteration with a satisfactory degree of confidence in the output code, you

can sometimes limit the scope of future bugs (i.e. at the end of this step we felt confident

that the ray tracing was being executed as desired, and that our output images matched

our expectations. When we had bugs, we could guess that they were introduced in some

form by code generated in the current iteration. It is also much harder to identify problems
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Figure 4.1: Akka Typed photometric ray traced rendering of simple geometry (“grid
spheres” specifically) with red and blue lights.

in output images that contain millions of very small geometries. Development strategies

aren’t the primary focus of our research, but what we chose to do could be an interesting

note for any future thesis students who read this work.

To be more specific, the geometries used in these simple geometry scenes were often

slightly random, though later tests made use of some non-randomly placed geometries. We

find that randomly placed geometry (within some limited space viewable by the camera)

is effective for testing. The randomness helps to test more geometry configurations than a
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Figure 4.2: Actor hierarchy diagram for the Akka photometric ray tracer

non-random solution would, and when combined with non-random, preset geometry (like

at the edges of the scene), makes for a good testing scene. Accurately rendering scenes like

the one described here were the primary focus of the Simple Geometry iteration.

The primary difference between this version and the next were the view configuration

and the lack of loading in a real geometry file. We separated these steps because we felt

it important to have a working baseline of photometric ray tracing before we increased the

geometry size. If we experienced bugs while getting the simple geometry version up and

running, we could easily identify them, as each sphere was very large.

4.2.2 Single Geometry Panel

Completing this step required updating a number of files (or completing partial updates

started in [12]) to Akka Typed. At the most basic level, this meant looking at Kurt’s untyped

code, taking out the actual bits of logic, and putting them into a new Akka Typed wrapper.

Often, this was fairly straightforward, but occasionally the designs used in the untyped

version weren’t directly compatible with the model provided by Akka Typed and thus had
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to be modified. In general, we attempted to follow the same ray tracing procedures that

Kurt used in the untyped version, and when we had to modify them, we created something

as close to his original designs as we could in Akka Typed. The primary benefit of this

was that the actual design of the code was already known to be working and viable, which

removed some potential for error from our own endeavor.

The final product of this iteration begins by creating a GeometryOrganizerSome. This

is the actor that will be managing the geometry. To be created, it requires the geometry for

the scene (it also accepts an argument referred to as the intersectResultMaker, which is

used for polymorphism with some of our messages).

An ImageDrawer is also created. This will handle the actual image itself as well as

the creation of photons, which will be done by the ImageDrawer’s PhotonCreator children.

Creation of the ImageDrawer requires the lights, the image, and information about the view

and it’s orientation in our 3D space.

On initialization, the GeometryOrganizer creates a KDTree of the geometry and assigns

it to a GeometryManager. This step isn’t expressly needed in this iteration, but for multiple

panels of geometry it will be critical.

Each GeometryManager accepts CastRay messages and spreads them among a Router

of Intersectors, which will check for intersections within whatever geometry the manager

owns.

When the ImageDrawer is created, it first sends a message to the GeometryOrganizer

to identify the bounds of the geometry. The GeometryOrganizer provides this information

by combining the bounding boxes of all it’s Geometry Managers into one larger box. When

the ImageDrawer receives the bounds message, it remembers them and then sends itself a

message to start ray tracing.

When this message is received, PhotonCreators are generated for each light source in
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the scene and sent their Render message. The light sources have an associated number of

photons they emit, and this is passed into the PhotonCreator as well as information on the

bounds of the geometry, the view, and the image (only used for it’s width and height, could

be optimized away).

When the PhotonCreators receive their Render message, they create as many rays

as their associated light tells them to. These rays are from the light source into a random

location within the bounds of the geometry. Each ray is then sent to the GeometryOrganizer

to be distributed amongst the managers. This message containing the ray is called CastRay,

and contains a reference to the PhotonCreator who is sending the message, an ID, and the

ray itself.

When the GeometryOrganizer receives that CastRay message, it checks with it’s man-

agers to identify which of their outermost bounding boxes intersects the ray. If a manager’s

outermost bounding box doesn’t intersect the ray, we know it is safe to not waste time com-

puting that ray, as it definitely won’t connect with any of the geometry in that manager.

