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SYMPOSIUM INTRODUCTION

Illuminating Endocrine Evolution: The Power and Potential of
Large-Scale Comparative Analyses
Maren N. Vitousek,1,*,† Michele A. Johnson‡ and Jerry F. Husak§

*Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; †Cornell Lab of

Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA; ‡Department of Biology, Trinity

University, San Antonio, TX 78212, USA; §Department of Biology, University of St. Thomas, 2115 Summit Avenue, St.

Paul, MN 55105, USA

From the symposium “Understanding the Evolution of Endocrine System Variation through Large-scale Comparative

Analyses” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at

San Francisco, California.

1E-mail: mnv6@cornell.edu

Synopsis Hormones are central mediators of genotype–phenotype and organism–environment interactions. Despite

these important functions, the role of selection in shaping hormonal mediators of phenotype remains poorly understood.

Thanks to decades of work by endocrinologists, circulating hormone levels have been measured in a diversity of

organisms. Variation in other endocrine traits and mediators (e.g., receptor expression and binding globulins), and

the hormonal response to standardized challenges (e.g., restraint, pharmacological challenges) are also increasingly

measured in both captive and free-living populations. Large-scale comparative analyses of the multitude of available

endocrine data represent a particularly promising approach to addressing the function and evolution of these key

phenotypic mediators, and their potential to serve as indicators of disturbance. Several recent phylogenetic comparative

analyses and meta-analyses have begun to reveal the power and potential of these approaches to address key questions in

integrative biology. Here we highlight two recent developments that are facilitating such analyses: increasingly powerful

and flexible phylogenetic comparative methods, and the release of two endocrine trait databases—HormoneBase (cur-

rently 474 species) and the Wildlife Endocrinology Information Network (currently 25 species)—that contain compiled

measures of endocrine traits across vertebrates. Increasingly comprehensive comparative analyses of endocrine data could

provide insight into many interesting questions, including how rapidly changing environments are impacting pheno-

types, why endocrine traits differ so remarkably within and across populations, and the evolution of plasticity. The

endocrine system mediates interactions between genotypes and phenotypes, and between organisms and their environ-

ment. Environmentally induced hormonal responses regulate phenotypic flexibility across timescales by altering

physiological state, gene expression, and epigenetic marks. A staggering diversity of phenotypic traits are mediated by

hormones from early development through senescence. Through their actions on behavior, hormones also exert

widespread influence over how organisms interact with their biotic and abiotic environments. Because hormones are

responsive to the environment, there has long been interest in their use as biomarkers of exposure to challenges. More

recently, increasing attention has been paid to the potential for within and among-population variation in endocrine

regulation or responsiveness to serve as indicators of resistance or resilience to future challenges, or measures of

evolutionary potential.

Evolutionary endocrinology: the
importance of variation

Despite the many crucial roles of hormone systems,

their evolution remains poorly understood. Because

hormones mediate a diversity of fundamental

biological processes, selection acting on the herita-

ble components of hormonal traits might be

expected to constrain circulating hormone levels

around one or more fitness optima (Ketterson and

Nolan 1999; Hau 2007). Yet empirical data reveal
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that hormone levels are remarkably variable, not

only among species, but also within populations,

sexes, and life history stages (Williams 2008; Miles

et al. 2018). Why do some females in a population

have substantially higher plasma estradiol levels

than others during the same process of egg produc-

tion? Similarly, why are plasma testosterone levels

an order of magnitude greater in some species than

in other species, when testosterone mediates the

same basic reproductive processes in each?

Determining how selection shapes patterns of hor-

mone secretion across broad taxonomic scales

requires an integration of the traditionally disparate

approaches of evolution and physiology.

Characterizing variation in heritable traits and deter-

mining their fitness effects is a cornerstone of evo-

lutionary biology, but physiological research has

historically focused on comparing mean trait values

between and among groups of organisms (e.g., sexes,

life history stages, or species), without addressing the

causes and consequences of the often dramatic inter-

and intra-individual variation in these traits

(Williams 2008).

