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Procedural Content Generation in 3 Dimensions using Wave

Function Collapse in Minecraft

Gabriel Manners

Abstract

This investigation into the effectiveness of Wave Function Collapse as a Procedural Content

Generation Technique (PCG) in Minecraft sets out to determine whether this method can

be used easily by players and game designers to generate content that mimics the original

content. We also set out to determine whether this technique can be implemented by

game designers or community modders easily enough to improve the default generation of

settlements in Minecraft. We grade the effectiveness of our output using metrics provided by

the Generative Design in Minecraft Competition in order to test whether generated content

is effective. Tests were conducted on terrain that was taken from an existing Minecraft

world, and featured a mixture of structures ranging from simple to complex in design

meant to simulate structures that players would build near the beginning of the game.

Unfortunately, our conclusion is that in it’s most basic form, Wave Function Collapse is

unsuited as a PCG tool for Minecraft. During the course of our testing, we found that the

run times for simple algorithms were too long to be effective, and the algorithm fails to

generate content for many of the test cases regularly. In order to make it more suitable, a

number of improvements are suggested including global constraints, weight balancing, and

layering PCG methods. Overall, this approach has potential, but requires more work before

it is a suitable replacement to current PCG methods for Minecraft settlement generation.
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Chapter 1

Introduction

1.1 Overview

In this thesis, we explore whether Wave Function Collapse as a tool in its most basic form

can effectively generate structures and terrain within Minecraft.

1.2 Procedural Content Generation

The exact definition of PCG has been a subject of some discussion, but in this paper we

shall use the following definition as our accepted standard. “Procedural Content Generation

(PCG) is the application of computers to generate game content” [12] PCG has several uses

outside of games, but is widely seen within games. There are several different ways that

PCG can be done, including using artificial intelligence or machine learning [17], mix-and-

matching predefined blocks of content [20], or mathematical algorithms to guide content

generation [5]. Many games use this, including Borderlands 2 [20], where it used to create

weapons for the player to pickup that draw from a database of parts to create entirely new

1
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Figure 1.1: “Procedurally generated gun from Borderlands 2.” Borderlands 2, 2012. Gabriel
Manners

Figure 1.2: “Procedurally generated planet from No Man’s Sky.” No Man’s Sky, 2016. Dax
Henson

games for each play through,

No Man’s Sky where PCG techniques follow a unique algorithm in order to create each

and every planet, start system, generated creature and generated plant that the player

seems in the game [5], to levels the player walks through that challenge them in different

ways depending on their skill level or items they have picked up. At it’s core, PCG is the

process of using rules and components to create environments, assets, stories, and levels in

order to create unique, dynamic experiences for the player.

PCG as a game development tool is widely accredited as having first appeared in a game

called Rogue [3] which used PCG techniques to generate the levels that the players moved
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Figure 1.3: “Procedurally generated flora and fauna from No Man’s Sky.” No Man’s Sky,
2016. Dax Henson

Figure 1.4: “Level from a Rogue 1980 play-through” Epyx, 1980. Wikipedia

through. This system avoided the entrapment that was possible with purely random level

generation, and ensured a walkable path.
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Other games like Spelunky [22] and Risk of Rain [6] have followed in Rogue’s steps

as a part of a genre called Rogue-likes, or games where each play-through would feature

different experiences for the player either in level design, enemy design, or story-wise. More

of interest to this paper is how PCG has been used to construct individual assets for games

such as in No Man’s Sky [5], or Dwarf Fortress [4], where PCG is used to generate specific

subsets of the world in combination with an existing landscape (whether that landscape be

generated by PCG or not). In No Man’s Sky [5], the use of guided PCG is present when

generating the animals that roam the planets. Following an algorithm [7] the developers

are able to create living and moving assets that look (for the most part) realistic, but

never before seen. In this way, each planet has different flora and fauna, none of which the

developer has to create by hand. The plants are also generated by PCG, similar to the way

that Borderlands 2 guns are generated by combining properties together to form unique

systems [14]. As such, PCG has seen a widespread use in video games to create content

for the players to experience that is unique at the time of playing the game, allowing for

practically infinite play through without duplicates.

1.3 What is Minecraft?

Minecraft is a game created in 2009 by Markus Persson and Jens Bergensten [16] that

features procedurally generated worlds, simple voxel units, and two simple core game loops

[16]. In Minecraft, players explore the world that is generated as they go, mining the blocks

the world is made up of with various tools. The world is separated into biomes, which

represent a different set of block used to create the world that give it a different feel. Some

examples of biomes are Deserts, Snowy Taiga, and Plains.

During the course of game play players can also be expected to craft the mined blocks
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Figure 1.5: “Desert Biome in Minecraft.” Minecraft, 2009. Gabriel Manners

Figure 1.6: “Snowy Taiga Biome in Minecraft.” Minecraft, 2009. Gabriel Manners
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Figure 1.7: “Small farming house in modded Minecraft.” Minecraft, 2009. Drew Bullinger

into tools to enable them to mine faster, defend themselves, and progress. While exploring,

players may encounter structures such as Villages, Jungle Temples, or Water Temples that

contain treasure for the players, non-player character’s roaming the world, and bosses. A

key feature in Minecraft is it’s capabilities as a sandbox game. Players are able to use the

blocks that they mine to construct buildings, machines, traps, and farms in their world

to personalize it and share it with friends on multiplayer. Given it’s simplistic nature,

the number of vast towns and constructs seen on forums is staggering (especially after the

advent of creative mode allowing players to give themselves any and every block in the

game).

Minecraft also has a large modding community. Mods or modifications are alterations

or additions to the games code that adds content to the game for one purpose or another.

Some mods may add a comprehensive story line and role playing elements, turning Minecraft

into something more akin to a tabletop role playing game. Others may add machines and

factory elements, enabling players to delve into science-fiction or steampunk and build large

contraptions to help them achieve a set of goals (also set by the mod). Many mods will alter

the way that the world generates, modifying the terrain to get new biomes or structures for

the player to explore.
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Figure 1.8: “Screenshot of a biome generated by Oh The Biomes You’ll Go, a biome gen-
eration mod for Minecraft.” Minecraft, 2009. Gabriel Manners
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1.4 PCG In Minecraft

Minecraft uses PCG techniques to generate the vast world that the player experiences. The

world that the player experiences is generated based off of a randomly generated seed made

at the beginning of the game that is used to control the randomness of some of the layers

of PCG, picking from one of 18,446,744,073,709,551,616 possible seeds if one is not defined

at world creation.

