
Trinity University Trinity University

Digital Commons @ Trinity Digital Commons @ Trinity

Computer Science Honors Theses Computer Science Department

5-2023

Jonathan’s Rust Adventures and the Quest for the Numerically Jonathan’s Rust Adventures and the Quest for the Numerically

Stable Soft-Sphere Integrator Stable Soft-Sphere Integrator

Jonathan Pascal Rotter
Trinity University, jonathan.p.rotter@gmail.com

Follow this and additional works at: https://digitalcommons.trinity.edu/compsci_honors

Recommended Citation Recommended Citation
Rotter, Jonathan Pascal, "Jonathan’s Rust Adventures and the Quest for the Numerically Stable Soft-
Sphere Integrator" (2023). Computer Science Honors Theses. 70.
https://digitalcommons.trinity.edu/compsci_honors/70

This Thesis open access is brought to you for free and open access by the Computer Science Department at Digital
Commons @ Trinity. It has been accepted for inclusion in Computer Science Honors Theses by an authorized
administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/compsci_honors
https://digitalcommons.trinity.edu/compsci
https://digitalcommons.trinity.edu/compsci_honors?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/compsci_honors/70?utm_source=digitalcommons.trinity.edu%2Fcompsci_honors%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

Jonathan’s Rust Adventures and the Quest for the

Numerically Stable Soft-Sphere Integrator

Jonathan Pascal Rotter

Abstract

In this thesis I will implement a numerically stable soft-sphere collision model using Hooke’s

Law as the restoring force. This model allows choosing a desired coefficient of restitution

and maximum penetration depth in order to generate appropriate values for the spring

constant and damping. Then I will explore the applicability of various languages to the

field of kD-tree based N-body simulations, concluding that Rust is competitive in both the

time and memory usage to C/C++, which are the languages traditionally used for high-

performance applications. Additionally, I found that the usage of higher-level languages like

Java come at significant time or memory usage costs, making them of little value in the field

of large astrophysics simulations. Lastly, as soft-sphere simulations require much smaller

time steps for integration compared to hard-spheres, I implemented and benchmarked a

priority-queue based adaptive time step system to only take the small time steps when

needed. The benchmarks showed a significant speedup compared soft-sphere simulations

without this adaptive time step method at roughly 8x faster. In direct particle-particle

testing, the adaptive time step showed that with as little as 15 steps during a collision,

which the adaptive time step method allows me to set, stable collision handling can be

achieved across a spectrum of impact speeds and particle size ratios.

Acknowledgments

I’d like to thank my advisor Dr. Lewis for his major contribution to and guidance

in this endeavour. I’d also like to thank the Trinity University department of Computer

Science for funding the trip to the 2022 International Conference on Computational Science

and Computational Intelligence to present the paper on kD-tree performance in various

languages. Additionally I’d like to thank the other committee members, Dr. Fogarty and

Dr. Mehta, for their insightful feedback.

Jonathan’s Rust Adventures and the Quest for the Numerically Stable
Soft-Sphere Integrator

Jonathan Pascal Rotter

A departmental senior thesis submitted to the
Department of Computer Science at Trinity University
in partial fulfillment of the requirements for graduation

with departmental honors.

April 14, 2023

Thesis Advisor Department Chair

Associate Vice President
for

Academic Affairs

Student Copyright Declaration: the author has selected the following copyright provision:

[X] This thesis is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs Li-
cense, which allows some noncommercial copying and distribution of the thesis, given proper attri-
bution. To view a copy of this license, visit http://creativecommons.org/licenses/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

[] This thesis is protected under the provisions of U.S. Code Title 17. Any copying of this work
other than “fair use” (17 USC 107) is prohibited without the copyright holder’s permission.

[] Other:

Distribution options for digital thesis:

[X] Open Access (full-text discoverable via search engines)

[] Restricted to campus viewing only (allow access only on the Trinity University campus via
digitalcommons.trinity.edu)

Jonathan’s Rust Adventures and

the Quest for the Numerically

Stable Soft-Sphere Integrator

Jonathan Pascal Rotter

Contents

1 Background and Introduction 1

2 Soft Sphere Collisions 4

2.1 Approach . 4

2.1.1 Rotter . 6

2.1.2 Lewis . 7

2.1.3 Schwartz . 8

2.2 Numerical Approach . 9

2.3 Results . 13

2.4 Summary . 17

3 N-Body Performance with a kD-Tree: Comparing Rust to Other Lan-

guages 19

3.1 Introduction . 19

3.2 Approach . 20

3.2.1 Language Selection . 21

3.2.2 You can write Fortran in any language 22

3.2.3 Benchmarking setup . 23

3.3 Results . 23

3.3.1 Memory Usage . 24

3.3.2 Scaling . 28

3.3.3 Python is Horribly Slow . 29

3.3.4 PyPy to the Rescue? . 31

3.3.5 Performance Where it Matters . 32

3.4 Summary . 32

4 Adaptive Time-steps and Priority Queues 33

4.1 Introduction . 33

4.2 Approach . 36

4.2.1 Algorithm . 36

4.2.2 Initial Priority Queue Validation . 38

4.2.3 Full Simulation Performance Benchmarking 39

4.3 Results . 40

4.3.1 Initial Priority Queue Validation . 40

4.3.2 Full Simulation Performance Benchmarking 42

4.4 Summary . 43

5 Conclusion 46

A Code 50

List of Tables

3.1 Intel Xeon Timing Results (secs) . 23

3.2 Resident Memory Usage in MB . 26

4.1 All measurements are in seconds. The A & B refers to the particles scaled

density setting, as particles in Saturn’s A ring are almost twice as dense as

those in the B ring in the scaled units used. They are the same density in

terms of g/cm3, but the scaled coordinates also capture the effect of tidal

forces, so A-ring particles clump more than B-ring particles. The 1M run

without the priority queue for A-ring particles couldn’t be tested due to time

constraints as the runs are so long. 43

List of Figures

2.1 Plot showing the values of ϵ and δr vs. distanced traveled during the first

time step of a run. The left side shows ϵ for the data set while the right

shows δr for the data set. The colors on the left side show δr while the colors

on the right show ϵ. 13

2.2 Key for figure 2.3 and 2.4 . 14

2.3 This plot shows the results of simulations in a way that enables comparing

the different approaches to calculating k and c. Each “triangle“ of dots shows

variations in particle size while different sized dots were used for the method

of calculating k and c. See figure 2.2 for details on the triangle and colors.

Each dot is three differently sized dots on top of each other, the biggest

being Schwartz et. al. derivation, the middle one the Lewis derivation and

the smallest dot is the Rotter derivation. 15

2.4 This plot shows simulations results in a way that enables comparing the

usefulness of a blend functions. Each “triangle” of dots shows variations in

particle size while different sized dots were used for blending with a sigmoid

(small) and no blending (large). See figure 2.2 for details on the triangle and

colors. 17

3.1 A simulation with 10,000 particles and the kD-tree partitioning of the space

after 90 time steps. 21

3.2 Execution times as a multiple of the standard Rust execution time for that

simulation size, simulation size being the number of particles in the simulation. 25

3.3 Execution time scaling with particle count. Each bar measures how well a

language scales compared to itself, e.g. the 100k/10k for C++ shows that

C++ took 18x longer for 100k particles than 10k particles. 29

3.4 Execution times as a multiple of the Rust execution time for that simulation

size including Python. 30

4.1 The coefficient of restitution is plotted on the left, and the maximum penetra-

tion depth on the right. For each side, the colors indicate the other variable.

The desired step count in a collision, used to compute the adaptive time

step is the x-axis. Within one bunch of particles, left-to-right represents an

increase in the ratio of radii of the pair of particles colliding, the leftest being

1:1, 3:1, and finally 10:1 on the right. The size of a data point represents

impact velocity . 41

4.2 The coefficient of restitution is plotted on the left, and the maximum penetra-

tion depth on the right. For each side, the colors indicate the other variable.

The impact velocity is on the x-axis. Within one bunch of particles, left-to-

right represents an increase in the desired collision steps. 42

4.3 Execution times as a multiple of the priority queue version of that particle

count and density. 44

Chapter 1

Background and Introduction

N-body simulations have been part of the field of planetary ring dynamics since the late

1980s [3, 27]. Early models of planetary rings used descriptions from thermodynamics

and statistical mechanics. However, the Voyager showed that there is structure in nearly all

visible scales in Saturn’s rings, which highlighted that equilibrium models cannot accurately

describe the full dynamics of Saturn’s rings. Since computers are limited in computational

power, particle simulations as early as the numerical models by Wisdom and Tremaine [27]

make use of periodic “sliding-brick“ boundary conditions, so that one area in the rings

can be simulated accurately without having to simulate the entire ring. Their method has

become the standard approach for local cells. Their approach also modeled the particles as

hard-spheres that bounced off each other in discrete events that were processed sequentially.

