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Abstract

Varying methods exist for computing a presentation of a finitely generated commutative cancellative monoid. We use an algorithm
of Contejean and Devie [An efficient incremental algorithm for solving systems of linear diophantine equations, Inform. and Comput.
113 (1994) 143–172] to show how these presentations can be obtained from the nonnegative integer solutions to a linear system of
equations. We later introduce an alternate algorithm to show how such a presentation can be efficiently computed from an integer
basis.
© 2006 Elsevier B.V. All rights reserved.

MSC: 20M14; 20M15
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0. Introduction

Several approaches can be found in the mathematical literature to the problem of computing a presentation of a
given finitely generated cancellative commutative monoid. These different approaches can be mainly divided into three
different groups.

The implementations of the first group are based on the computation of the kernel of a ring morphism. This computa-
tion can be performed, after a trick that enables us to work with torsion free monoids, using the implicitation algorithm
or using specializations of this algorithm to the case of morphisms between the ring of polynomials and the semigroup
ring of a finitely generated commutative cancellative and torsion free monoid (see [6, 22]; in [9] a realization based on
the algorithm appearing in [6] is given for Maple). The efficiency of these types of implementations depends on the
efficiency of the computation of a Gröbner basis. The advantage of using this group of implementations is that they are
easy to implement in any of the existing programmable software packages that include Gröbner basis computations
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(singular, Maple V, Mathematica, etc.). The underlying idea is to eliminate several auxiliary variables used to define
the kernel homomorphism. By using the same elimination procedure, in [18] an algorithm to compute the presentation
of any finitely generated commutative submonoid of a finitely generated monoid is given.

The algorithms of the second group are based on a generalization of the algorithm appearing in [15] for the compu-
tation of a minimal presentation of a numerical semigroup. Though the enactment of this algorithm is highly efficient,
neither the generalization appearing in [1] nor the generalization introduced in [19] have yielded efficient implemen-
tations of the problem (our students have implemented the algorithm described in [19], but the resulting software is
much slower than the one appearing in [9]).

The last approach was proposed in [17]. The cancellative law implies linearization as we will see in Section 1, and
thus the existing algorithms for finding the set of nonnegative integer solutions to linear systems of equations can be
used. Again, several approaches exist for this problem: some use Dickson’s lemma and Gröbner bases (see for instance
[10]), others Elliot’s trick (see [7]) or a generalization of Clausen–Fortenbacher’s ([3]) geometrical point of view (see
[4]). As a consequence of the nature of the problem, the number of variables needed to compute a presentation becomes
considerably large. Roughly speaking, this is due to the fact that in order to describe a single integer you need two
nonnegative integers.

Our work in this paper is organized into three sections. In Section 2 we use the algorithm presented in [4] to illustrate
how nonnegative integer solutions to linear systems of equations yield presentations for finitely generated monoids.
The systems of equations appearing are quite special, and the algorithms existing in the literature do not take advantage
of this (obviously this is because they were studied for other purposes). In Section 3 we introduce an alternative method
to compute presentations starting from an integer basis and thus no “duplication” of the number of variables is needed.
The algorithm is easy to implement and it is based on the critical pair completion idea. In Section 1, we review for the
reader the definitions, notation and basic results which are used in Sections 2 and 3.

1. Systems of equations and presentations of cancellative monoids

In this section, we recall some known facts about finitely generated cancellative monoids. These results can be found
in [17, Chapter 8].

A congruence � on Nn is an equivalence relation which is compatible with addition, that is to say, if (a, b) and (c, d)

are elements in �, then (a + c, b + d) is in �. Hence, � is a submonoid of Nn × Nn, since we also have that (0, 0) ∈ �.
A congruence does not necessarily need to be finitely generated as a monoid. This contrasts with the fact that every

congruence, as a congruence, is finitely generated (see [13]).

Example 1. Let � be the congruence on N = {0, 1, 2, . . .} defined by

x � y if

{
x�1 and y�1,

or
x = y otherwise.

It is easy to show that {(x, 1) | x�1} is contained in � and that the elements of this set cannot be expressed as a sum
of two other nontrivial elements of �. Therefore � cannot be finitely generated as a monoid.