The structures, biomes, cave and ore generation, and the overall terrain of the game are

generated in Minecraft using several layers of PCG techniques, beginning with the shape

of the world, and ending by populating it with structures. The first step in generation is

to generate the overall shape of the world using a variety of noise maps. A noise map is

a method of generating a 2D map of numbers between 0-1. One of the common uses for

a noise map is for terrain height-mapping, height-mapping referring to the height of the

terrain at a specific location [15]. Minecraft uses several height-maps, referring to them as

low and high noise functions in order to generate the shape of the world. The game uses

low noise functions to outline the shape of the terrain to the world generator and high noise

when the original height-map is above a certain threshold [1]. It also uses a selector noise

to vary between the two functions, drastically changing the height of the resulting terrain.

Minecraft also goes through a selection of biome’s and temperatures to change the blocks

that are placed onto the height-map. Using this several step process, Minecraft is able to

procedurally generate terrain that is different, using the seed of the game as a seed for the

noise maps used to create the world maps.

After the basic layer of terrain has been generated, structures are generated within the

game. These structures can range from Strongholds - large underground stone fortresses

often generating in caves - to villages - overground clusters of structures typically made
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Figure 1.9: “Example of a village with overhanging path’s and buildings.” Minecraft, 2009.
Gabriel Manners

from wood and stone. Generating similar structures to villages is the goal of this paper,

elaboration on how current villages are created is necessary.

Villages exist around a center point that is placed in a valid spot above ground (valid

spot means in a valid biome with sight lines to the sky) [1]. From here, the village buildings

are spawned in a radius around the village center, being placed arbitrarily on the highest

block. These buildings include terrain underneath them, which overwrites the currently

existing terrain. This can result in buildings that overhang, or are carved partially into a

cave. This generation can often look out of place in the world, but does work for the most

part.

After the buildings are generated, paths are constructed that link the buildings to one
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Figure 1.10: “Example of a village with proper generation.” Minecraft, 2009. Gabriel
Manners
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another. These path’s follow the current terrain exactly, placing the blocks on the highest

possible block in the column it wishes to generate. This can result in paths that are unpath-

able by entities in the world or visual anomalies in a region. Modders have attempted to fix

these problems with village generation within Minecraft, either by tailoring a modification

or data-pack to create a new algorithm, or running another pass over villages after they are

generated to address these issues.

The Generative Design in Minecraft Competition (GDMC) - a competition created by

Christopher Salge and Julius Togelius et. al [9] - is a Procedural Content Design compe-

tition aimed at inviting community members to build their own PCG algorithms in order

to improve upon village generation. Some examples of areas of improvement are layout

changes, historical additions (books and texts placed in the game to tell a story), or any-

thing that makes the resulting village fit better into the world, and have a more holistic or

comprehensive design to it than existing village methods. The generated settlements are

judged for organics based off of their Adaptability (cohesion with environment), Function-

ality (effectiveness as a living space), Evocative Narrative (stories about the people in the

settlement), and Aesthetics (appropriate design for mimicking reality) [18]. These provide

good metrics for evaluating content outputted by a PCG algorithm.

1.5 Wave Function Collapse

The Wave Function Collapse (WFC) algorithm solves problems by analyzing the adjacencies

of input data and solving for an output space. It does this by using the adjacencies of

the input as a constraint, limiting and collapsing the output space step by step until an

output is found. It is used to collapse the superposition of possibilities of states inside

of the output grid into a definite state that can be used for output (The superposition
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Figure 1.11: 2D Output of WFC to Generate Flowers - Maxim Gumin @ GitHub

being the possibilities of every tile that could occupy a position based on the surrounding

adjacencies). In the application we are using it for, WFC revolves around using adjacencies

of input blocks in order to create output matrix’s that mimics the original input, but

can potentially infinitely expand upon the amount of output able to be generated (within

hardware limits). While it will be expanded upon later, the fundamentals of WFC involve

reading in content to an adjacency matrix, and then procedurally collapsing an output grid

based on those adjacencies from super-positions of every possibility to single values that

can then be definite.

This method has proved promising for procedural content generation in 2 dimensions

and 3 dimensions given fixed inputs with a number of simple implementations being created

with packages for popular game engines such as Unity and Unreal Engine 4 as seen in this

GitHub repository [11]. It also has been used within 3 dimensions, able to generate simple

structures and patterns based on a series of set inputs.

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
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1.6 Purpose

The purpose of this research is to see whether it is possible to design an implementation of

WFC for easy use within Minecraft that lets users choose their own input, as well as being

an option for other mods to use as a new method of generation. We also ask the question

of WFC limitations for use inside of the Minecraft engine, and the future methods that can

be implemented to avoid or overcome the limitations of the base implementation. Overall,

we aim to add to the answer of the question of WFC as a procedural content generation

mechanism within more complex environments as a tool to game developers to generate

content and a tool for users to generate their own content based off of environments they

have built, as it is a relatively new method of procedural content generation.

1.7 Methodology

A brief overview of the Methodology is given here on the process of implementation the

Wave Function Collapse Method inside of Minecraft. Firstly, the input adjacencies must

be obtained. To do this, a matrix of blocks in the input grid is read in and converted to

integers. Then, they are converted to chunks. Finally, the chunks adjacencies matrix are

computed and saved. Afterwards, an output matrix must be established of an arbitrary size.

From there, it is populated with possibilities, and then those super positions are collapsed

sequentially until each position in the grid contains a single value. Then, those values are

read in and spawned into the Minecraft world. In order to test the algorithm, a variety of

structures and patterns were designed to test the limits of the implementation, and also

verify it’s functionality. A “functional” run is defined by the capacity of the algorithm to

output something when possible, and to successfully inform the user if the generation fails.

These outputs were manually verified when possible to ensure that larger scale generations
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would succeed. The eventual goal for the algorithm is to improve upon it beyond the bounds

of this paper, and enter it into the GDMC for an entry during the summer of 2023 (June).

The competition will judge the output of the algorithm, and rank it on the scales mentioned

above.

1.8 Significance

Wave Function Collapse as an effective PCG system can be an important and effective

tool in the game designer’s toolkit in order to create new content for games, as well as

enabling the user to create their own content for use within the pathway. This particular

implementation of WFC allows the user to implement their own content to generate assets

that are specific to a user, rather than being ingrained into the game system itself. This

does raise some ethical concerns however.

Voxel’s are a straightforward method of defining chunks for the WFC algorithm to

input from, however there are many games that have user-content creation that do not use

a voxel system. One future challenge would be adapting this system to a non-voxel game.

Another expansion to the algorithm would be to separate the generation into several layers,

that enable the algorithm to perform better under specifically village or city generation

environments.

This papers aim is to, using Wave Function Collapse, see if there exists an algorithm

that addresses the areas of focus of development in the GDMC and results in a more life-like

village being generated within the Minecraft world. We also aim to address whether or not

dynamically inputting user content can be an effective method for generating adjacencies

for WFC, or if it is better to pre-generate the content that is able to be used.