This decision-making process is referred to in [16] as the “Some” approach. It is listed there

with the “All” and “Few” approaches, and performed the best in benchmarks. The primary

difference between these approaches lies in which managers are sent which rays. “All” is

perhaps self-explanatory in that every manager gets every ray. This is similar to our Spark

implementations, but Akka can be more efficient. “Some” does what is described above,

only sending the ray to the managers who have some possiblity of finding a real intersection.

“Few” places the most burden on the GeometryOrganizer, requiring it to identify which

collision should happen first, and then sending rays to geometry as it is determined they

are necessary. Converting the “All” and “Few” modes to Akka Typed is something that

we’re leaving for future work, if it ever needs to be done.

Getting back to the ray tracing at hand, the managers that are found to potentially



31

intersect with the ray are sent yet another CastRay message. It contains all the same data,

but also a reference to the organizer itself.

When the GeometryManager receives a CastRay message, that message is piped directly

into the Router of Intersectors mentioned earlier.

When one of the Router’s Intersector receives a CastRay message, it sends the

GeometryOrganizer a message, referred to in the code as a RecID message (RecID short for

received intersect data), with the original sender of the ray (the PhotonCreator, the ray’s

id, and the result of the intersection between the geometry and the ray.

When the GeometryOrganizer receives a RecID message, it doesn’t immediately know if

it should act on it. The GeometryOrganizer can only act on the results of the intersections

once each GeometryManager has sent back the intersections for the ray it was assigned.

Before this point, we don’t know if missing intersections will be significant. So, it checks

the id of the ray and consults with how many RecID messages it should’ve received for that

ray. If not all have been returned, it continues to wait. If all have been returned though, it

determines which of the potential collisions is the “real” collision. This intersection is then

sent back to the PhotonCreator.

When the PhotonCreator receives this IntersectResult, it creates a Scatterer child

actor to determine if that point is visible from the camera. When the Scatterer actor

is created, it sends the GeometryOrganizer a CastRay message (same message type sent

before in the PhotonCreator), but this time the ray is from the point of intersection to the

eye, and the Scatterer is passed as the actor to send the final results back to. This triggers

the same process executed before for the first collision check, but with a different ray.

When the Scatterer receives the Option[IntersectResult], it only cares if it is empty.

If it is not empty, that means the point is somehow obscured by some other geometry. If

it is empty, that means the line between the camera and the point is unobstructed. If,
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further still, the point is actually within the bounds of the image, the Scatterer sends the

PhotonCreator a SetColor message which contains the relevant pixel location as well as

the color.

The PhotonCreator passes this message along to the ImageDrawer in the form of an

UpdateColor message, which contains all the same data except the color is modified to

include any prior coloring for that pixel.

When the ImageDrawer receives the UpdateColor message, it does so, and the pixel is

added to the pixel buffer. When the pixel buffer reaches a certain size (100), it is pushed

to the image.

This represents the end of one full process of Akka photometric ray tracing. Obviously,

many of the processes described above are happening many many times and all at once,

but this is the general flow they follow.

4.2.3 Arbitrary Number of Geometry Panels

The primary changes required in this iteration from the previous were to stop passing the

geometry into the GeometryOrganizer (requires all of the geometry being on one machine

at one time, incompatible with our goals), and to add some code that automatically places

the view for any number of geometry panels.

The solution to the first problem was to modify the GeometryOrganizer to accept not

the geometry itself, but how many panels of geometry were required. The GeometryOrganizer

then downloads each file and gives it to it’s associated GeometryManager. This could be

further refined by having the GeometryManager download the file itself, but this first solu-

tion does solve the issue of having the geometry all in one place. As they aren’t used at the

same time, the garbage collector should be able to remove each panel after it is passed to

the GeometryManager.
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Prior to this version, the view was static. In this version, we introduced code (pulled

from prior projects) [8], [16] to generate a view that places the panels in the 10*n panels in

a row, n panels in a column configuration that generates our filled, square images.

With these two changes, we had a functioning single machine, Akka Typed, photometric

ray tracer. The only thing missing is actually distributing it within a cluster. An interesting

note is that in Spark there is no idea of a “single-machine” Spark program. Any Spark

program can, with very little modification back and forth, run on any Spark compatible

cluster as well as on any single machine. This is not the case with Akka, and thus some

explicit clusterization must be performed.