There are many congruences on Nn that are finitely generated as monoids. As we see next, every cancellative
congruence satisfies this condition. A congruence on Nn is cancellative if and only if (a + c)�(b + c) implies a � b

(this is equivalent to the fact that Nn/� is a cancellative monoid). If � is a cancellative congruence and a � b, then we
can eliminate the “common” part of a and b and substitute by a′ and b′ so that a = a′ + c, b = b′ + c, for some c ∈ Nn

and a′ · b′ = 0 (where (x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · · + xnyn). In this way, we can “codify” the information
contained in the assertion a � b by a′ − b′ = a − b. This idea motivates the following definitions. The Abelian group
associated to a congruence � on Nn is the subgroup of Zn defined by

M� = {a − b ∈ Zn | (a, b) ∈ �}.
Conversely, for a given subgroup H of Zn, we define the following congruence of Nn

∼H = {(a, b) ∈ Nn | a − b ∈ H }.
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It is easy to show that ∼H is always cancellative and that a congruence � on Nn is cancellative if and only if � = ∼M� .
Therefore, studying cancellative congruences is equivalent to studying congruences of the form ∼H , with H a subgroup
of Zn.

Proposition 2 (Rosales and García-Sánchez [17, Proposition 8.1]). For every subgroup M of Zn, the congruence ∼M

is a finitely generated submonoid of Nn × Nn.

In the proof of this result, it is shown that ∼M is generated by the minimal elements of ∼M with respect to the
usual partial order, which are called the irreducibles of ∼M . The set of these elements will be denoted by I(∼M), and
it is finite due to Dickson’s Lemma (in Nn the usual partial order is defined by (x1, . . . , xn)�(y1, . . . , yn) if xi �yi

for all i).
If the set

� = {(a1, b1), . . . , (at , bt )}
is a system of generators of � as a monoid, then it is also a system of generators of � as a congruence. This is due to
the fact that for (a, b) ∈ �, there exists i1, . . . , is ∈ {1, . . . , t} such that

(a, b) = (ai1 , bi1) + · · · + (ais , bis ),

and since the congruence generated by � is also a monoid, we obtain that (a, b) is in the congruence generated by �.
Observe that we can eliminate from � the elements of the form (a, a), since these elements are always in the congruence
generated by � (they are always in the reflexive closure). Analogously, if (a, b) and (b, a) are both in �, then we can
eliminate one of them. This motivates the definition of primitive element. A primitive element (a, b) of a congruence
∼M is an element of I(∼M) such that a �= b. By denoting by P(∼M) the set of primitive elements of ∼M , we have
the following consequence.

Corollary 3 (Rosales and García-Sánchez [17, Proposition 8.3]). Let M be a subgroup of Zn. The congruence ∼M is
generated, as a congruence, by P(∼M).

We introduce the following notation for the rest of the paper. Let p, r, k ∈ N, let d1, . . . , dr be positive integers
and let mi = (a1i , . . . , a(r+k)i), i ∈ {1, . . . , p}. Let S be the submonoid of Zd1 × · · · × Zdr × Zk that is generated by
{m1, . . . , mp}.

Then we have a monoid morphism

� : Np → S, �(x1, . . . , xp) =
p∑

i=1

ximi .

It is easy to see [14] that the kernel of this morphism is of the form ∼M , where M is the subgroup of Zp whose elements
(x1, . . . , xp) satisfy the equations

a11x1 + · · · + a1pxp ≡ 0 (mod d1),
...

ar1x1 + · · · + arpxp ≡ 0 (mod dr),

a(r+1)1x1 + · · · + a(r+1)pxp = 0,
...

a(r+k)1x1 + · · · + a(r+k)pxp = 0.

Hence S�Np/∼M . Every commutative finitely generated cancellative monoid is isomorphic to some monoid S as
above (see for instance [17, 20]).

A presentation of S is a system of generators (as a congruence) of ∼M . Hence, by Corollary 3, for computing a
presentation of S, it suffices to computeP(∼M). Calculating the set of primitive elements of ∼M is equivalent to finding
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the elements x ∈ M\{0} such that there exists no y ∈ M\{0, x} satisfying that (y+, y−)�(x+, x−), where

(a1, . . . , ap)+ = (max{a1, 0}, . . . , max{ap, 0}),
(a1, . . . , ap)− = (− min{a1, 0}, . . . ,− min{ap, 0}).

Note that x = (x1, . . . , xp) ∈ M is one of these elements if and only if x+ + x− is a minimal nonnegative nontrivial
integer solution of the system of equations

�1a11x1 + · · · + �pa1pxpp ≡ 0 (mod d1),
...