This hard-sphere model with discrete collisions has been used by many following re-

searchers in other simulation codes [23, 15]. Another method, the soft-sphere model, has

also seen extensive use by Salo [25]. Instead of discrete events, particles are allowed to

overlap and are pushed apart by a restoring force. The benefit of the soft-sphere model

is that it allows exploring high density ring systems as particles stacked and rolling over

1

2

each other isn’t feasible in hard-sphere codes as the number of collisions to process becomes

simply too large. Thus this model also finds use also in granular flow as there the particles

are often densely packed. The restoring force is modeled as a Hook’s Law spring force, so

that the restoring force is proportional to the overlap distance. As rubble-pile asteroids are

also made of packed spheres, this soft-sphere model has made its way into the PKDGRAV

package [26]. See [24] for a review of the basic math behind both hard- and soft-sphere

collisions in planetary rings.

In this thesis, I will describe my efforts making stable soft-sphere simulations. Addi-

tionally, this work is part of an modernization effort to re-implement Dr. Lewis’ existing

C++ ring simulations in Rust [10]. The reason why Rust was picked for these simulations

is that it makes use of an ownership model to guarantee both memory and thread safety

at compile time without a garbage collector [16]. Thus, it should facilitate making more

robust code than C++ but without the performance penalty incurred by many higher-level

languages like Java that make use of a garbage collector or reference counting.

The work is divided roughly into three projects. First, I will attempt to find a derivation

for the spring and damping constant in Hooke’s Law that result in numerically stable soft-

sphere collisions. Secondly, as part of the move from C++ to Rust, I wanted to ensure

that Rust is competitive in both memory and time usage compared to C++ as a penalty in

either department would lower the maximum simulation size and duration that is feasible

compared to C++. Lastly, I attempt to scale up the testing simulation into a full ring

simulation with sliding brick boundary conditions and the Hills Force. As only the particles

in one cell in the rings are simulated, the central body isn’t actually a particle in the

simulation. Rather, the simulation cell, i.e. the reference frame is rotating around the

central body. To make the particles behave like they’re orbiting a central mass, the Hills

Force is added which is a linearized solution to the gravity the particles would feel from the

3

central mass in such a rotating reference frame like this simulation setup. I also attempt

to address one of the major downsides of a soft-sphere simulation, and that is that a

much smaller time step is required in order to keep the simulation numerically stable. A

collision between two particles happens in a dozen or more steps in the soft-sphere model,

and if a collision occurs only over a few time steps, the integration of the forces will be

flawed resulting in nonphysical things such as a drastic increase of kinetic energy, leading to

particles “blowing up” in the simulation. As such, I introduce a priority queue to process

nearby particles in small, adaptive time steps, so that faster moving particles can get the

small time steps they need without slowing down the whole simulation.

Chapter 2

Soft Sphere Collisions

In this chapter I attempt to derive an approach to soft-sphere collisions that allows choosing

a desired coefficient of restitution (the ratio of exit vs entry velocity), and ensures that

particles do not overlap too much, as that would be nonphysical. I will also compare the

derivations to those of Schwartz et. al. [26], which looked at soft-sphere granular flow. This

work was originally published in [7].

2.1 Approach

Various parameters need to be set when modeling soft-sphere collisions. The spring force

which I use to simulate the interactions between two colliding bodies are governed by k,

the spring constant, and c, the damping constant for kinetic friction. These are chosen

such that the bodies do not overlap by more than 10% as that would be non-physical since

the overlapping in the simulation represents deformation. I represent the overlap using δ.

The other constraint is the coefficient of restitution, ϵ, such that vf = ϵvi, where vf is

the relative speed after the collision and vi before. In hard-sphere models, matching this

4

5

constraint is easy as collisions are discrete events and so the simulation has direct control

of the velocity of the particles before and after. Often ϵ is even velocity dependent in

hard-sphere simulations. In soft-sphere collisions, the coefficient of restitution is a product

of the many time steps during which a collision occurs. In planetary ring simulations,

experimentally derived coefficients for ultra-cold ices from [4] and [5] are most commonly

used. Though recreating these experimental values is preferred, in practice soft-sphere

simulations ause a constant value, ϵ ≈ 0.5.

Since the collision is driven by k and c, I need to derive values that would produce

the desired values for ϵ and δ. Since we treat the restoring force as a damped harmonic

oscillator, the motion over half a cycle is simply

x = −e−γtA sinωlt (2.1)

where x is the overlap between the particles, i.e. the distance between their centers

minus the sum of the two radii.

γ =
c

2m

ωl =
√
ω2
0 − γ2

ω0 =

√
k

m

From here, there are multiple derivations of k and c depending on which assumptions

were made.

Let δr be the penetration depth, which models the deformation of the soft spheres. We

want to aim for δr to be 2% of the radius, and it should definitely be less than 10% of the

6

radius as such a large deformation would be physically unrealistic.

Let vi be the impact speed, vf be the exit speed and the coefficient of restitution be

ϵ =
vf
vi

(2.2)

2.1.1 Rotter

This is my derivation for k and c and it goes as follows. To derive k and c, I must find

the first minimum of equation 2.1 which can be computed by solving for when ẋ = 0. This

occurs at ωlt = arctan
(
ωl
γ

)
.

The assumption I make is that ωl >> γ and so ωl
γ is large and arctan

(
ωl
γ

)
≈ π

2 . In

other words, I assume that the introduction of damping does not significantly move the t

value of the minimums and maximums and so t ≈ π
2ωl

. My x value is the penetration depth

δr so δr = −Ae
− γπ

2ωl at the minimum.

To find A, I take the first derivation at t = 0, the time of impact, to get vi = v(0) = −Aωl

so A = −vi
ωl

. I can plug this into the equation for the penetration depth to get

δr =
vi
ωl

e
− γπ

2ωl (2.3)

The desired penetration depth is a known number, 2% of the radius, and I can estimate

the impact velocity and so only ωl and γ are unknowns here.

To obtain a second equation so that I can solve for the two unknowns, I look to the co-

efficient of restitution, ϵ. The energy of a damped harmonic oscillator is E(t) = 1
2kA

2e−2γt,

and if I plug in t = 0 and t = π
ωl

for the beginning and end of the collision, respectively,

I find that the ratio of Einitial and Efinal is e
− 2γπ

ωl . E = K + Uspring, but at t = 0 and

t = π
ωl
, x = 0 and so Uspring = 0. Thus the energy ratio is also the ratio of kinetic energy.

7

Kf

Ki
=

1
2
mv2f

1
2
mv2i

=
v2f
v2i
.

vf
vi

= ϵ = e
− γπ

ωl (2.4)

Combining equations 2.3 and 2.4, I can solve for γ and ωl, and from there k and c can

be determined as γ = c
2m and ω2

0 − γ2 = ω2
l and ω2

0 = k
m .

k = m
(vi
δr

)2 ϵ
(
(ln ϵ)2 + π2

)
π2

(2.5)

c = 2 ln ϵ

√
kµ

π2 + (ln ϵ)2
(2.6)

Here, µ is the reduced mass of the two particles, ϵ the desired coefficient of restitution

and δr the desired penetration depth. The derived equation for c agrees with the one

presented by Schwartz et al. for drag in the normal direction, but the k I determined is

slightly different.

2.1.2 Lewis

This is the derivation for k and c of Dr. Lewis. Like mine, it assumes that ωl >> γ and so

the first minimum is at t ≈ π
2ωl

. However, it adds the approximation that ωl ≈ ω0, which

is true if γ << ω0. So A = −vi
ω0

instead of −vi
ωl

and the time at which the collision ends is

tf = π
ω0

and the maximum penetration is at time tmax = π
2ω0

. The derivations from 2.1.1

can mostly be reused with a few replacements of ωl with ω0, resulting in

k = m
(vi
δr

)2
(2.7)

8

c =
2µω0 ln ϵ

π
= 2 ln ϵ

√
kµ

π
(2.8)

These equations are mostly simplified versions of equations 2.5 and 2.6 and interestingly,

equations 2.5 and 2.7 only vary by a constant factor of ≈ 0.52 (for ϵ = 0.5). The ln(ϵ)2

term missing from this derivation of c is approximately 0.48 (for ϵ = 0.5).

2.1.3 Schwartz

Schwartz et al. presented their own derivations in their paper, which I will summarize

here since all three of these derivations are being compared to each other. Schartz et al.

also considered glancing collisions, but for this we only consider head on collisions, i.e.

movement along the normal axis of the spheres (Equations 4 & 15) and tangental forces

will be ignored. The notation is adjusted to make it consistent with the previously setup

notation. Thus the equations are

k = m

(
vimax

δr

)2

(2.9)

c = 2 ln ϵ

√
kµ

π2 + (ln ϵ)2
(2.10)

where vimax is the maximum expected impact velocity, rather than the impact velocity of

the current collision. As previously mentioned, their equation for c matches my derivation

and their equation for k is similar to Dr. Lewis’.