4.2.4 Clusterization

This section discusses the process of clusterizing an Akka typed application. We did not

finish this clusterization, but we believe the groundwork is there for future students to

efficiently finish it

The Akka clusterization process is very different from its Spark counterpart. With Spark,

essentially all of the cluster configuration is done on a by-hardware basis - i.e. you configure

one cluster, it runs as many Spark programs as you want, with minimal configuration of

those Spark programs. Akka, on the other hand, requires that the application itself (or an

associated config file) is configured, and then cluster execution can be performed.

One other interesting difference between Spark and Akka is that clustered execution

in Spark is done from one terminal on one computer. There is some ‘leader’ machine that

accepts the command to begin execution, and then that leader machine takes care of setting

up the workers. With Akka, the program must be run on each machine independently (those

programs then look for each other and begin computation when ready). This also means

that Akka users don’t necessarily have to rigidly follow the ”leader with workers” setup
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provided by Spark (though many certainly do).

As this work continues on work done by a previous student [12], where he successfully

created an Akka Classic Distributed Ray Tracer, we feel confident that the general designs

for clusterization expressed in that previous work are sound and could work in Akka Typed,

with the required changes for the update. Our failure to clusterize the Akka Typed version

is not due to any fundamental design issue, but rather a lack of time.

In the implementation begun and planned here, based off of Kurt Hardee’s implementa-

tion, there would be a FrontendNode and a BackendNode. The FrontendNode is similar in

function to a standard leader machine, and the BackendNode is similar to a worker machine.

The FrontendNode creates actors for drawing the image as well as creating/organizing the

geometry. The FrontendNode also looks for BackendNodes and begins the computation

when they’re all connected. The BackendNodes create n GeometryManager actors, one per

geometry panel assigned to that machine (by the FrontendNode), and their associated child

actors (Intersectors).

From there, the process moves very similarly to the single-machine version (the abstract

geometry variation). The FrontendNode and BackendNode actors serve almost as Cluster-

wrappers around the original code, and thus there isn’t much modification to the actual

logic. One important change, if not to the ‘logic’ but to the configuration, is the requirement

for data to be serializable. Scala’s case classes are Serializable by default, but if there is

any need for more efficient serialization, there will be some configuration for that (specific

to the serialization library).

Ultimately though, we were not able to complete the clusterization process within the

required timeframe, and it is thus left as future work. There is some groundwork laid, and

this planned structure of how clusterization should work is still very viable - but actually

implementing it and testing it would’ve taken more time than we had available.
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Figure 4.3: Akka Typed photometric ray traced rendering of 40 panels and 400,000 photons
generated when creating the timing results seen in Table 4.1.

4.3 Results

Number of Geometry Panels Time [sec]

10 108 ± 2

40 931 ± 43

90 DNF

Table 4.1: Timing results for the Akka Typed photometric ray tracer at varying numbers
of geometry and 400,000 photons on a single machine in the Trinity University Pandora
Cluster. DNF (did not finish) indicates the program ran out of memory and crashed.
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The results contained in Table 4.1 are the runtimes for the Akka photometric ray tracer

on a single machine, specifically Pandora02, one of the machines in the Pandora Cluster

at Trinity University. They were created with samples of five runs, and include a margin

of error of one standard deviation. It is important to note that these timing results are

almost entirely incomparable with the results of the Spark sections, as those results are for

distributed processes, and this ray tracer currently only runs on one machine.

One of the 40 panel images generated while creating timing results for Table 4.1 is

shown in Figure 4.3. The moonlets aren’t visible, but this is because each moonlet and it’s

associated propeller structures are quite small in a 40 panel image.

The geometry used in these tests is described in Section 1.3. Briefly, the test geometry

is comprised of a number of distinct “panels” which are tiled such that they can create a

square image for certain numbers of panels (notably 10, 40, and 90).



Chapter 5

Comparisons, Conclusions, and

Future Work

5.1 Differences in Implementation

The primary differences in implementation between our Spark and Akka ray tracers can

be divided into two camps: differences in the code required, and differences in the amount

of control. Akka gives the developer more minute control over the transfer of data and

messages, but this comes at a cost: the developer has to write the code to send and handle

all of those messages.