Chapter 2

Literature Review

The field of Procedural Content Generation is by no means a new field, although it has been

developing rapidly in the recent years. As such, there is much past and current research on

the different methods of PCG and how they’re used in games, as well as some applications

outside of games. This previous research is helpful when determining the successes and

limitations of WFC as a PCG technique, as well as provides some context for how the

output of that data can be analyzed.

Secondly, in the recent years WFC as a PCG technique has been developing, and exam-

ining the other uses for this algorithm, the specifications of other designs, and the modifi-

cations that have to be made in order for WFC to function effectively as a PCG algorithm

provides useful insight on the methods that can be used to improve the algorithm in the

future.

Finally, examining other methods of PCG within Minecraft can help narrow the focus of

the PCG algorithm to tailor it to more accurately function within the context of a Settlement

or terrain generator. We can use other examples to contextualize the performance of the

current algorithm, as well as guidance for how it can be used in the future.

15
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2.1 Procedural Content Generation

Many of the questions revolving around PCG methodologies are how to ascertain whether

or not the content matches up with the original in such a way that it can be considered the

same. This question is important to consider as our implementation uses user input as it’s

foundation to generate the final content. Any content generated that does not accurately

represent the original is in short, faulty content. Summerville talks about methods for

evaluating this effectiveness in his 2018 paper. He discusses two methods of selection criteria

that can be used to determine the effectiveness of the generated content of a PCG algorithm

(effectiveness here referring to the resemblance to the original material) [21]. These two

methods are the Plagiarism method and the Metric Distance method. Both of these methods

are ways of determining the effectiveness of the PCG content. These metrics serve as good

foundations for determining whether an algorithm was successful, but are not tailored to

specific algorithms in such a way that is sought after. Such a specific level of detail takes

place at an individual level, which Summerville says is “all that matters” [21]. Thus, the

analysis of that individual pieces of content are more important than the role that the PCG

is able to play in the experience. This can be a valuable conclusion when attempting to

perform isolated generations, but in the case of generation that is part of a large whole

(as opposed to when generation is the larger whole), it can be more valuable to use other

methods to ascertain the success of a PCG algorithm.

We can look outside of the sphere of games to look at some of the other attempts to

validate PCG algorithms, specifically in how the PCG is constrained. Risi and Togelius et.

al implement a Search-Based PCG algorithm in order to specifically search (or generate)

content based on some evaluation function [17]. Their approach goes on to talk about the

use of machine learning within PCG algorithms (PCG-ML) in order to develop a learning
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algorithm for a specific challenge based on limited information [17]. The concept of devel-

oping PCG-ML for a specific task is useful to consider, as that specific task can be content

based off of video games. As a tool for designers, the application of this has potential in

some cases, but for an algorithm such as the one presented in this paper where it is supposed

to accept user input as a foundation for the output, training a machine learning model is

often computationally expensive and many users would not have access to such compute

power.

There are many ways to enhance the performance of a PCG algorithm for a specific

task. An example of this is with Gravina and Khalifa et. al’s approach to Quality Diversity

in PCG. Here, there algorithm searches for “the largest possible set of diverse and high-

quality solutions” [8]. while their definition of “high-quality” varies from the definition

sought after by a PCG method designed to construct settlements, the elaboration that

Gravina and Khalifa provide on how to construct an algorithm to match those definitions

provides good guidelines for future work of the algorithm. The Quality Diversity measures

that are proposed are also useful in developing “many diverse artifacts in one run” [8].

Diverse artifacts in one run are especially useful when attempting to create variances off of

one or perhaps two sample sets (in the case of users wanting to create settlements out of

simple structures or patterns).

2.2 Wave Function Collapse as a PCG

Modifications of PCG algorithms are often essential to obtain specific content for a specific

purpose. There are several methods of obtaining this level of specification for WFC as a

PCG. One of those, spoken about in Sandhu and Arunpreet et. al. is the use of design-

level constraints [19]. These constraints, which can be placed at several levels of the WFC
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algorithm in order to modify the behavior, are capable to tailoring the output of a WFC

algorithm to better produce valid output. Some of these methods, such as weight recal-

culation [19] and non-local constraints [19] are examples of pre-processing methods that

modify the content produced by a WFC algorithm. As it shall be seen later, the weight

modification can have a large impact on the type of content produced, and smart weight

recalculation during an algorithms run can be used to great effect on WFC.

Detouring slightly, WFC can also be used unmodified to great effect, as seen in Maxim

Gumin’s implementation of WFC C# [11]. Here, there are several implementations of fixed

input WFC algorithms that are capable of generating varied outputs based on fixed set

inputs. Also on this repository are linked several other implementations in other languages,

as well as packages for implementations inside of popular game design engines Unity and

Unreal Engine 4. These projects generally follow the same theme, and none are specifically

tailored to Minecraft, but they do have useful attributes and explain the algorithm and a

fundamental level well. Many of the implementations are tailored for 2 dimensions, but

some have been shown to work in 3 dimensions as well.

If we can think of a settlement in Minecraft as a game level, then Cheng and Han et.

al. helps to address some issues that they found that are specific to game level creation [2].

They address 4 primary areas that the WFC algorithm can be improved to help with game

level creation, specifically automatic rule systems, global control, distance constraints, and

multi-layer generation [2]. In particularly, the concept of multi-layer generation is key to

future work that could be done on this algorithm. The process of separating different steps

of the algorithm in order to only produce some of the output with WFC may help with

some of the difficulties that can be foreseen when WFC is used for a holistic approach.
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2.3 Minecraft and Procedural Content Generation

As WFC is a PCG algorithm, and this paper seeks to develop it inside of Minecraft, it

is fitting to explore the current space of PCG algorithms within Minecraft. One of the

more prominent areas of PCG is designing alternate methods of generating settlements,

with a competition known as the Generative Design in Minecraft (GDMC) being run in

the last few years [9]. This contest focuses on community implementations of AI in order

to generate structures and settlements in Minecraft. As the ultimate goal of the algorithm

implemented here is to assess the feasibility of using it to generate settlements, the outlines

and standards for judging content provided by the GDMC is a good metric for judging the

algorithm’s performance.

Before this competition, there have been several precursors to algorithms designed to

make settlements, including Green and Salge’s organic building generation in Minecraft

using cellular automata [10]. In this, they focus on developing floor plans for buildings

using a variety of different stages such as room placement, room growth, door placement,

and external wall generation [10]. They relied on a subjective analysis of the buildings to

determine the success of the algorithm [10], which was most likely then refined into the

criteria used in the GDMC for analyzing algorithms performance as Salge and Green are

both on the founders team for the GDMC. This form of PCG within Minecraft provides a

good rule set for basic structures, and could be used in an eventual multi-layer approach to

the WFC algorithm.