In recent years, however, the nascent field of evo-

lutionary endocrinology has begun to address the

causes and consequences of this variation from an

evolutionary perspective (Dufty et al. 2002; Zera

et al. 2007; Lema 2014; Wada and Sewall 2014;

Bonier and Martin 2016; Cox et al. 2016a). The pres-

ence of heritable variation in circulating hormone

levels has been confirmed by both artificial selection

studies and experiments in natural populations

(Satterlee and Johnson 1988; Pottinger and Carrick

1999; Evans et al. 2006; Jenkins et al. 2014; Stedman

et al. 2017), and a rapidly growing literature

addresses relationships among natural variation in

hormone levels, hormone-mediated traits, and fitness

(Breuner et al. 2008; Bonier et al. 2009a; Hau et al.

2016). At the same time an increasing number of

studies are using evolutionary approaches to gain

new insights into the substantial within-individual

variation in endocrine traits, including estimating

endocrine repeatability (Taff et al. 2018), quantifying

the relative amount of within and among-individual

variation in hormone levels (Hau et al. 2016), and

using a reaction norm approach to quantify individ-

ual differences in endocrine flexibility and its pheno-

typic and fitness consequences (reviewed in Taff and

Vitousek 2016). These and other approaches have

provided insight into the potential for endocrine

traits and their context-dependent flexibility to be

shaped by selection. Nevertheless, our understanding

of when and how selection actually operates on these

key mediators of phenotype, and how endocrine

variation influences population-level processes (e.g.,

persistence, divergence, colonization), are still in

their infancy.

Large-scale comparative analyses are a particularly

promising approach to addressing the puzzle of en-

docrine system variation (B�okony et al. 2009; Bonett

2016; Bonier and Martin 2016). Circulating hor-

mones have been measured in free-living populations

across vertebrate taxa, providing a rich resource on

which to base large-scale comparative analyses.

Continuing improvements in phylogenies have en-

abled much greater resolution of relatedness matrices

within lineages, and made it possible to conduct

phylogenetically informed analyses across these line-

ages over broad taxonomic scales (Bininda-Emonds

2014; Garamszegi and Gonzalez-Voyer 2014; Johnson

et al. 2018). At the same time, advances in phyloge-

netic comparative methods now enable the incorpo-

ration of within-species variation using Bayesian

approaches (Hadfield 2010; Revell 2012; Burkner

2017), and the implementation of increasingly pow-

erful meta-analytic approaches (Viechtbauer 2010; de

Villemereuil and Nakagawa 2014). Together, these

advances have set the stage for comparative analyses

of the function and evolution of hormones—and

their variation within species—on much broader tax-

onomic scales than has previously been possible.

Species differences in circulating hormones:

signatures of selection?

The often dramatic differences in hormone concen-

trations among species were historically regarded as

having little functional significance, but a growing

number of phylogenetic comparative analyses have

shown patterns consistent with selection shaping

hormone levels across taxa (Hau et al. 2010;

Swanson and Dantzer 2014; Jessop et al. 2016).

Phylogenetic comparative analyses conducted within

several vertebrate groups have revealed some striking

consistencies in geographic and ecological patterns in

circulating hormone levels. For example, in all ver-

tebrate classes studied to date, testosterone levels are

higher in populations with shorter breeding seasons

(Goymann et al. 2004; Garamszegi et al. 2008; Hau

et al. 2010; Eikenaar et al. 2012), glucocorticoid con-

centrations are greater at higher latitudes (B�okony

et al. 2009; Hau et al. 2010; Eikenaar et al. 2012;

Jessop et al. 2013), and higher insulin-like growth

factor levels are associated with faster-paced life his-

tories (Swanson and Dantzer 2014; Lodjak et al.

2018).

These intriguing patterns support the potential for

among-species variation in endocrine traits to reflect
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signatures of selection. Furthermore, they suggest that

selection may favor similar endocrine profiles in spe-

cies inhabiting similar environments, or facing similar

life history constraints, resulting in the convergent

evolution of endocrine phenotypes. However, broad

characterizations of environment and life history

could also mask variation in the specific selective pres-

sures facing different populations and species. For

example, a positive relationship between glucocorti-

coids and latitude could be generated by selection

favoring higher glucocorticoids in environments that

are colder, have more short-term variation, greater

seasonal unpredictability, higher predation risk, re-

quire greater reproductive investment, or any number

of other factors. An important goal for future research

is to combine existing conceptual frameworks of en-

docrine function with macroevolutionary patterning

in endocrine traits to develop and test hypotheses

about how specific selective pressures shape the evo-

lution of endocrine phenotypes.