9

2.2 Numerical Approach

Since during a collision a particle’s velocity drastically changes in a few time steps, keeping

these collisions numerically stable is a challenge. While gravitational forces usually change

very gradually, 1/x2 for large x, the spring force is linear with respect to the position. If the

integrator cannot resolve a collision well, collisions become nonphysical and particles leave

with much higher energies than they came with. The most straightforward solution to the

problem is to use smaller time steps, however, this increases computation time with wall

clock time being inversely proportional to the size of a time step. Another approach is to

use a higher-order integrator, but these often have to store partial steps in memory and/or

do multiple passes over the system to calculate intermediate forces. As large astronomical

simulations are often constrained in memory and time, the overhead of higher-order inte-

grators make them sub-optimal and so I want to find a numerically stable approach with a

maximum time step and minimal memory overhead.

Two integrators were implemented for numerical testing, a 2nd-order leap frog as de-

scribed in [26] and a 4th-order integrator that makes use of jerk, the derivative of accel-

eration, in addition to acceleration [6]. As acceleration changes quickly during a collision,

jerk should add context on how acceleration acts around the current time step. A common

problem in soft sphere collisions is if two particles move too much within one time step,

effectively going from barely touching to having significant overlap, the resulting spring

force will explosively separate the particles and the chances of properly resolving this colli-

sion are slim. Higher order integrators like Runga-Kutta could help with better resolving

collisions, but they require significant memory overhead to store intermediate steps and the

integrators also require calculating forces in intermediate steps, and as such don’t mesh

well with the memory constraints of large simulations, making them a bad candidate for

10

planetary ring simulations. The modified leapfrog integrator that makes use of jerk[6] does

have some memory overhead for handling jerk and correcting for it, but it does not add

additional particle traversals.

Since the force is a piecewise function, i.e. gravitational force when the particles are apart

and the linear restoring spring force when overlapping, I experimented with a smoothing

function to transition the force between the two sides. As the piecewise nature creates

a discontinuity in the force and thus acceleration, the smoothing function might help the

integrator better resolve the transition. Additionally, the jerk as a derivative of acceleration

can’t be influenced by points beyond the discontinuity, which smoothing should also assist

with. To test the hypothesis that smoothing leads to better collision resolution, tests were

run with both the smoothing function and also without, leaving the discontinuity in place.

As a smoothing function, a sigmoid was used with various widths tested.

The test is setup by making two particles close to each other (usually that the initial

separation is a tenth of the sum of the radius) and the velocity is set such that they are

heading towards each other. The parameters are set to resemble common planetary ring

simulations as the end goal is the integration of soft sphere into these simulations.

As such, the unit of mass is the mass of the central body (usually Saturn), the unit

length is the semimajor axis of the orbit (usually 100,000km), and the unit time is one orbit

divided by 2π. This unit system results in G, Newton’s gravitational constant, being one.

The parameters varied and tested are:

• time step: 0.006, 0.003, 0.001, 0.0003, 0.0001

• desired impact speed: 1e-8, 1e-7, 3e-7, 1e-6, 3e-6

• sigmoid width modifier: 0.1, 0.03, 0.01

11

• radii: 1e-7, 3e-8, 1e-8

• all three k & c derivations

• the two integrators

• with the sigmoid smoothing function and without

The impact speed being d
dt |x⃗i − x⃗j | where x⃗i, x⃗j are the positions of the particles in the

simulation.

The radii of the second particle was tested with all sizes of radii that are the same or

smaller than the first particle’s radii. The sigmoid width modifier is used to adjust how

far the smoothing function reaches (i.e. the size of the transition area between gravity to

restoring spring force) using the following formula:

σ

(
4

width modifier×min(radii)
δr

)

where σ is the sigmoid function:

σ(x) =
1

1 + e−x

To prevent floating point errors from exponentiation of large numbers, if |x| ≥ 100, the

implementation of the sigmoid function returns the approached value, i.e. zero for large

negative numbers and one for large positive numbers.

The testing setup is along the x-axis, with the two particles being placed at x =

−1.0000005 × r0 and x = 1.0000005 × r1, respectively. As such, they are not colliding

at the beginning but very close to it and the collisions are effectively 1D. This is done to

maximize the control over the velocity at impact as gravity will speed them up as they

approach each other. The setup is symmetrical with respect to velocity, so each particle’s

12

velocity is half of the desired impact velocity and they are headed toward each other such

that the relative velocity between them is the impact velocity.

To gather test results, the position of the particle is recorded at every time step. The

first time step when they overlap, i.e. the distance between them is less than the sum of

their radii, the relative velocity is recorded as the velocity at impact. This will be slightly

different than the starting velocity due to gravity and the effects of the smoothing function.

Then, once a time step is reached at which the particles are no longer overlapping, the

relative velocity is recorded again, this time as the exit velocity. The test is concluded

after one collision completes between the particles. Another measurement is the maximum

penetration depth, which is checked every time step by finding the largest overlap seen

during the collision. The coefficient of restitution is computed from the impact and exit

velocities, and the maximum penetration depth percentage is computed per particle as

the particles may not have the same radii. The number of steps the collision took is also

recorded.

Since there are so many variables, tests are automatically checked for non-physical

results and are marked as successful or failed depending on the checks. One check is that

the particles may not pass through each other, i.e. the centers of gravity may not pass each

other. Other checks consist of testing for if the particles are stuck to each other as damping

does slow them down during the collision, testing if they move apart before colliding, testing

if the velocity is non-finite, and testing if they did not complete the collision in the given

time frame.

13

Figure 2.1: Plot showing the values of ϵ and δr vs. distanced traveled during the first time
step of a run. The left side shows ϵ for the data set while the right shows δr for the data
set. The colors on the left side show δr while the colors on the right show ϵ.

2.3 Results

A summary of the almost 5000 simulations run can be seen in figure 2.1. The x-axis is

the distance covered in the first time step, which is the initial velocity times the time step.

This is significant as the more distance covered by a step, the more challenging resolving

the collision is going to be. On the left side the particles are plotted against the measured

values of ϵ, the coefficient of restitution, and on the right they are plotted against the

penetration depth percentage. For each side, the color indicates the value of the other

variable. The gradient for both are set-up in such a way that green, blue, and magenta are

mostly acceptable while yellow to red are not. Since the range of the radii of the particles

are 10−8 to 10−7, simulations where the distance covered in one time step is greater than

14

10−9 have a very low chance of producing the desired penetration depth as with such large

step sizes, a single step is a significant percentage of the radius of the particle.

Simulations that failed the checks for non-physical behavior are not shown on this plot.

Additionally, only runs using the 4th order integrator and the Rotter derivation for k and

c are shown here. One point of concern in the data shown is that even on the left side,

where steps are small and so the simulations should be resolvable by the integrator, there

are some red data points, representing misbehaving collisions.

Another note on the plot is that many collisions have extremely low coefficients of

restitution, indicating that many particles are sticking or almost sticking together after a

collision. This is partly expected in ring simulations as some particles will end up resting on

each other, but since the aim is to have controlled collisions with an ϵ = 0.5 when calculating

k and c, this does represent an area of further research on why this is happening.

Figure 2.2: Key for figure 2.3 and 2.4

Figure 2.3 and figure 2.4 is another summary of the results, this time in a way to see

which settings worked and which didn’t since this work is focused on identifying methods

that are numerically stable. The left panel represents the 2nd-order integrator and the

right panel is for the 4th order integrator in both plots. Both axes are log10 scale due to

the test parameters scaling in orders of magnitude. The cluster of dots represents all the

combinations of the radii we tested, 10−7, 3 · 10−8, 10−8. Note that each cluster used the

15

Figure 2.3: This plot shows the results of simulations in a way that enables comparing the
different approaches to calculating k and c. Each “triangle“ of dots shows variations in
particle size while different sized dots were used for the method of calculating k and c. See
figure 2.2 for details on the triangle and colors. Each dot is three differently sized dots on
top of each other, the biggest being Schwartz et. al. derivation, the middle one the Lewis
derivation and the smallest dot is the Rotter derivation.

same initial velocity and same time step. In one cluster, the bottom left corner is for the

smallest radii, 10−8 and 10−8, and the top right corner is for largest radii, 10−7 and 10−7.

The diagonal thus is where the particles have the same size, and the bottom right three

dots are the combinations of different radii sizes, with the very bottom right corner being

the collision of 10−7 and 10−8.