Other implementations for use in the GDMC include AgentCraft, which is more ad-

vanced settlement generator that took second place at the competition that relies on social

agents to create a village starting at a center point [13]. These agents result in what Ira-

manesh calls “organic design” [13], or more simply design that mimics what we would expect
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to see given real-life settlements. This is an alternative method of developing content, as it

relies on rules for agents to create the settlement themselves instead of creating rules for a

settlement based off of previous settlements (as our algorithm intends to do).

As other algorithms for Minecraft settlement generation have evolved, so too has the

competition itself. The competition serves as a good foundation for judging content for

Minecraft settlement PCG, as in Salge and Green et. al. (2020), they elaborate on the

results of the previous year’s competition and address the specifics of judging, founding

scores on the concepts of Adaptation, Functionality, Evocative Narrative, and Aesthetics

[18]. These areas of focus for a settlement generator are key in developing an algorithm

that performs against other accepted systems. As such, assessing the validity of WFC as an

effective generator means that the content generated must begin to adhere to the concepts

listed above if it can be considered effective.



Chapter 3

Methodology

3.1 Research Design and Framework

As discussed in the Introduction1, Minecraft is a 2009 voxel based video game used as

the foundation for the implementation of WFC in this thesis. This implementation was

implemented inside of the Fabric 1.17 Modding toolchain for Minecraft 1. This is a collection

of methods aimed at letting community members implementation modifications to the game

including but not limited to - complete overhauls to the games story and adding elements of

role-playing games, science-fiction and fantasy mods, steampunk mods, farming mods, etc.

Some of the mods created include structure generation and biome generation overhauls.

This toolchain is one of two primary tool chains for modding within Minecraft, the other

being Forge. Fabric 1.17 was chosen over Forge 2 due to it’s quicker update time, better

community and owner support, and prior use.

Minecraft as a framework is a good theoretical choice for this sort of generation. The

1https://fabricmc.net/wiki/start
2https://docs.minecraftforge.net/en/1.19.x/
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game has been modded by community members for years now, meaning writing another

mod would have many resources at disposal. The game structure lends itself to being split

up into definite, complete units. The world is generated in singleton blocks that can be

easily converted to integer space in order to improve upon run time costs and space costs.

The blocks also make it simple for another user to construct with, enabling them to create

their own input’s at a whim. The set blocks of Minecraft also create definite outputs that

can be imaged easily on their own.

3.2 Research Methods and Techniques

As this paper revolves around the implementation and design of an algorithm. The first step

in the algorithm is to extract the information from an input matrix and turn those values

into integers. This information is relatively easily stored using methods from the Fabric

API until chunks are considered. Minecraft refers to chunks as 16× 384× 16 blocks within

the Minecraft world. Our algorithm uses chunks of significantly smaller size, in general

cubes of side length N . Hereafter, when we refer to “chunk” we refer to this smaller size.

We perform experiments with chunk sizes of 2× 2× 2 and 3× 3× 3.

Chunks are important to provide some context for the adjacencies. If we imagine a chunk

of 1x1x1, there is no context to differentiate between two chunks in different locations. Both

will be able to generate freely within the confines of the adjacency matrix. This results in

randomness in the output. Therefore it is necessary to provide the adjacency matrix with

some context for each chunk. We can accomplish this by overlapping the chunks, meaning

that two of the same singleton block in different locations will give different adjacencies.

Given any chunk size N, the chunks will overlap by N-1 blocks.

These chunks are saved as integers, and the adjacencies are computed from all directions.
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When an adjacency would reach the bounds of the input grid, an edge adjacency is added,

and a corresponding chunk adjacency is added to the edge. Adjacencies are computed per-

chunk, resulting in a large map of integers to a list of integers representing the direction of

adjacent chunks.

Once the adjacencies have been computed, the intermittent step can be assembled. This

consists of a defined M×M×M output filled with lists of integers. These integers represent

the possibilities of chunks that could be in that position. We then collapse each of the faces

of the cube using the adjacencies from the edges. From there, we take the position with

the least possibilities and collapse it to a single value based on the occurrences of each

possibility in the input matrix. Once collapsed, a definite value percolates it’s possibilities

to it’s non-collapsed neighbors based on the adjacency matrix. Once all value are collapsed,

the grid can be expanded into the world. If not all values are collapsed, or a position in the

grid doesn’t have a value it can be collapsed to, the algorithm fails.

Once the grid has been collapsed, the algorithm runs through each of the positions,

generating the contents of the chunk into the world into the space specified by the user.

This algorithm relies heavily on some of the experimental aspects of this research, including

chunk overlap handling, edge handling, and terrain handling. Edge handling is important

for when the algorithm runs into the side of the output grid. In some cases, wrapping to

the other side of the output grid is sufficient to get correct output. However, in the case of

buildings and generating into a pre-existing world, creating boundaries in the output grid

and edge adjacencies reduces the amount of error. Our method treats edges as a separate

type of chunk, and works by mocking up walls of collapsed edges already in place when

the output grid is first being formed, enabling the collapse of faces of a cube in order to

initialize and kick-start the collapse matrix.

Another key part of the algorithm is chunk overlapping. With 1x1x1 chunks, there
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is little context to the information saved within the chunk. This little context results in

random seeming output that still complies with the adjacencies without maintaining the

relationships between larger elements of structures or terrain. In order to avoid this, we

increase the size of the chunks to a variable size of N × N × N . Doing so enabled us

to retrieve context from the chunks by overlapping adjacent chunks. By doing this we are

more easily able to create chunks of data that are coherent and related to more larger higher

specification neighbors rather than low context singleton neighbors.

Experiments were conducted under two likely conditions, that of fixed tests where the

size of the input and output are the same, and expanded tests where the size of the input is

smaller than the size of the output. The output was 2x the size of the input in all directions,

additional size increases were limited by memory and time constraints. No tests were done

where the size of the input was greater than the size of the output. Tests can be grouped into

three categories—terrain, structure, and hybrid. Terrain tests feature large sets of terrain

with varying amounts of height and depth in them. They are taken from examples found

within the Minecraft world, and are converted into single block types. Three categories of

terrain have been tested, with flat set tests having 0 height variance layers of blocks, varied

set tests having between 1 and 2 blocks of variance, and complex tests having more than

2 blocks of variance. Structure tests involve the construction of two types of structures

placed on top of flat terrain composed of a layer of stone followed by a layer of grass. Hovel

refers to the simplest structure a door could be placed upon, composing of solid walls and a

roof. House tests feature a bit more complexity, and are larger. Hybrid tests feature a mix

of both structures and terrain, combining each of the subsets into possible combinations.