Variation within species: challenges and

opportunities

The evolutionary causes and consequences of the

striking variation in circulating hormones within

populations—which can reach two orders of magni-

tude even within life history stages and sexes—are

particularly poorly understood (Kempenaers et al.

2008; Williams 2008). Endocrine traits are strongly

influenced by environmental factors, exhibiting both

developmental plasticity and reversible phenotypic

flexibility at temporal scales ranging from months

(e.g., seasonal increases in testosterone during repro-

duction) to minutes (e.g., heightened glucocorticoid

secretion during a stress response). Yet despite the

significant influence of environmental and social

context on hormone levels (Goymann et al. 2004;

Gesquiere et al. 2011), consistent individual differ-

ences in hormones are often observed in free-living

individuals, even across life history stages and years

(Cockrem 2013; Taff et al. 2018). For this variation

to evolve through selection it must have a heritable

component; at least within glucocorticoids, the pres-

ence of low to moderate heritability in circulating

levels has been confirmed in a number of species

(Pottinger and Carrick 1999; Evans et al. 2006;

Jenkins et al. 2014; Stedman et al. 2017).

Circulating testosterone levels also show low to mod-

erate heritability in the few species in which it has

been studied (reviewed in Cox et al. [2016b]); very

little is known about the heritability of other endo-

crine traits in natural populations. The potential for

selection to operate on hormone systems to shape

phenotypic differentiation is also supported by find-

ings of adaptive divergence in several components of

hormone signal systems between populations and in-

cipient sympatric species (Kitano et al. 2010, 2011),

and by genetic accommodation of the endocrine

mediators of phenotypic plasticity among species

(Kulkarni et al. 2017).

In order to determine the evolutionary consequen-

ces of hormonal variation within populations, it is

necessary to distinguish within- from among-

individual variation, and to understand how each of

these types of variation influence evolutionary trajec-

tories. In recent years, there has been substantial prog-

ress in beginning to differentiate among-individual

and within-individual variation in other plastic traits

(Westneat et al. 2015), but few studies to date have

partitioned these sources of variation in endocrine

traits in a way that they can be directly compared

(but see e.g., Fürtbauer et al. 2015; Lendvai et al.

2015). Such comparisons will be facilitated by the

increasing prevalence of the reaction norm ap-

proach—in which hormonal trait expression is repeat-

edly measured in individuals over a natural or

experimentally induced environmental gradient, or

in response to a standardized stimulus (Williams

2008; Cockrem 2013; Wada and Sewall 2014; Taff

and Vitousek 2016). Because endocrine trait expres-

sion at any one time represents the outcome of mul-

tiple simultaneous reaction norms, characterizing

individual differences in the endocrine response to

specific environmental factors or stimuli, and deter-

mining their evolutionary consequences, will be chal-

lenging. Nevertheless, the evolution of endocrine

reaction norms remains a promising area of research.

Another approach that has received much less at-

tention—despite a wealth of available data—is inves-

tigating why some populations show more hormonal

variation than others (Guindre-Parker 2018). Within-

population variation in heritable traits is often consid-

ered a measure of genetic diversity; greater genetic

variation in a population may render it more robust

to disturbance or better able to colonize new habitats

(Kolbe et al. 2004). As hormone levels are highly plas-

tic traits, measurements of within-population varia-

tion are not independent from variation within

individuals (Westneat et al. 2015). Nevertheless, anal-

yses of patterns of within-population variation are

providing insight into evolutionary potential in other

plastic traits. For example, a recent analysis of the be-

havioral response to the threat of predation (a classi-

cally labile trait) found that environmental factors

significantly predicted the relative amount of within-

vs. among-population variance in birds (Garamszegi

and Møller 2017). Comparative analyses of within and
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among-population variation in endocrine traits could

reveal novel patterns, and help to generate new hy-

potheses about the drivers of this variation.

Do consistent individual differences in hormones

drive the differential expression of phenotypic traits

that affect fitness?