The coloration indicates whether the measured ϵ and δr are acceptable. Red indicates

that ϵ > 0.6, and blue that δr > 10% of the particle’s radii. If both are reasonable, the

dot is black and if both are unacceptable, the dot is magenta. For figure 2.3, each dot is

also composed of three superimposed circles of increasing size, each indicating one k and

16

c derivation. Schwartz et al is the largest, the Lewis derivation the middle one, and the

Rotter derivation is the smallest. If one derivation succeeded while another didn’t, a donut

can be seen. However, most of the time all methods succeed or fail which corresponds to the

fact that the derivations are quite similar as discussed in 2.1. In the case of figure 2.4, the

small circle represents no blending and the large circle blending with a sigmoid function.

As seen in the two plots, figures 2.3 and 2.4, the bottom right corner representing the

mismatched particle radii simulations are the most difficult to resolve. The bottom right

corner is missing the most in the plot and is often also marked red. Missing data points

means that those simulations were not numerically stable and failed the aforementioned

automatic checks. This is an issue for applicability to numerical ring simulations as objects

often have a large size distribution. For the hopper experiments, particles are uniform

or roughly uniform [26]. Some ring simulations also feature moonlets, which means the

integrator has to contend with differences in radii on the order of 100x or 1000x between

background particles and moonlets. The instability given a 10x difference of radius seen in

these results suggest that more work is needed before soft sphere collisions can be used in

large scale simulations, especially those with moonlets.

For figure 2.4, the most noteworthy result is that the addition of a blending function

doesn’t change the output. Scaling the width of the blending function also didn’t have a

big effect. As the simulations succeeded or failed the same with and without the blending

function, the use of a blending function seems to not be worth it as it introduces complexity

to the simulations.

Another note is that when aiming for various values for ϵ, the numerically measured value

for the coefficient of restitution does roughly match the ϵ value put into the code. Plots like

figure 2.1 stay mostly the same except for the shift in ϵ values measured. However, lower

values of ϵ do seem to cause less particles to stick together, which is rather non-intuitive

17

Figure 2.4: This plot shows simulations results in a way that enables comparing the use-
fulness of a blend functions. Each “triangle” of dots shows variations in particle size while
different sized dots were used for blending with a sigmoid (small) and no blending (large).
See figure 2.2 for details on the triangle and colors.

and is a point worth researching in the future.

2.4 Summary

The two key conclusions from this exploration of numerical stability of soft sphere collisions

are one, the assumptions used when calculating k and c do make a difference. The two

derivations presented here show a better measured coefficient of restitution compared to the

derivation presented in [26]. Secondly, the use of a smoothing function between gravitational

and collision forces and the jerk-based 4th order integrator did not improve the results as

desired. Comparing the left and right frames in figures 2.3 and 2.4 shows little improvement

at all. As such, the extra complexity of the smoothing function and memory overhead of

18

computing and tracking jerk for the 4th order integrator are not worth it.

Another point is that the bottom row in figures 2.3 and 2.4, the one with the smallest

time step, was hoped to be all black circles representing good results but that did not

happen. Smaller time steps are overall better, but increase simulation times drastically and

the increase of accuracy doesn’t match the increase of time cost.

The current hard-sphere collision code used by Dr. Lewis has time steps of 2π/1000,

which is roughly the largest time step analyzed here, meaning that a switch to soft sphere

will have to come with a 10x or 100x decrease of time step used and as such a 10x or

100x increase of run time. The hard-sphere code currently uses a priority queue to handle

collisions, which I will try to translate to soft-sphere as gravity calculations are expensive

and change a lot slower than collision forces.

Another major challenge that needs to be resolved for soft sphere forcing to be viable

in planetary ring simulations is the accurate resolution of collisions between particles with

vastly different radii, up to 1000x. Many of the simulations in this analysis did poorly with

only a 10x difference in radii. Other methods have used variable time step integrators to

go around this issue [25], but this introduces issues with parallelizing the code, which is

needed for processing simulations on clusters.

Chapter 3

N-Body Performance with a

kD-Tree: Comparing Rust to

Other Languages

3.1 Introduction

With derivations to resolve soft sphere collisions in hand, it is now time to write a soft

sphere collision code base. However, this work also includes modernization of the existing

C++ ring simulation codes. As simulations can take weeks or months to run, performance

is critical. Thus I will implement a kD-tree N-body benchmark in C, C++, Rust, and a few

other languages as reference. Specifically, Go, Java, Typescript on Node.js and Python will

also be included in the benchmarks. Beside being a nice comparison to other languages,

this shows whether the effort of writing in a systems language like C/C++ and Rust is

worth it and whether Rust is competitive with C++ for the purpose of ring simulations.

19

20

This work was originally published in [8].

As mentioned above, for this benchmark I will use a kD-tree, which is a binary search

tree where every internal node represents a plane splitting the space, partitioning space.

The particles on one side of the plane will be in the left child, while those on the other

side of the plane will be in the other child. As such, nearby particles will be nearby in

the tree as well. Since gravitational forces are between every pair of particles, computing

it would be an O(n2) problem. However, the approximation taken here is that if there is

a cluster of particles far away, such that the angle made between rays going to either end

of the cluster, called the opening angle, is some small value, the cluster is approximated

as a single particle. This is where the kD-tree enters the picture as when the gravitational

forces are computed for one particle, for each node, if the opening angle is sufficiently small,

I approximate all children of the node, i.e. all particles in the area of space represented

by that node, as a single object. This makes computing the gravitational forces roughly

O(n log n), a vast improvement that allows running much larger simulations in a reasonable

amount of time.

There are benchmarks available for N-body without the kD-tree, which is O(n2) [1].

However, since the addition of the kD-tree significantly changes how the algorithm works

and involves a lot of tree traversal instead of simple iteration comparing particle-particle

pairs, the existing N-body benchmarks are not as relevant to the kD-tree simulations as it

might appear on the surface.

3.2 Approach

The simulation consists of a disk of small particles around a central body, uniformly dis-

tributed in distance from the central body. A picture of this together with the kD-tree’s

21

partitioning of the space can be seen in figure 3.1. The green dots, almost too small to see,

are the particles and the black lines represent where the kD-tree divides the space, until

there are only at most 7 particles in a leaf. All implementations and details on parameters

can be found at [12].

Figure 3.1: A simulation with 10,000 particles and the kD-tree partitioning of the space
after 90 time steps.

3.2.1 Language Selection

Since Dr. Lewis’ simulation code is written in C++, and we are looking at using Rust, these

two languages have to be benchmarked. Additionally, we also look at C, as another system

level language. Besides these, common languages from the RedMonk programming language

rating were chosen [17]. Only one language per platform was chosen, e.g. between Java,

Kotlin, and Scala, only one language is implemented as a good implementation between

these should translate into roughly the same performance (Through idiomatic code might

have differing performance, this was seen by the Scala Center [2] using the methodology from

22

[18]. Languages like Clojure which are dynamically typed on a statically typed platform

may also see different performance).

Though only one language per platform was tested, some variations in implementation

in the same language were tested. Rust got an implementation with explicit SIMD and one

without and Java an implementation in an object-oriented style and one using just arrays

of doubles. The variations in Java are intended for comparing memory layout. Arrays of

primitives are contiguous, while an array of objects only stores the pointer, so the actual

objects are scattered throughout memory.

As some languages included have weak multi-threading support (Python & JavaScript),

and the complexity of the kD-tree algorithm increases significantly when doing multi-

threading, the implementations written are all single-threaded. Especially the building

of the kD-tree does not easily lend itself easily to multi-threading, and to facilitate the

ability to port the code to many languages, simplicity was chosen over multi-threading.

The languages tested are Rust, C, C++, Go, Java, Typescript, & Python.

3.2.2 You can write Fortran in any language

To make the code easily portable, it was written in a Fortran-style, using indexing and

arrays, where the arrays live for the entire program in order to minimize-and for some

languages completely eliminate-dynamic memory allocation. These features of arrays and

indexing exist in almost every language, and so porting the code into a language mainly

constitutes an adjustment of syntax.

Additionally, the original kD-tree implementation of Dr. Lewis’s general simulation

framework in C++ is written in this style, which is what we want to compare to [13, 14].

The general simulation framework is much more advanced than what is needed here, but it

is a good sanity check for what performance I can expect from the C++ version. The Rust

23

implementation was written first and compared to the full, existing C++ version to ensure

its correctness and reasonable performance. The Rust version then became the template

for all other languages to keep implementations consistent. Even though there was a C++

codebase with a kD-tree already, for consistency the C++ version benchmarked was derived

from the Rust version.

3.2.3 Benchmarking setup

The performance tests were run on a workstation with two Intel®Xeon®E5-2680 v3 CPUs

and 64 GB of RAM. The Linux command time was used to standardize how timing data

is collected and reported. Specifically, user time was used as the tool also reports system

time.

For each language, a range of simulation sizes from 1000 to 1 million was tested, and

each configuration was run five times and for 100 iterations.