Hybrid tests also include a mixture of alternate patterns.



Chapter 4

Results

Results were gathered by testing sets of blocks that were constructed to test certain aspects

of the algorithm, or as a general test. The average time in milliseconds (ms) for each

run through the algorithm was obtained over a set of 100 runs of 100 tries each, and the

number of successes and failures were recorded for each as well. The figures below display

the number of successes out of the number of runs and the milliseconds on average each run

took. All tests were run on a 2018 Dell Inspiron 5577 Laptop running Windows 10, with

an Intel Core i7-7700HQ @ 2.80 GHZ, 16 GB of 2400 MHz RAM, and an Nvidia GeForce

GTX 1050 12 GB. Below are listed the tests success rates under various conditions, and the

average time of each test, along with the images of the inputs and varying outputs achieved

by the algorithm.

4.1 Terrain Based Tests

• Flat Stone Figure 8.1

• Varied Stone Figure 8.2

25
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Table 4.1: Average time (ms) for stone terrain where chunk size is 2
Flat Stone Varied Stone Complex Stone

Fixed Size 0 ms 14 ms 56 ms

Expanded Size 0 ms 8 ms 1043 ms

• Complex Stone Figure 8.3

• Flat Grass Figure 8.4

• Varied Grass Figure 8.5

• Complex Grass Figure 8.6

Terrain based results are grouped into Stone Terrain and Grass Terrain as described in

the Methodology section 3. The average time overall for fixed size stone terrain was 23.3

ms when the chunk size was 2 [Table 4.1]. This time decreases to 14 ms when the chunk

size increases to 3 [Table 4.3]. The successes for stone terrain for fixed size stone terrain

was an average of 38.8 % when the chunk size was 2 [Table 4.2], and increased to an average

successes of 66.6 % when the chunk size was 3 [Table 4.4]. In both cases when the expanded

sizes were used, the average milliseconds increased, and the average successes decreased.

The average time overall for fixed size grass terrain was 47.3% ms when the chunk size

was 2 [Table 4.5]. This time decreases to 21% ms when the chunk size increases to 3 [Table

4.7]. The successes for grass terrain for fixed size grass terrain was an average of 66% when

the chunk size was 2 [Table 4.8], and increased to an average successes of 100% when the

chunk size was 3 [Table 4.8].The grass terrain followed an identical trend to the stone terrain

when using the expanded size, with an increase in average milliseconds and a decrease in

average successes.
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Table 4.2: Average successes for stone terrain where chunk size is 2
Flat Stone Varied Stone Complex Stone

Fixed Size 100 2 14

Expanded Size 100 0 0

Table 4.3: Average time (ms) for stone terrain where chunk size is 3
Flat Stone Varied Stone Complex Stone

Fixed Size 0 ms 2 ms 40 ms

Expanded Size 0 ms 72 ms 107 ms

Table 4.4: Average successes for stone terrain where chunk size is 3
Flat Stone Varied Stone Complex Stone

Fixed Size 100 100 24

Expanded Size 100 100 0

Figure 4.1: “Output of complex stone terrain at fixed size (using alternate complex stone)”
Minecraft, 2009. Gabriel Manners

Table 4.5: Average time (ms) for grass terrain where chunk size is 2
Flat Grass Varied Grass Complex Grass

Fixed Size 0 ms 0 ms 142 ms

Expanded Size 0 ms 191 ms 370 ms
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Table 4.6: Average successes for grass terrain where chunk size is 2
Flat Grass Varied Grass Complex Grass

Fixed Size 100 100 0

Expanded Size 100 14 0

Table 4.7: Average time (ms) for grass terrain where chunk size is 3
Flat Grass Varied Grass Complex Grass

Fixed Size 0 ms 0 ms 65 ms

Expanded Size 0 ms 65 ms 102 ms

Table 4.8: Average successes for grass terrain where chunk size is 3
Flat Grass Varied Grass Complex Grass

Fixed Size 100 100 100

Expanded Size 100 100 0

Table 4.9: Average time (ms) for stone structures where chunk size is 2
Stone Hovel Stone House

Fixed Size 64 ms 938 ms

Expanded Size 39867 ms > 252000 ms

Table 4.10: Average successes for stone structures where chunk size is 2
Stone Hovel Stone House

Fixed Size 100 100

Expanded Size 5 No Data

Structure Based Tests

• Stone Hovel Figure 8.7

• Stone House Figure 8.8

• Wooden Hovel Figure 8.9

• Wooden House Figure 8.10
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Table 4.11: Average time (ms) for stone structures where chunk size is 3
Stone Hovel Stone House

Fixed Size 24 ms 2944 ms

Expanded Size 17 ms > 234000 ms

Table 4.12: Average successes for stone structures where chunk size is 3
Stone Hovel Stone House

Fixed Size 100 93

Expanded Size 100 No Data

Table 4.13: Average time (ms) for wooden structures where chunk size is 2
Wooden Hovel Wooden House

Fixed Size 61 ms 739 ms

Expanded Size 34 ms > 463000 ms

Table 4.14: Average successes for wooden structures where chunk size is 2
Wooden Hovel Wooden House

Fixed Size 100 100

Expanded Size 3 No Data

Table 4.15: Average time (ms) for wooden structures where chunk size is 3
Wooden Hovel Wooden House

Fixed Size 28 ms 599 ms

Expanded Size 50 ms 39626 ms

Table 4.16: Average successes for wooden structures where chunk size is 3
Wooden Hovel Wooden House

Fixed Size 100 100

Expanded Size 100 52
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Figure 4.2: “Wooden Hovel on simple (flat) grass” Minecraft, 2009. Gabriel Manners

Structure based results are conducted on flat grass terrain, with a variety of 4 structures.