Decades of experimental studies have illuminated the

role of hormones in mediating a multitude of phe-

notypic traits, including those central to reproduc-

tion, aggression, and the response to stress (Zera and

Harshman 2001; Wingfield and Sapolsky 2003;

Adkins-Regan 2005; Hau 2007). However, the rap-

idly growing literature on the links among circulat-

ing hormones, other phenotypic traits, and fitness

has produced contrasting results. In some free-

living populations, individual variation in hormone

levels covaries with the expression of putatively

hormone-mediated behavioral and physiological

traits (Ouyang et al. 2011; Vitousek et al. 2014),

yet in other studies no such relationship is apparent

(Husak et al. 2007; Garamszegi et al. 2012). Likewise,

natural variation in circulating steroid hormones can

predict survival and reproductive success, but—as is

the case for many phenotypic traits—the nature of

trait–fitness relationships differs across populations

and contexts (Angelier et al. 2009, 2016; Bonier

et al. 2009b; Patterson et al. 2014; Vitousek et al.

2018b). For example, testosterone levels positively

predict male aggression across species of Anolis liz-

ards on some Caribbean islands, but the opposite

pattern is seen on other islands (Husak and Lovern

2014). The importance of context-dependency was

also highlighted by a recent phylogenetically in-

formed meta-analysis of glucocorticoid–fitness rela-

tionships across vertebrates (L. A. Schoenle et al., in

preparation). Both baseline and stress-induced glu-

cocorticoid levels showed a relatively consistent neg-

ative relationship with reproductive success, but the

presence and strength of glucocorticoid–survival

relationships were strongly influenced by pace of

life (L. A. Schoenle et al., in preparation). These

results highlight the importance of developing new

conceptual frameworks that explicitly incorporate

context dependence over different temporal scales

to generate testable predictions about when and

how endocrine variation will influence fitness across

environments and life histories.

Resources and considerations for
large-scale comparative analyses

While substantial data on circulating hormone levels

and other endocrine traits are available in the

literature, large-scale comparative analyses are often

limited by the significant effort required to aggregate

and standardize these data. Two new publicly-

available databases of hormone data provide valuable

resources for researchers interested in endocrine traits

and how they vary across taxa. HormoneBase, a re-

cently released database, contains data on circulating

hormone levels and their variation in steroid hor-

mones (currently glucocorticoids and androgens)

across vertebrates (Vitousek et al. 2018a). This

freely-available database, which represents the collab-

orative efforts of 14 endocrinologists, evolutionary

biologists, and data technology specialists, includes

measures of the mean, variation, and range of plasma

hormone levels from free-living populations (cur-

rently >6500 entries from 474 species). Entries are

accompanied by a variety of additional information,

including data on sampling location, time and meth-

odology, sex, life history stage, assay methods, and the

identity of the endocrine laboratory from which the

measures originated (see Johnson et al. 2018; Vitousek

et al. 2018a). HormoneBase also accepts uploads of

new data.

A second publicly available resource, the Wildlife

Endocrinology Information Network (WEIN) is a

developing searchable data network that contains in-

formation on circulating steroid hormones in zoo

and wildlife animals (currently 25 species). Most of

the current WEIN data are fecal hormone concen-

trations in mammals, but WEIN also accepts data

from other species, and measured hormone concen-

trations in other biological matrices, including urine,

plasma, saliva, hair, and blow spray. This resource

was developed predominantly to provide reference

values for conservation and management purposes,

but as it continues to grow it could provide an in-

creasingly valuable resource for comparative analyses,

particularly by providing data from species that are

challenging to sample under natural conditions.

Because hormone concentrations are relatively

easy to measure, including in many free-living pop-

ulations, many more data are currently available on

circulating hormone levels in non-model organisms

than on variation in other components of endocrine

system function. Yet the downstream effects of cir-

culating hormones depend not only on their concen-

trations but also on the integrated function of

multiple components of hormone signaling systems

(e.g., receptor expression, binding globulins, intracel-

lular signaling pathways, cofactors) (Adkins-Regan

2008), which also vary within and among individuals

(Wingfield 2018). The number of studies addressing

other endocrine traits in non-model organisms has

increased substantially in recent years. Similarly, the

Illuminating endocrine evolution 715

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/58/4/712/5055551 by Trinity U

niversity user on 19 N
ovem

ber 2018



probing of integrated measures of endocrine system

responsiveness and performance through pharmaco-

logical challenges (e.g., ACTH, GnRH, and dexa-

methasone challenges) has grown increasingly

common, as various analyses suggest that such meas-

ures may provide important insights into endocrine

function and evolution (McGlothlin et al. 2010;

Romero and Wikelski 2010; Needham et al. 2017).