3.3 Results

Table 3.1: Intel Xeon Timing Results (secs)

Language/ Number of Particle
Style 1000 10,000 100,000 1,000,000

Rust 0.57± 0.01 11.52± 0.05 198± 2 2960± 50
Rust SIMD 0.58± 0.03 12.6± 0.1 221± 2 3190± 50

C++ 0.48± 0.02 10.07± 0.05 181± 6 3820± 30
C 0.50± 0.01 10.17± 0.02 176± 3 3770± 10
Go 0.91± 0.03 16.5± 0.3 262± 2 4830± 40

Java OO 1.92± 0.03 20.2± 0.7 350± 16 8570± 160
Java Array 1.7± 0.1 17.0± 0.3 290± 5 7520± 100
TypeScript 2.11± 0.05 40.3± 0.6 750± 30 22800± 700
Python 109± 3 1760± 15 27200± 300 –

24

For C & C++, gcc was used first. But given that Rust is built on LLVM, C & C++

were also tested using clang to see if gcc and clang would differ. Clang was a little faster,

< 10%, and so those are the results shown in table 3.1. Python was not tested at one million

particles because its execution time would be on the order of a week, making it impractical

to collect the requires five run times. Java was run using GraalVM 22.2.0 for Java 17.0.4,

Typescript using Node v10.19.0, and Python using CPython 3.10.7. CPython 3.11 does

come with performance improvements, but it was not yet released at the time this testing

was being done.

In figure 3.2, the execution times can be seen as multiples of the standard (without

explicit SIMD) Rust implementation for that simulation size. In this figure, Python has

been left out since it is so slow that the performance differences between the other languages

wouldn’t be easily visible. See figure 3.4 for the plot with Python included. Figure 3.2, shows

expected things, such as the fact that C/C++ and Rust outperform all other languages.

Both Go and the JVM outperform Node.js. The JVM’s startup time’s cost can be seen

as it performs its worst compared to Rust in the smallest run, while becoming much more

competitive in larger simulation sizes as the startup cost becomes amortized over the runtime

of the program. Go seems to have an edge on the JVM, as though in the middle-sized

simulations they perform similarly, in the one million case Go scales better than the JVM.

One thing that may be surprising to some is that even though both Python and JavaScript

(what the TypeScript transpiles into) are dynamically typed interpreted languages, Python

is much slower than JavaScript on Node.js.

3.3.1 Memory Usage

Memory usage is critical to the performance of a program. Fetching data from RAM takes

˜100 clock cycles. A fetch from cache, on the other hand, can be about 10x faster. Thus,

25

1 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0 1 , 0 0 0 , 0 0 0

0 . 0

1 . 0

2 . 0

3 . 0

4 . 0

5 . 0

6 . 0

7 . 0

8 . 0

R
a

ti
o

 t
o

 R
u

s
t

R u s t

Rus t S IMD

C + +

C

G o

Java OO

Java Array

TypeScr ip t

Figure 3.2: Execution times as a multiple of the standard Rust execution time for that
simulation size, simulation size being the number of particles in the simulation.

for optimal performance, programs should use their memory in a cache-friendly way. The

caching statistics of the processor used in these benchmarks, the Xeon®E5-2680 v3, are as

follows:

L1 12 x 32 KB 8-way set associative instruction and data caches

L2 12 x 256 KB 8-way set associative caches

L3 30 MB 20-way set associative shared cache

Since this code is single-threaded, the distinction between shared vs. separate cache is

unimportant.

The variation we tested within the JVM, Java OO vs arrays of primitives, is especially

aimed at looking at how memory usage affects performance. To capture memory usage

information, the GNU time command was used, specifying the -v flag1. The “Maximum

1Note that GNU time is distinct from the standard Linux time command/

26

resident set size” for each run can be seen in table 3.2. No implementation uses less than

1MB, so no simulation can fit completely into the L1 or L2 caches. However, for many

languages like Rust, C, C++, and Go, the entire simulation for sizes less than one million

fits into L3 cache.

Table 3.2: Resident Memory Usage in MB

Language/ Number of Particle
Style 1000 10,000 100,000 1,000,000

Rust 2.8 4.0 16 153
Rust SIMD 3.0 5.5 24 265

C++ 3.8 5.7 19 202
C 2.3 3.2 15.5 153
Go 2.4 4.4 19.1 174

Java OO 163 154 198 531
Java Array 147 175 190 863
TypeScript 73 109 170 672
Python 12.5 10.9 101 –

From table 3.2, we can see Rust, C, C++, and Go have a much smaller memory footprint

than the other languages. The JVM, perhaps unsurprisingly, consumes the most memory

in most cases. The JVM is known for having a large memory footprint, and we clearly

see that here. However, Node.js, especially for the larger simulations, is not much better

than the JVM. They have much larger memory footprints because of the use of virtualized

environments and memory models that don’t allow easy control of where things are placed

in memory. This can hurt caching. As an example, the C++ and Java OO implementation

of a Particle look remarkably similar [12], featuring velocity and position in arrays of

three doubles each, and a double for each mass and radius. However, these translate into

very different memory layouts. For C++, all of this is turned into one chunk of memory big

enough to fit the combined eight double-precision floating point numbers. In Java, however,

27

the object has two doubles and two references, plus some overhead. The references then

point to array objects with three doubles, an integer length, and some overhead.

The system as a whole faces the same problem. A C++ vector<Particle> is a con-

tiguous chunk of memory holding all the Particles, and so iterating through the vector is

extremely cache friendly as the next element processed sits next to the current element

in memory. In Java, an ArrayList<Particle> holds only references instead, and so the

actual Particle data is not guaranteed to be close to each other as they may be anywhere

in memory. At runtime, this both translates into memory overhead and having to follow

references, adding memory fetches.

As an attempt to combat this, a version of the Java implementation was tested where

instead of using an array of type Particle, multiple arrays were used storing the doubles

directly (e.g. one array stored all the masses and one all the radii, etc.). Java treats

arrays of primitives differently than normal objects, making the array and its values a

single chunk of memory rather than using references. Thus the only objects we have are the

arrays, of which there are four, one for position, one for velocity, one for mass, and one for

the radii. This Java implementation consistently saw 10-20% faster results than the Java

object-oriented implementation. However, this array-based implementation had the largest

memory footprint, which may be due to the JVM’s garbage collector copying objects to

move them from short GC pools to long-term ones, and so (at least for a brief moment) the

massive arrays would be in memory twice.

For Rust, it may seem strange that the SIMD implementation performs worse, but

that is what the results consistently show. This may be due to increased memory usage,

normally a 3D-vector is 24 bytes, 8 bytes per double-precision floating point value, but

the SIMD used operates on four values at once and so the 3D-vectors carried along a

superfluous double, increasing the memory usage per 3D-vector to 32 bytes. This increase

28

in size does give an explanation for why the memory usage is greater for the SIMD version

for all simulation sizes. The superfluous double does get operated on, but if using SIMD

instructions, that shouldn’t make a difference as all four doubles should be operated on

together. An independent test of explicit SIMD on the simpler O(n2) N-body benchmarks

does see increases in performance. In the case of these kD-tree benchmarks, it may be the

case that the increase in memory usage offsets the gains by using SIMD.

3.3.2 Scaling

As mentioned earlier, a kD-tree based N-body simulation should scale roughly O(n log n).

On the order of the particles tested in this analysis, one thousand to one million, a 10x

increase should be around a 12-13x increase in execution time. The actual results can be

seen in Figure 3.3, and are usually more in the ballpark of 18-20x. The JVM versions from

1k to 10k particles looks good, but that is because of the startup of the JVM skewing the

1k results to be much slower, which in turn makes the scaling look better. In reality, the

startup cost of the JVM was just amortized over a greater execution time.

While scaling is relatively similar across the board (execpt for the previously mentioned

JVM anomaly) for 1k to 100k, it is the scaling to one million particles where things get

interesting. At this point, no simulation can fit in the L3 cache. (Rust, C, C++, and

Go can all fit in the 30 MB L3 cache with 100k particles). We can see that Java and

TypeScript don’t scale well at this point anymore, but more interesting, C/C++ scales

significantly worse here than Rust. It is currently not known why Rust performs so well at

this point, but it will have to do with how memory is accessed. This good scaling makes

Rust the fastest language at the one million mark. Python’s behavior at this point couldn’t

be measured due to its slowness making it impractical to benchmark.

29

1 0 k / 1 k 1 0 0 k / 1 0 k 1 M / 1 0 0 k

0 . 0

6 . 0

1 2

1 8

2 4

3 0
R

u
n

ti
m

e
 R

a
ti

o
R u s t

Rus t S IMD

C + +

C

G o

Java OO

Java Array

TypeScr ip t

Figure 3.3: Execution time scaling with particle count. Each bar measures how well a
language scales compared to itself, e.g. the 100k/10k for C++ shows that C++ took 18x
longer for 100k particles than 10k particles.