The Stone Hovel [Table 8.7], the Stone House [Table 8.8], the Wooden Hovel [Table 8.9],

and the Wooden House [Table 8.10]. Overall, the stone hovel and wooden hovel feature very

similar results in between 60-65 milliseconds for a chunk size of 2 in fixed size [Table 4.9

and Table 4.13] and between 24-28 milliseconds for a chunk size of 3 in fixed size [Table 4.11

and Table 4.16]. The successes for both of these structures were both 100% for a chunk size

of 2 and 3 in fixed size [Table 4.10, Table 4.14 Table 4.12 and Table 4.16]. In expanded size,

the average milliseconds for both hovels increased in comparison to the average milliseconds

for fixed size regardless of chunk size, while the successes remained the same. In expanded

size, the average milliseconds for houses drastically increased, while the structures success

rate was reduced to 0 [Table 4.12 and Table 4.16]
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Table 4.17: “Average time (ms) for structures on varied grass where chunk size is 2”
Minecraft, 2009. Gabriel Manners

Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 2704 ms 3309 ms 138 ms 3112 ms

Expanded Size 5796 ms > 265000 ms 5139 ms > 256000 ms

Hybrid Tests

• Stone Czech Hedgehog Figure 8.11

• Simple Striations Figure 8.12

• Wooden Pillars Few Figure 8.13

• Wooden Pillars Many Figure 8.14

• Stone Hovel on Varied Grass Figure 8.15

• Stone House on Varied Grass Figure 8.16

• Stone Hovel on Complex Grass Figure 8.17

• Stone House on Complex Grass Figure 8.18

• Wooden Hovel on Varied Grass Figure 8.19

• Wooden House on Varied Grass Figure 8.20

• Wooden Hovel on Complex Grass Figure 8.21

• Wooden House on Complex Grass Figure 8.22

Overall, the Hybrid tests experienced similar trends to the structure and terrain tests

in both average milliseconds increasing between fixed and expanded size, and decreasing
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Table 4.18: Average successes for structures on varied grass where chunk size is 2
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 0 0 0 0

Expanded Size 0 No Data 2 No Data

Table 4.19: Average time (ms) for structures on varied grass where chunk size is 3
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 2697 9183 ms 2519 ms 2640 ms

Expanded Size 56371 ms > 670000 ms 55509 ms 2698 ms

Table 4.20: Average successes for structures on varied grass where chunk size is 3
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 0 0 0 0

Expanded Size 0 0 0 0

Table 4.21: Average time (ms) for structures on complex grass where chunk size is 2
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 1276 ms 3072 ms 3309 ms 3333 ms

Expanded Size 2393 ms > 368000 ms 4330 ms > 245000 ms

Table 4.22: Average successes for structures on complex grass where chunk size is 2
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 0 0 0 0

Expanded Size 0 No Data 2 No data

Table 4.23: Average time (ms) for structures on complex grass where chunk size is 3
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 54521 ms 0 ms 2640 ms 4982 ms

Expanded Size 0 ms 0 ms 286 ms No data

Table 4.24: Average successes for structures on complex grass where chunk size is 3
Stone Hovel Stone House Wooden Hovel Wooden House

Fixed Size 0 0 0 0

Expanded Size 0 0 0 No data
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Table 4.25: Average time (ms) for miscellaneous tests where chunk size is 2

Simple Striations
Stone Czech
Hedgehog

Wooden Pillars
Few

Wooden Pillars
Many

Fixed Size 2 ms 1 ms 77 ms 720 ms

Expanded Size 311 ms 566 ms 2385 ms 1097 ms

Table 4.26: Average successes for miscellaneous tests where chunk size is 2

Simple Striations
Stone Czech
Hedgehog

Wooden Pillars
Few

Wooden Pillars
Many

Fixed Size 100 100 21 100

Expanded Size 75 48 7 100

Figure 4.3: “Successful output of expanded striations” Minecraft, 2009. Gabriel Manners



34

Figure 4.4: “World loading freeze during algorithmic run” Minecraft, 2009. Gabriel Manners

Table 4.27: Average time (ms) for miscellaneous tests where chunk size is 3

Simple Striations
Stone Czech
Hedgehog

Wooden Pillars
Few

Wooden Pillars
Many

Fixed Size 0 ms 0 ms 2 ms 89 ms

Expanded Size 75 ms 181 ms 68 ms 1936 ms

Table 4.28: Average successes for miscellaneous tests where chunk size is 2

Simple Striations
Stone Czech
Hedgehog

Wooden Pillars
Few

Wooden Pillars
Many

Fixed Size 100 100 100 1

Expanded Size 0 0 100 0
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between chunk sizes of 2 and 3 on the complex grass terrain [Table 4.21, Table 4.23, Table

4.22, Table and 4.24]. These trends also held for the tests conducted on the varied grass

[Table 4.17, Table 4.19, Table 4.18, Table and 4.20].

The miscellaneous tests were overall much more successful, but followed the same trends

as the other tests, with increased run times between fixed and expanded sizes, and chunk

sizes of 2 and 3 [Table 4.25, Table 4.27, Table 4.26, and Table 4.28].

4.2 Noteworthy Observations and Additions

Several of the successful generations were obtained only by sleeping the thread intermittently

during generation to allow the render thread to catch up. These examples usually revolved

around the stone structures, and include but are not limited too - stone hovel of fixed size

with a chunk size of 2, wooden hovel with fixed size and chunk size of 2, wooden hovel with

expanded size with chunk size of 3, stone hovel of fixed size with a chunk size of 3, and the

wooden hovel of fixed size with a chunk size of 3. In many of these cases, the output is

generated into the world, but the client crashes, the algorithm finishes the test, and then the

client crashes due to an internal render thread exception. A solution to this is to pause the

generation of a successful run by 50-250 milliseconds by sleeping the thread, which allows

the generation to handle the incoming content and generate the output without crashing.

The limitations of this solution are discussed.

Several of the tests were unable to complete a single generation within a reasonable time

frame. As discussed later, the running of the algorithm effectively pauses game play, and

as such test runs exceeding 100,000 ms average per run were not allowed to continue, and

were deemed unsuccessful. Such tests include stone house of expanded size with a chunk

size of 2, wooden house of expanded size with a chunk size of 2, stone house on varied grass
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of expanded size with a chunk size of 2, stone house on complex grass of expanded size with

a chunk size of 2, wooden house on varied grass of expanded size with a chunk size of 2,

wooden house on complex grass of expanded size with a chunk size of 2.

Some tests are prone to outputting flat air as their primary output as the weighting of

the algorithm encourages these flat surfaces initially, which are then propagated through

the algorithm. Examples of tests where this generation pattern is common include the

following, stone hovel of fixed size with chunk size of 2, stone hovel of fixed size with chunk

size of 3, stone Czech Hedgehog of fixed size with a chunk size of 2, stone Czech Hedgehog

of expanded size with a chunk size of 2, stone house of fixed size with a chunk size of 3,

wooden hovel of a fixed size with a chunk size of 3, and few wooden pillars of fixed size

with a chunk size of 3 (this result is expected unlike the others). A method of achieving

output that is less consistent in success but more varied in result was found by removing

the weighting function from the algorithm to allow non-specific generations to occur more

frequently. This is discussed later.

Two tests caused the client to run out of memory, exceeding the 8 Gb allotted to it.

The wooden house on complex grass of expanded size with a chunk size of 3, and the stone

house on complex grass of expanded size with a chunk size of 3. In both cases, a single run

of the algorithm was unable to be completed over approximately 50 attempts. In each case

the client would crash and require a full restart.