This obviously isn’t a fatal flaw with Akka. Frameworks do require some code to be

written to use them, but the difference is significant. The single machine photometric Akka

project uses at least nine explicitly referenced code files, with 6 different actors, weighing in

at roughly 503 lines of relevant code. Clusterization would add at least two more actors and

another layer of messages. For comparison, the photometric Spark project uses 2 primary

code files and only 5 sequentially applied functions for the entire ray tracing process, and
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is roughly 400 lines long. The “lines of code” difference isn’t a fantastic metric, as the files

aren’t machine-formatted, but the Spark version is already clusterized and certainly still

smaller than the single machine Akka version. It’s also much less complex and easier to

understand than the Akka version. Wrapping your head around five functions performed

on RDDs likely takes less time than understanding the cadre of actors and their associated

messages in the Akka version. This is a more subjective and qualitative observation, but it

is our observation.

Another distinction is seen in the clusterization process. Akka requires explicit clus-

terization. A standard Akka (Classic or Typed) application does not run on a cluster [5].

A standard Spark application does. This could be a significant difference for prospective

users of either framework because the clusterization process, while entirely feasible, does

represent additional work that must be done before true completion. The importance of

this difference is, in some ways, documented within this work. The Akka photometric ray

tracer was not clusterized successfully. That wasn’t even a concern with the Spark ray

tracers.

This is somewhat subjective, but we believe there is some core truth here in that Akka

requires more work than Spark to get off the ground, and that future students working on

future ray tracers should perhaps factor this into their calculations when deciding which

distribution frameworks are more promising. Akka offers the promise and potential of

additional control, but additional control isn’t very useful when your ray tracer still isn’t

clusterized.
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5.2 Recommendations for the Future

Contained within this thesis is discussion of three ideas for a distributed ray tracer and their

associated implementations. It is difficult to make direct quantitative comparisons about

their quality in this purpose (not everything can be boiled down to timing results even if

we had that data), but what certainly can be said is that Akka allows for a finer degree of

control than Spark, at the cost of increased complexity and quantity of code.

Thus, it would seem prudent to recommend that any endeavors towards a “final” ray

tracer that will meet the original goals of these works be created in Akka, but it isn’t

so straightforward. In an environment where at least a fourth but probably more of the

student researchers leave (graduate) every year, there could be some real advantages to a

Spark implementation. The amount of time required for a student to become “up to speed”

on a prospective Spark ray tracer is probably less than that for the Akka ray tracer, assuming

relative inexperience with both, and that could mean a significantly higher productivity for

any students “picking up” the research of prior students.

Another recommendation, this one with more confidence, is that future researchers work-

ing on this project should probably implement a photometric model. It is more inefficient

than the standard model, but as it mirrors the behavior of real light, it more easily supports

scientifically realistic lighting behavior more easily than standard ray tracing.

5.3 Future Work

This thesis represents only a few steps towards the greater aims and needs of Dr. Lewis.

Ultimately, Dr. Lewis needs a ray tracer capable of rendering scenes with very large amounts

of geometry (more than can fit within the bounds of a single computer), and ideally with

some additional features like animation support, light refraction through dust (practically
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impossible from a memory perspective to represent dust with the spheres used in this work),

support for cloud computing resources.

An expansion to any of these ray tracers that is very interesting is cloud compatibility,

or the ability to run on cloud machines and ideally with geometry data hosted in the cloud.

We have experimented with this before, specifically with the Spark photometric ray tracer

described in [21]. We were able to get that ray tracer running on AWS cloud resources, but

we never took it further than a proof of concept. Taking this further would be excellent

future work, because it would allow for a larger exploration of timing results and scaling

behavior, and for simply larger scenes.

A full comparison between the Akka typed distributed photometric ray tracer and the

Spark distributed photometric ray tracer must still be completed. This may be completed

shortly after this paper is published, but in the event that it is not, it should be relatively

straightforward for a future student to do. The only required tasks remaining are to finish

the clusterization process started here with Akka Typed, and then compare that ray tracer

with the Spark photometric ray tracer.

Another small bit of work that remains to be done is to add batching of photons to

the Akka typed photometric ray tracer. Currently, it does the calculations for the initial

quantity of photons with no option to add more or to run them in sequential batches. This

isn’t a major change, and a procedure to render more than one batches of photons was

implemented in [21] to generate more visually interesting and realistic images. An imple-

mentation of photon batching in essentially any form will allow the Akka Typed photometric

ray tracer to render images with more photons than it currently can.
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