3.3.3 Python is Horribly Slow

I’ve previously hinted at Python’s slowness, but here it gets its own section because of

how much it stands out. Figure 3.4 is the same as figure 3.2, but with Python added

and the one million particle simulation removed. Now python does get better compared to

other languages as the simulations grow, but it is still much worse than 100x the execution

time of Rust. In fact, every simulation, including Node.js, finished the one million particle

simulation faster than Python on the 100k simulation. This large difference in speed is also

why it was impractical to test python for one million particles. Surprising as these results

may be, they are in step with the Benchmark Game’s n-body benchmark results [1].

The implementation whose results are shown is written in pure Python. I’ve made

multiple attempts to use NumPy, a library for fast computation and array operations written

in C, to speed up the Python code. I also tried the array-based strategy with NumPy that

30

1 0 0 0 1 0 , 0 0 0 1 0 0 , 0 0 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
1 8 0
1 9 0
2 0 0
2 1 0

R
a

ti
o

 t
o

 R
u

s
t

R u s t

Rus t S IMD

C + +

C

G o

Java OO

Java Array

TypeSc r ip t

P y t h o n

Figure 3.4: Execution times as a multiple of the Rust execution time for that simulation
size including Python.

made Java slightly faster. However, all of these attempts resulted in around ˜2x worse

performance than the pure Python implementation. The best Python implementations of

n-body in the benchmark game also don’t use libraries like NumPy [1], which suggests

others have not found a way to speed this style problem up with NumPy either.

A note on NumPy is that it is designed to operate on arrays. However, the majority

of the time, which makes the algorithm O(n log n), is spent walking the kD-tree, which has

to happen within Python and not NumPy’s code. NumPy can be used to integrate all the

accelerations and velocities, but this is only O(n), and so is out-weighted by computing

gravitational forces by walking the kD-tree, which is O(n log n).

One possible speedup is Cython. It is a superset of Python which converts to C code

that calls the Python API, and allows easy integration of C into Python. If the kD-tree was

written in C or Cython, for example, it could then be called from Python code. However,

then the code doing the heavy-lifting is not actually Python, undermining the point of a

31

benchmark.

Python 3.11, a particularly performance aimed update, released after this project was

completed, and so was not used to benchmark this code. Python 3.11 claims 1.25x speedup

over 3.10, but since Python lags behind by more than 100x, that speedup doesn’t make a

dent into the results of this project, and Python is still not a competitive language to do

the heavy-lifting in a simulation.

3.3.4 PyPy to the Rescue?

While CPython is the reference implementation for Python, there is another prominent

implementation. PyPy is an implementation using a JIT compiler that can reach 5x the

speed of CPython, on average [21]. I’ve conducted some preliminary testing that showed

speed-ups of 10-15x compared to CPython on this code. The codebase is mainly Pure-

Python, which likely helps the JIT. In the traditional N-body problem, where every body is

compared to every other body, PyPy records a 6.5x speedup compared to CPython3.7 [22].

From PyPy’s benchmarks it also seems that the degree of the speedup is heavily dependent

on the algorithm [21], so the finding of 10-15x speedup cannot be generalized to all Python

programs. It rather seems that the kD-tree based code works particularly well with PyPy.

While PyPy is faster, it does introduce new issues. One is that at the time of this

project, CPython was at version 3.10, while PyPy was at version 3.7 [20]. Additionally,

PyPy’s speedup originates not only from using a JIT, but also from semantic differences

[19]. PyPy also uses much more memory than CPython, placing it close to the JVM in

memory usage. It is also worth remembering that while PyPy is impressive in its speed, it

is still 3x slower than Node.js and 10-20x slower than Rust.

32

3.3.5 Performance Where it Matters

While these details and performance at different simulation sizes may be interesting, in

practice, the simulations that this benchmark tries to represent have at least a million

particles. Thus the one million particle simulation is the most relevant. While the JVM

might be doing okay in smaller simulations, the fact is that as the simulation size grows, it

gets worse and worse compared to Rust. Likewise, Node.js scaling makes it a poor choice

for large simulations and Python is too slow to begin with. The scaling of Rust and C++

though suggests that Rust is most competitive where it matters, beating out C++ at one

million particles. Go is not that far from Rust & C/C++ and can be easier to reason

about than C++ due to having a garbage collector, but the current C++ framework has

no new or delete during the simulation’s run, and so that advantage of Go isn’t helpful in

this scenario. If someone finds Go easier enough to write to justify the performance loss

compared to Rust is more a point of what language one is comfortable with.

3.4 Summary

The most significant conclusion from this testing is that Rust is a competitive alternative to

C++ at the scale of modern ring simulation research. Another point is that while the JVM

might be tempting to consider due to its ease of multithreading and a highly optimized

environment [11, 9], it is still not applicable to this scale of simulations due to the large

overhead. Perhaps this could change with project Valhalla or the new Vector API. Scripting

languages are even less worth considering for simulation work as their performance was much

worse than the JVM’s.

Chapter 4

Adaptive Time-steps and Priority

Queues

4.1 Introduction

With the spring force derivations for stable soft-sphere collisions and Rust as a safe and

efficient language for simulations in hand, it is time to extend this to make a full simulation.

However, soft-sphere simulations still have one more obstacle to overcome, that of the time

step. While a hard-sphere simulation processes a collision in a single step, a soft-sphere

collision needs several steps to properly resolve the collision. As such, soft-sphere collisions

need to be run at a smaller time step than hard sphere collisions. This smaller time step

translates directly into a longer runtime. So to avoid this, I introduce an adaptive time step

- using a priority queue. Possible collisions are put on the priority queue to be processed

at some point in the future, and are then processed in sub-time steps using priority to keep

events in chronological order. Thus collisions can be resolved at smaller steps than gravity,

while gravity can be at the same time step as hard-sphere simulations. This is especially

33

34

important because the kD-tree based gravity algorithm is O(n log n), and so represents the

most expensive part of the process. Meanwhile, particle pairs only need to be processed

when they are close and might collide, and so this is a product of speed and density, not

number of particles. So the calculations per particle should be roughly constant as the total

number of particles varies, making this O(n). In this chapter, the smaller, adaptive time

step will be called sub-time step, while the time step between kD-tree gravity calculations

will be called the big time step or full time step.

In addition, this simulation models the rings of Saturn, more precisely, a small window

in the rings that rotates with the ring. To make the particles move as if a central body is

present that they are all orbiting around, we need to add Hills force, which is the linearized

solution to orbital motion in the rotating reference frame of the window we simulate. Since

only a small window is being simulated, not the whole ring, particles that leave this box

need to be wrapped around to stay in the box. This is accomplished using what is called

a sliding brick boundary condition, that adds particles back on the other side and adjusts

their velocity accordingly so that energy is not gained as the particle is moved between

higher and lower parts of the central bodies’ gravity well.

Advantages and Problems of a Variable Time Step Approach

The advantage of the adaptive time step system using a priority queue is that it is that the

time step can adapt to the local condition - if the particles are moving very fast, the simula-

tion will do many small steps to resolve the collision. Additionally, these many small steps

are only for the pairs of particles that might collide and thus as previously mentioned the

expensive O(n log n) gravity calculations don’t have to be done. The downside of adaptive

time steps is that the complexity is much greater, and sometimes, if the particles are moving

very fast, the adaptive time steps can get so small that, when added to the current time,

35

they don’t change the current time as they are smaller than the precision of the current

time. As the time does not advance, this leads to an infinite loop. Currently, the code is set

up to panic if this happens. Another thing is that if the particles move fast such that the

time step is very small but not too small to lead to a true infinite loop, then the simulation

can end up taking steps so tiny that it is still moving forward, but at a rate of effectively

zero. This is not detectable, but so far has only happened due to another bug that was

removed and thus should be inconsequential.

Since the priority queue system works on pairs, it does have problems with 3-body

configurations such as a pair at rest and one particle coming in from the side, all along

one axis. The incoming particle will be processed with each of the two resting ones, but

the two resting ones aren’t being processed since they are not approaching each other. But

once the incoming particle hits the first resting one, that originally resting one will now be

on a collision course with the other resting one, but since this collision was not foreseen

during the walking of the kD-tree, it isn’t getting processed. A workaround to this is the

estimation of a global relative speed, and then rather than just looking at the speed of

the particles approaching, looking instead at the max of either the speed of the particles

approaching or the global relative speed estimate. This is a crude method that will lead

to a lot of unnecessary sub-steps, but should deal with these types of three body problems

where the velocity of one particle changes drastically in sub-steps. This is the currently

implemented approach, and the implementation will be further described later.

A different idea, although not implemented here, would be to re-find neighbors that

the particle might be colliding with after a significant velocity change. However, what

constitutes a significant velocity change is hard to define.