Chapter 5

Discussion

Overall, the simplest form of WFC as a PCG algorithm inside of Minecraft is not use-

ful for either game designers or for players/modders. There are two primary reasons for

this, the time requirements of the algorithm and the preciseness of which the inputs and

outputs must be setup. In order to be useful, a different approach for reading in input

data is required, or some sort of tailoring of data in order to render is useful and possible

to quickly and regularly generate content. Some possible approaches or modifications will

be presented. Additionally, the ethical implications of this algorithm (in perhaps a more

expanded form) are discussed. With the recent developments of artificial intelligence sur-

rounding ChatGPT 1and Image Generation AI’s, the question of intellectual property in

regards to this algorithm poses some interesting answers 2.

Currently, this algorithm is unsuited to usage within Minecraft as an effective tool.

This is due to two primary reasons, the time requirement for larger and large sizes, and the

precision with which input and outputs must be sized and constructed to get regular, normal

1https://openai.com/blog/chatgpt
2https://www.midjourney.com/home/
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looking output. Here, normal looking output is defined as output that has elements or

mimics the input in a cohesive manner. In the case of the misc. tests or the simple terrains,

many possibilities can be considered normal as the terrain in Minecraft can sometimes be

abstract, but in most cases it should be navigable if the original input is navigable. In the

case of structures, the features desired by the GDMC are taken into consideration [9].

Terrain is capable of achieving normal output in many cases, while structures are not.

This relates heavily to the precision required by the algorithm in both the inputs and the

outputs in order to create desired, curated content. Some limits that exist with this system

are: lack of empty space or “air” almost ensures a failed generation, content close to the

edges that is not air will impede the variety of generation (this is common in the terrain

generations with many of the tests producing identical output at higher chunk sizes), the

1-to-1 weighting of the algorithm means that even in a successful generation flat surfaces

or empty generations of “air” are common.

These are all issues because from a player perspective, they render the algorithm un-

usable. As a player, attempting to precisely calculate the bounds of inputs and outputs

without knowing the under-laying code, and being faced with empty generations as a “suc-

cessful” result would be frustrating and deter the player from attempting such a thing.

From a game designers perspective, this is not so much of an issue. There are existing

implementations of WFC that use pre-defined input sets that make it much easier for

outputs to be generated consistently. In this way, it would function more like an existing

PCG algorithm, taking pre-existing content and combining it into new patterns.

Another problem is the time that the algorithm takes to run (even on simple tasks). In

cases that are not at all uncommon—Stone House on Complex Grass Terrain for example—

that is often a starter house for players. With a success rate of 0%, having to wait upwards

of 3072 ms for each generation to take place where it may or may not generate content to
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perform a copy and paste operation (in the case of matching size input and output) will not

be worth it to the player. In the case where the input and output sizes are not matching,

the player is faced with an even longer run-time, and an even less chance of success. This

time scales exponentially with the size of the input. Additionally, while the algorithm is

processing the Minecraft engine is unable to process commands and other world events,

preventing the player from exploring the world or crafting (the two main game loops of

Minecraft).

From a game designers perspective, the problem of time is less of an issue. While it

is undesirable to have an inefficient algorithm, the generative step in Minecraft that this

would be most commonly used in takes place in parallel to many other steps (referring to

the spawning of village centers or overhauling terrain after the original height-mapping).

The algorithm would still be limited however, as while exploring the world, players are

like to encounter villages. When this happens, the algorithm would have to be run again

in order to find valid output, putting strain on the game and potentially slowing down or

crashing the clients of the players.

In general, the test runs of chunk sizes of 3 takes less time than the chunk sizes of 2.

This does make sense, as the output grids are divided into slightly smaller chunks which

requires less time to iterate over. The more expansive the original test (to accommodate for

larger structures or larger chunks of terrain) leads to drastically increased times (observe

the difference in milliseconds between the stone hovel and the stone house when generating

on flat terrain: 17 ms for the stone hovel compared to greater than 234000 ms for the stone

house). This increase in time is immense, and renders repeat testing of the stone house

impractical.

The drawbacks of the current algorithm in both time and precision render WFC not

preferable for a PCG method within Minecraft.
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5.1 Limitations

One of the many problems that this algorithm faced was the usage of the algorithm inside

of Minecraft. Problems such as crashing when generating content, the render engine failing,

and the client being unable to respond to other input while the algorithm was running lead to

difficulties in testing, and output causing crashes that would remove the generated content.

Additionally, the nature of Minecraft means that while the algorithm is running, the game

will not process additional input. The world will not load outside of the players viewpoint,

and they will be unable to craft or mine blocks without significant errors occurring after

the algorithm finishes. These issues combined with the long run times of the algorithm

in it’s present state mean that Minecraft itself poses several issues to the success of the

algorithm. These issues are solvable in the context of other mods, but in the basic form of

the algorithm pose difficulties.

Another limitation that exists is running out of client memory. Two of the larger tests

that represent more realistic conditions in which the algorithm would be forced to run under

were unable to complete a run due to running out of client memory. These two tests were

repeated on a different computer, where it was able to complete a run after 594,000 ms

with 16 Gb of memory allocated to Minecraft. These results were not included originally

because any modification to Minecraft should not be using upwards of 16 Gb of memory

to complete the task, as many computers only feature that much memory for the entirety

of the computer. As such, the use of Java objects within the algorithm would have to be

changed, or a method of writing to and from a file implemented in order to overcome the

memory restriction. This might also have the added benefit of preventing crashing during

generation of valid outputs as the render thread is allowed time to process.

One last large limitation to this approach is the amount of data needed to achieve varied
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content. If a user wants to have output with a single structure on 3 types of terrain (sand

blocks, grass blocks, and stone blocks), they will need to find or create instances of that

structure on all 3 terrains in order for the output to contain them. Some solutions to this

might be aggregating the input adjacencies, the amount of input needing to be created by

a user is immense, essentially demanding each potential input to be constructed prior to

the algorithm running.

5.2 Ethical Considerations

This algorithm, as it does take content that has been built inside of the game, poses some

interesting ethical questions. Given that a user takes content built inside of the game to

make the algorithm function, can the output be considered theirs? Does the generated

content belong to the designers of the whatever algorithm is used. In previous methods

of PCG, the content that is being selected from typically exists as property of the game

designer (or whoever owns the intellectual rights to the game it exists as a part of). However,

here the content could be created by the user inside of a game, or by another user separate

from the one initiating the generation. There is not an answer to this question in this paper,

but the implications of such a discussion are worth exploring.