Before long, sufficient data on many endocrine traits

may be available to support large-scale comparative

analyses; however, there is currently no standardized

repository for many types of endocrine data. The

development of such a database—or the expansion

of an existing database to support other data types—

may prove particularly fruitful for the field of com-

parative endocrinology.

Novel approaches and future directions

A recent symposium at the annual meeting of the

Society for Integrative and Comparative Biology

highlighted several exciting new approaches that

have begun to use the wealth of existing data to

illuminate endocrine evolution across the vertebrate

tree of life. Studies of macroevolutionary patterning

in androgen and glucocorticoid concentrations have

begun to reconstruct the ancestral states of these

traits, and to test whether different taxonomic

groups have similar or distinct evolutionary optima

(M. J. Fuxjager et al., in preparation). Large-scale phy-

logenetic comparative analyses are providing insight

into whether hormones scale with metabolic rate

across tetrapods (Francis et al. 2018). The incorpora-

tion of rich resources for fine-scale environmental and

trait data (Johnson et al. 2018), coupled with new phy-

logenetic comparative methods, are enabling the de-

termination of which selective pressures shape

endocrine traits in consistent ways over broad taxo-

nomic scales (e.g., across vertebrates), and which pres-

sures differ in their direction or strength according to

other aspects of phenotype or environment.

Phylogenetically informed analyses of the reactive

scope of populations across seasons (e.g., seasonal

scope in birds: Casagrande et al. 2018) or environmen-

tal gradients have particularly high potential to yield

insights into the evolution of phenotypic flexibility.

The potential for circulating glucocorticoid levels

and other endocrine measures to be used as indica-

tors of exposure or resilience to anthropogenic and

other challenges has been of interest to biologists and

conservationists for some time (Walker et al. 2005;

Wikelski and Cooke 2006; Wingfield et al. 1997). But

while endocrine measures have in some cases pro-

vided key insights into the presence or nature of

environmental disturbances (e.g., Creel et al. 2009;

Ouyang et al. 2015; Kleist et al. 2018), decades of

research within and across populations have yielded

inconsistent patterns among exposure to challenges,

hormones, and fitness (Bonier et al. 2009a; Dantzer

et al. 2014; Schoenle et al. 2018). Large-scale phylo-

genetic comparative analyses may shed new light on the

use of endocrine measures as tools to assess or predict

the impacts of various kinds of disturbance—including

exposure to toxins, urbanization, and large-scale anthro-

pogenic changes (e.g., light and sound exposure).

Similarly, analyses of the relationship between hormonal

variation and population status (e.g., increasing/declin-

ing, expanding/contracting: Martin et al. 2018) could

also provide information relevant to conservation, bio-

geography, or population patterns (e.g., divergence and

speciation: Garamszegi et al. 2018). Together, these

novel approaches to endocrine analyses—and many

others that will no doubt be developed in the coming

years—represent promising new directions.

Moving forward, we see particularly strong poten-

tial in addressing the evolutionary causes and con-

sequences of hormonal variation within and among

populations. The HormoneBase database, which

both provides population-level information and ex-

plicitly incorporates variation within populations,

may be a valuable resource for such analyses.

Looking further into the future, as data on individual

reaction norms accumulate, comparative analyses of

how endocrine flexibility varies across populations

and species, and of the relationships among endocrine

flexibility, phenotypic flexibility, and fitness outcomes,

will likely yield important new insights. Likewise, as

transcriptomic studies increase in prevalence, compar-

ative approaches can help to illuminate variation in the

downstream effects of hormones on gene expression

networks. This is an exciting time for large-scale hor-

mone analyses; we hope that over the coming years

such approaches will together provide a much fuller

picture of the function and evolution of these central

mediators of phenotype.
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