36

4.2 Approach

4.2.1 Algorithm

The simulation is run for a full orbit, and for each step the Hills force is computed at

the beginning of the step. The computed acceleration is multiplied by the full time step

and immediately added to the velocity of each particle. After this completes, the kD-tree

is built, and it is used to get a global relative speed estimate, which will later assist in

computing how long the adaptive time steps should be. To keep this O(n log n), only the

relative velocity of particles within the same leaf node are computed. This does mean that

two particles approaching quickly but in different nodes won’t be caught, but this should

be rare, especially as the simulation gets larger and so some high speed particles will get

caught, raising the speed estimate. These relative velocities are then combined using one of

two methods - root mean square or maximum. For safety, the speed estimate is multiplied

by 2 to minimize the impact of a high-speed particle not being caught.

Then the kD-tree is walked again. As standard for the kD-tree algorithm, for every

node, the opening angle is computed and if it is below some threshold, the entire node

is approximated as one particle. The gravity impulse is computed for the whole step and

added to the particle’s velocity. If however the opening angle is large, then the particles

are too close to be approximated as one and so instead the particle currently processed is

compared directly to the other particles. In this case, not only is gravity computed, but also

the particles are checked for how likely they are to collide, and in what time. A sub-time

step is computed, and if the sub-time step is smaller than the big time step, they are placed

on the priority queue to be updated and processed at that time in the future. The particles

themselves also have their velocities updated from the forces experienced, but only until

they are to be processed again, not for the full time step.

37

The reason a priority queue was chosen is that events are added to the queue at a random

order - but events need to be simulated in chronological order, and thus events are always

pulled based on which has the smallest elapsed time, i.e. is closest to the current time.

Once the kD-tree walk is completed and all gravity and spring forces have been computed

and all collision events queued, the queue is processed. Each event is a pair of particles.

Their spring and gravitational forces are computed, and a new sub-time step is computed.

If the current time plus the new sub-time step is greater than the time when the next big

time step occurs, then it is truncated to the next big time step. This helps synchronize all

particles at the big time step as during the processing of the priority queue, each particle

is at some different point in time. The acceleration from the forces are integrated for time

sub-time step and the particles are put back on the priority queue, unless the truncation

happens, in which case it just gets processed during the next big time step. As particles can

be at different times when an event is processed, each particle is first “fast-forwarded” to the

time of the event, which consists of integrating the velocity from the last time the particle

was processed up to the event’s time and adding that to the position. In the previous

simulation, like those in chapter 3, all the acceleration of one time step are added up and

then added to the velocity. This is not possible due to the sub steps taken between the

big time steps. Thus all acceleration calculated is multiplied by the time until this specific

source of acceleration is recomputed, and the resulting change in velocity is added to the

particles’ velocities. Once the queue empties, all particles are “fast-forwarded” to the time

of the next big time step, and the cycle repeats.

Calculating the sub-time step

Since a collision is modeled as a spring, one full collision would be half the sprint cycle,

i.e. T/2. By physics, T = 2π/ωl and so the full collision time should be around T = π/ωl.

38

I then chose roughly how many steps a collision should take, usually around 10-20, and

divide the estimated collision time by this desired step count to get the sub-time step. If

the particles are currently colliding, then this is the sub-time step used. If the particles are

not yet colliding, then the sub-time step is the max between this value and the time till

impact, divided by 2. The global relative speed estimate is also considered. To ensure that

nearby particles will be processed at a rate fast enough to account for one being slammed

into and rapidly changing speed, I also compute the time it would take to travel between

the particles at the global relative time step. The final sub-time step is the minimum of the

two.

4.2.2 Initial Priority Queue Validation

Before beginning with large simulations, I wanted to verify the priority queue method

with a simple particle-particle test, in the style of the work done in chapter 2. Particles

are set up symmetrically, approaching each other with some set impact velocity. Once

the particles separate, the simulation is terminated and the coefficient of restitution and

maximum penetration depth are collected. I tested a variety of parameters, detailed below:

• desired coefficient of restitution: 0.2, 0.5, 0.7, 0.9

• time step: 1., 0.5, 0.1, 0.05, 0.025,

• particle radii: 1e-7, 3e-8, 1e-8

• ratios of particle radii: 1:1, 1:3, and 1:10

• impact speed: 3e-8, 1e-7, 3e-7, 1e-6, 3e-6

• desired sub-time steps during one collision: 1, 3, 5, 7, 10, 12, 15, 20

39

The density of particles was modeled after those in Saturn’s B rings. As most of these

time steps are so large that the particles would just pass through each other, the effective-

ness of the priority queue system was required for any sensible collision resolution. The

parameters are chosen in a way to reflect the work done in chapter 2. From the three

derivations presented in that chapter, I will use my own derivation, labeled Rotter. As the

particles are heading straight for each other, gravity was turned off to have greater control

over the impact velocity and focus just on the spring restoring force model for collisions.

4.2.3 Full Simulation Performance Benchmarking

To check whether the adaptive time step with a priority queue is actually faster, a bench-

mark of the full simulation with the sliding brick boundary conditions and Hills Force both

with and without the priority queue, across various simulation sizes and particle densities

corresponding to Saturn’s A and B rings is needed. However, due to time constraints, I

wasn’t able to add the sliding brick boundary conditions as they are quite unforgiving in

soft-sphere simulations. As particles are wrapped around, they can be placed on top of

another one, causing the two to “blow up”, which ruins the accuracy of the whole simula-

tion. In practice, “mirrors” are used where particles on the borders interact with mirrors

of themselves, and so a particle would interact with the mirror of another before the other

particle is wrapped over. Due to time constraints I won’t be able to setup this however, and

so instead I will simulate a tall rectangle, so the shearing due to the Hills Force is lessened

in effect. Particles closer to the imagined center will orbit faster, and those further out will

orbit slower, and so a rectangle of particles left on its own will shear out in orbit.

Each simulation case will be benchmarked 5 times on an Apple M1 Pro 3.2 GHz (the

version with 10 CPU cores) and the average will be reported. For the simulations with the

adaptive time step, I will use a time step similar to those used for hard-sphere collisions,

40

which is 2π
1000 (2π is one orbit, so this is 1000 steps per orbit). For the soft-sphere collisions

without the adaptive time step, a smaller time step is needed to keep the simulation nu-

merically stable, requiring a time step of 2π
10000 . Each simulation will be run for 1/10 of an

orbit, which is 100 steps for the adaptive time step simulations and 1000 for those without.

4.3 Results

4.3.1 Initial Priority Queue Validation

The results of the initial priority queue validation can be seen in figure 4.1. For the data

points targeting the coefficient of restitution of 0.5, those can be seen in the center of the

graph. As the desired step count in a collision increases (the right side of a particle bunch),

the measured coefficient of restitution approaches the target 0.5. So the greatest two desired

step counts tested, 15 and 20, seem to produce quite good results on a variety of impact

velocities (dot size in the scatter plot) and even produces good results when the particles

are mismatched in size. The penetration depth is also quite nicely constrained, not varying

too much from 1%. For the full simulation, I will thus use 15 as the desired step count.

Looking back at chapter 2, specifically figure 2.3 and 2.1, the soft-sphere model on its

own struggles with larger impact speeds or particles of different sizes. However, since with

this adaptive time step method I can pick how many steps I want in a collision, the results

in figure 4.1 for ten or more steps vary much less as the particles’ radii differs. In figure 4.2,

it can also be seen that the impact speed doesn’t have much of effect on the final coefficient

of restitution and maximum penetration depth is also well constrained for larger impact

speeds. Each group in this figure is sorted by desired collision steps, with the larger step

counts on the right, and so the more scattered output variables are found on the left side,

where the simulation didn’t get enough steps to resolve the collision. Thus this adaptive

41

time step method is not just promising for speeding soft-sphere simulations up, it also helps

increase their numerical stability. When comparing the figures of chapter 2 and the figures

in this chapter, it is also worth noting the difference in scaling: the scale of the penetration

depth seen is 10x smaller with the adaptive time step approach. For the coefficient of

restitution, the scatter range also decreased - from up to 0.8 in chapter 2 to only up to 0.6

with the adaptive time step (Where again, we are aiming for 0.5).