Chapter 6

Future Work

Despite the most base form of WFC not working as an effective PCG tool, there are several

possibilities for improving the algorithm. These include a variety of pre-processing methods

designed to isolate the content, layer the generation so that WFC is used in segments of the

total product and other PCG methods are used elsewhere, and modifying the algorithm to

accommodate for errors seen in generation.

Work that could be done directly on the algorithm includes modifying how the chunk

size is determined. Currently, the chunk size is a constant value that the user has to change,

however expecting a player to understand which chunk size would work best for their output

is unfeasible. Therefore a solution to how chunk size is determined is a necessity, as the

larger the chunks are the faster the algorithm is able to run over consistently larger outputs.

Addressing pre-processing methods, these are the most likely to have a significant impact

at improving the algorithm for use inside of Minecraft. Some examples of pre-processing

methods are to refine the chunks as the user is inputting them so that they better represent

the desired output. Grouping together chunks of similar content so that more cohesive

content is generated, adjusting the weight of chunks so that “air” is not the predominant
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output in larger sets are examples of methods that can be used to tailor the inputs so that

the output is more definite and regular (generates more frequently).

Another method that is a pre-processing method is the layered or delayed generation

of content during the WFC algorithm. For structures or villages, this can involve only

applying the WFC algorithm to buildings, and letting other methods of PCG develop the

layout of roads and other features in the city. One of those methods of PCG could be WFC,

applying the algorithm in multiple passes instead of trying to generate all the features in

one go. This could also be applied to terrain, generating it in multiple layers of the WFC

run to produce different aspects of the structure or village. However, reducing the amount

of content that needs to be generated by WFC, or tailoring the specifics of WFC and not

relying on it being a be-all-end-all algorithm would improve it’s effectiveness as a method

of PCG.

One of the more frequent issues seen in the results was the generation of flat pieces of

land caused by the prevalence of those chunks inside of the input. Because of the preferential

selection of chunks with higher weights, and the higher frequency of those chunks, often the

output would not mimic the input. A potential solution to this would be something similar

to the constraints placed upon the algorithm discussed in Sandhu and Arunpreet et. al [19],

modifying or augmenting the weights during the generation based on previous data.

Additionally to modifying the approach of the algorithm, additional steps can be taken

to optimize the memory management of the Java Engine and the Minecraft Engine. Among

these steps is manual reallocation of the heap and stack in the Java Engine to prevent from

large objects crashing the heap due to size requirements, offloading the processing of the

collapse steps to another program to reduce strain on the Minecraft Engine and enabling

it to continue running the game, modifying the repetition of the algorithm to attempt to

generate successful outputs, or finding an alternative method of rendering the final result
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to not overload the render thread of Minecraft.

Of the above solutions, offloading the collapse stage and finding an alternative form of

rendering the final result are most likely the easiest. In the GDMC competition, an option

for submission involves an HTTPS client that passes information reliably to the server [9],

which allows the Minecraft Engine to automatically determine in what order the blocks

should be rendered to avoid crashing. While the version of the Fabric toolchain used in this

implementation is incompatible with the HTTPS client, it could be easily updated to the

most modern release to accommodate. Additionally, this can be combined with offloading

the collapse stage to another language after the initial block integer mapping is setup in

order to allow Minecraft to continue playing whilst the outside language collapses the map

and either sends it to the HTTPS client or back to the game for rendering. In either

case, these solutions could reduce the amount of demand on the Minecraft client to reduce

crashing and run times in the hope of increase success rates.



Chapter 7

Conclusion

Overall, the WFC algorithm as a PCG tool inside of Minecraft in is most basic form is

not suited for effective content generation based off of user input. It faces many flaws as a

result of the engine itself, as well as suffers from time complexity and precision issues that

players of the game will not want to endure while they are exploring this algorithm.

Despite these limitations and ineffectiveness concerning content generation, WFC is still

a promising PCG tool that has potential to be further developed and improved. Optimizing

the algorithm for use in Minecraft’s engine, or developing other ways to include WFC as part

of larger-scale PCG algorithms, or as a multi-step process could develop better methods of

PCG using WFC that do not suffer form the same drawbacks as this initial implementation.

The integration of WFC into dual-faceted terrain and structure/village generation could

improve the game experience for players from the perspective of a game developer.

Overall, PCG is a developing field that is an exciting area of research, enabling bounding

leaps in the game development industry. Further development of WFC as a PCG algorithm

may lead to dynamic, engaging content that is immersive for the players. As such, it is an

area that warrants continued attention and investigation to determine the full potential of
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the algorithm, in the context of a tool for game developers and a tool for players to create

new content to be explored.
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Chapter 8

Appendix

Figure 8.1: “Flat stone terrain test input” Minecraft, 2009. Gabriel Manners
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Figure 8.2: “Varied stone terrain test input” Minecraft, 2009. Gabriel Manners

Figure 8.3: “Complex stone terrain test input” Minecraft, 2009. Gabriel Manners
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Figure 8.4: “Flat grass terrain test input” Minecraft, 2009. Gabriel Manners

Figure 8.5: “Varied grass terrain test input” Minecraft, 2009. Gabriel Manners
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Figure 8.6: “Complex grass terrain test input” Minecraft, 2009. Gabriel Manners

Figure 8.7: “Stone hovel structure test input” Minecraft, 2009. Gabriel Manners
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Figure 8.8: “Stone house structure test input” Minecraft, 2009. Gabriel Manners

Figure 8.9: “Wooden hovel structure test input” Minecraft, 2009. Gabriel Manners

Figure 8.10: “Wooden house structure test input” Minecraft, 2009. Gabriel Manners
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Figure 8.11: “Stone Czech Hedgehog test input” Minecraft, 2009. Gabriel Manners
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Figure 8.12: “Striations test input” Minecraft, 2009. Gabriel Manners
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Figure 8.13: “Wooden pillars few test input” Minecraft, 2009. Gabriel Manners

Figure 8.14: “Wooden pillars many test input” Minecraft, 2009. Gabriel Manners
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Figure 8.15: “Stone hovel on varied grass test input” Minecraft, 2009. Gabriel Manners

Figure 8.16: “Stone house on varied grass test input” Minecraft, 2009. Gabriel Manners
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Figure 8.17: “Stone hovel on complex grass test input” Minecraft, 2009. Gabriel Manners

Figure 8.18: “Stone house on complex grass test input” Minecraft, 2009. Gabriel Manners
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Figure 8.19: “Wooden hovel on varied grass test input” Minecraft, 2009. Gabriel Manners

Figure 8.20: “Wooden house on varied grass test input” Minecraft, 2009. Gabriel Manners
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Figure 8.21: “Wooden hovel on complex grass test input” Minecraft, 2009. Gabriel Manners

Figure 8.22: “Wooden house on complex grass test input” Minecraft, 2009. Gabriel Manners
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