1
0

0 . 1 0

0 . 2 0

0 . 3 0

0 . 4 0

0 . 5 0

0 . 6 0

0 . 7 0

0 . 8 0

0 . 9 0

1 . 0

1
0

0 . 8 0

0 . 9 0

1 . 0

1 . 1

1 . 2

1 . 3

Steps in col l is ion ()g rouped by s i ze r a t io

[
]

%

0 . 0

0 . 0 5 0

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 0

0 . 0 5 0

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

Figure 4.1: The coefficient of restitution is plotted on the left, and the maximum penetration
depth on the right. For each side, the colors indicate the other variable. The desired step
count in a collision, used to compute the adaptive time step is the x-axis. Within one bunch
of particles, left-to-right represents an increase in the ratio of radii of the pair of particles
colliding, the leftest being 1:1, 3:1, and finally 10:1 on the right. The size of a data point
represents impact velocity

42

1
.0

 ×

1

0
−
7

1
.0

 ×

1

0
−
6

0 . 1 0

0 . 2 0

0 . 3 0

0 . 4 0

0 . 5 0

0 . 6 0

0 . 7 0

0 . 8 0

0 . 9 0

1 . 0

1
.0

 ×

1

0
−
7

1
.0

 ×

1

0
−
6

0 . 8 0

0 . 9 0

1 . 0

1 . 1

1 . 2

1 . 3

v
in i t

()grouped by s teps in co l l i s ion

[
]

%

0 . 0

0 . 0 5 0

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 0

0 . 0 5 0

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

Figure 4.2: The coefficient of restitution is plotted on the left, and the maximum penetration
depth on the right. For each side, the colors indicate the other variable. The impact velocity
is on the x-axis. Within one bunch of particles, left-to-right represents an increase in the
desired collision steps.

4.3.2 Full Simulation Performance Benchmarking

The results of the benchmarks that were successful are shown in table 4.1. Given that the

kD-tree algorithm is O(n log n), as the particle count scales by 10, the time should scale by

12-13.

The benchmark values speak well of the adaptive time step with a priority queue ap-

proach, averaging at about 8 times faster than the approach without a priority queue.

43

Additionally, there is no downwards trend in improvement as the simulation scales, which

is important as astrophysics simulations often use much more particles than the particle

counts I benchmarked. Instead, it seems like there is an upward trend. See figure 4.3. It is

also worth noting that since density increases interactions between particles as they attract

more strongly, density has an effect on the runtime. This can be best seen in the differ-

ence between A-ring density and B-ring density. In the case of the priority queue, more

sub-steps are computed when interactions are more intense, but clumping also leads to a

slowdown in the kD-tree as more gravitational interactions become particle-particle rather

than particle-node, which means less time-saving approximations are made.

Priority Queue No Priority Queue
A Ring B Ring A Ring B Ring

1k 0.52 0.48 4.3 3.5
10k 24.8 18.6 149.5 100.3
100k 405.9 355.0 5248.1 3091.0
1M 6617.2 5966.3 75796.3

Table 4.1: All measurements are in seconds. The A & B refers to the particles scaled density
setting, as particles in Saturn’s A ring are almost twice as dense as those in the B ring in the
scaled units used. They are the same density in terms of g/cm3, but the scaled coordinates
also capture the effect of tidal forces, so A-ring particles clump more than B-ring particles.
The 1M run without the priority queue for A-ring particles couldn’t be tested due to time
constraints as the runs are so long.

4.4 Summary

While the results so far are encouraging and make it possible to run bigger and longer

soft-sphere simulations, it would be optimal to run the benchmarks with the sliding brick

boundary conditions. Sliding brick boundary conditions seem to be difficult to keep numer-

ically stable in soft-sphere as any overlap between particles greater than 6% usually spells

44

Figure 4.3: Execution times as a multiple of the priority queue version of that particle count
and density.

45

the end of a simulation and so great care is needed to ensure that never happens when

particles are wrapped over. Thus further research is needed in using boundary conditions

in soft-sphere simulations.

Since the simulation without the adaptive time step uses a timestep 10x smaller, the

best possible speedup seen by the adaptive time step method should be 10x. However, there

are a few runs with 12x speedup, which is another point of future research. One possibility

is that the difference in numerical stability over time leads to significantly different kD-trees

being built.

Besides this, this simulation code could use some ironing-out of edge cases as during

the benchmarks, overlaps of up to 4% were seen and optimally, overlaps should stay in the

1 − 2% regime. However, compared to the penetration depths of up to 30% that was seen

in the tests of chapter 2, these results are much better and so represent a significant step

forward in numerical stability and physical accuracy of soft-sphere simulations.

Chapter 5

Conclusion

With the derivations of the spring constant and damping in chapter 2, soft-spheres can now

be included in astrophysics simulations, however at the cost of a significantly smaller time

step, i.e. a factor of 10. As per chapter 3, Rust is competitive to C++ in terms of speed

and memory usage, and with its memory safety, it would make a good modern language

for simulation. In chapter 4, I experimented with the use of an adaptive time step using

a priority queue. While more work is needed to properly implement boundary conditions,

soft-sphere simulations with the adaptive time step method are much faster than soft-

sphere simulations without, and are also much better at matching the desired coefficient of

restitution and penetration depth, thus promising soft-sphere simulations with much better

numerical stability than those without the adaptive time step method.

46

Bibliography

[1] Anon. The computer language 22.05 benchmarks game, 2021.

[2] Anon. Sustainable scala, 2021.

[3] S. Araki and S. Tremaine. The dynamics of dense particle disks. Icarus, 65(1):83–109,

January 1986.

[4] Frank G Bridges, A Hatzes, and DNC Lin. Structure, stability and evolution of saturn’s

rings. Nature, 309(5966):333–335, 1984.

[5] AP Hatzes, F Bridges, DNC Lin, and S Sachtjen. Coagulation of particles in saturn’s

rings: Measurements of the cohesive force of water frost. Icarus, 89(1):113–121, 1991.

[6] Piet Hut, Jun Makino, and Steve McMillan. Building a better leapfrog. The Astro-

physical Journal, 443:L93–L96, 1995.

[7] Mark Lewis Jonathan Rotter. Soft body collisions for ring simulations with rust. 2021.

[8] Mark Lewis Jonathan Rotter. N-body performance with a kd-tree: Comparing rust to

other languages. 2022.

[9] Jason Leezer, Mark Lewis, and Berna L Massingill. A java based framework for nu-

merical simulations of collisional systems. In PDPTA, pages 297–303, 2008.

47

48

[10] Mark Lewis. Hard sphere coll sim. https://github.com/MarkCLewis/

HardSphereCollSims.

[11] Mark Lewis and Berna L Massingill. Multithreaded collision detection in java. In

PDPTA, pages 583–592, 2006.

[12] Mark C. Lewis and Jonathan Rotter. Multi-language kd-tree n-body benchmarks,

2022.

[13] Mark C Lewis and Glen R Stewart. A new methodology for granular flow simulations of

planetary rings–coordinates and boundary conditions. In Proceedings of the IASTED

International Conference, Modeling and Simulation, pages 292–297. ACTA Press, 2002.

[14] Mark C Lewis and Glen R Stewart. A new methodology for granular flow simulations of

planetary rings-collision handling. In Modelling and Simulation, pages 292–297, 2003.

[15] Mark C Lewis and GR Stewart. Collisional dynamics of perturbed planetary rings. i.

Astronomical Journal, 120(6):3295, 2000.

[16] NIST. Safer languages, 2023.

[17] Stephen O’Grady. The redmonk programming language rankings: January 2022, 2022.

[18] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo

Fernandes, and João Saraiva. Ranking programming languages by energy efficiency.

Science of Computer Programming, 205:102609, 2021.

[19] The PyPy Project. Differences between pypy and cpython, 2022.

[20] The PyPy Project. Downloading and installing pypy, 2022.

[21] The PyPy Project. How fast is pypy3.9?, 2022.

49

[22] The PyPy Project. Modified n-body speed comparison, 2022.

[23] Derek C Richardson, Kevin J Walsh, Naomi Murdoch, and Patrick Michel. Numerical

simulations of granular dynamics: I. hard-sphere discrete element method and tests.

Icarus, 212(1):427–437, 2011.

[24] H. Salo, K. Ohtsuki, and M. C. Lewis. Computer Simulations of Planetary Rings,

pages 434–493. 2018.

[25] Heikki Salo. Simulating the Formation of Fine-Scale Structure in Saturn’s Rings.

Progress of Theoretical Physics Supplement, 195:48–67, 07 2012.

[26] Stephen R Schwartz, Derek C Richardson, and Patrick Michel. An implementation of

the soft-sphere discrete element method in a high-performance parallel gravity tree-

code. Granular Matter, 14(3):363–380, 2012. In a leapfrog, the velocity is out of sync

and so since it is used for some damping forces, it is naively predicted. They also

did twisting and rolling forces. k is chosen in regard to the max velocity. Warnings

are emitted if penetration is too big. Tangential computation is important for lasting

contacts. Equations for all contact forces.

[27] J. Wisdom and S. Tremaine. Local Simulations of Planetary Rings. Astronomical

Journal, 95:925, March 1988.

Appendix A

Code

All code can be found in various Github repositories.

• Chapter 2: https://github.com/MarkCLewis/RustCollSim/tree/jonathan

• Chapter 3: https://github.com/MarkCLewis/MultiLanguageKDTree

• Chapter 4: https://github.com/MarkCLewis/RustCollSim/tree/pq-start

50

	Jonathan’s Rust Adventures and the Quest for the Numerically Stable Soft-Sphere Integrator
	Recommended Citation

	tmp.1683232401.pdf.ITP_k