�1ar1x1 + · · · + �parpxp ≡ 0 (mod dr),

�1a(r+1)1x1 + · · · + �pa(r+1)pxp = 0,
...

�1a(r+k)1x1 + · · · + �pa(r+k)pxp = 0,

where

�i =
{

1 if xi �0,

−1 otherwise.

Hence there exists a tight connection between primitive elements of cancellative congruences and minimal nonnegative
nontrivial elements of a certain subgroup of Zp.

The degree (sum of all its coordinates) of a primitive element is always bounded, and a bound can be obtained
as follows. From Pottier’s bound [11] one easily obtains [17, Theorem 7.5], which is the analog of Pottier’s bound
for systems in which some of the equations can be in congruences. The idea is to convert an equation of the form
a1x1 + · · · + anxn ≡ 0 mod b to a1x1 + · · · + anxn + �by = 0, and then apply Pottier’s bound. By using this together
with the above remark, we obtain the following consequence.

Proposition 4 (Rosales and García-Sánchez [17, Corollary 8.8]). Let a = (a1, . . . , ap) and b = (b1, . . . , bp) be
elements of Np. If (a, b) is a primitive element of ∼M , then

a1 + · · · + ap + b1 + · · · + bp �
r∏

i=1

⎛
⎝1 + |di | +

p∑
j=1

|aij |
⎞
⎠ r+k∏

i=r+1

⎛
⎝1 +

p∑
j=1

|aij |
⎞
⎠ .

Since the set defined by this inequality is finite, we can compute the set of minimal elements (with respect to �)
of ∼M\{(0, 0)} and consequently we can compute a system of generators of ∼M . This result is more important from
a theoretical point of view than from a practical one. An exhaustive search in the region defined by the inequality of
Proposition 4 is very inefficient.

The bound given in Proposition 4 can be used in a different manner, which is related to the first group of implemen-
tations mentioned in the introduction. Let y be a symbol. Define K[S] = ⊕

s∈S Kys . Addition in K[S] is performed
componentwise, and multiplication is accomplished following the rule ysyt = ys+t (together with de distributive law).
The set K[S] becomes a commutative ring in this way, and the monoid morphism � : Np → S induces a ring morphism

� : K[x1, . . . , xp] → K[S], �(xi) = ymi .

Let I∼M
be the kernel of this morphism. Herzog shows in [8] that

{(a1, b1), . . . , (at , bt )}
is a system of generators of ∼M (as a congruence) if and only if I∼M

is generated by

{Xa1 − Xb1 , . . . , Xat − Xbt },
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where X(n1,...,np) = x
n1
1 · · · xnp

p . Moreover,

I∼M
= 〈Xa − Xb ∈ K[x1, . . . , xp] | (a, b) ∈ ∼M 〉
= 〈Xa − Xb ∈ K[x1, . . . , xp] | a − b ∈ M〉

and (a, b) ∈ ∼M if and only if Xa − Xb ∈ I∼M
.

If Xa − Xb belongs to a (reduced) Gröbner basis of I∼M
, then there exists no (c, d) ∈ ∼M such that (c, d) < (a, b).

This implies that (a, b) is a primitive element of ∼M . Therefore we obtain the following consequence.

Corollary 5. Let a = (a1, . . . , ap) and b = (b1, . . . , bp) be elements of Np. If Xa −Xb belongs to a reduced Gröbner
basis of I∼M

, then

a1 + · · · + ap + b1 + · · · + bp �
r∏

i=1

⎛
⎝1 + |di | +

p∑
j=1

|aij |
⎞
⎠ r+k∏

i=r+1

⎛
⎝1 +

p∑
j=1

|aij |
⎞
⎠ .

This provides a bound for the (total) degree of the elements belonging to a Gröbner basis of the ideal I∼M
. This bound

is different from (and not comparable to) the bound introduced in [21,22], for the case where S is also torsion free (and
therefore I∼M

is a prime ideal). A nice comparison of different bounds and algorithms for solving linear Diophantine
equations over the set of non-negative integers can be found in [12].

2. Computing a minimal presentation of a finitely generated cancellative monoid

Let S and M be as in the preceding section. As we have mentioned before, in order to find a presentation of S,
it suffices to compute the set P(∼M). Clearly, if ((a1, . . . , ap), (b1, . . . , bp)) is a primitive element of ∼M , then
(a1, . . . , ap, b1, . . . , bp) is a minimal nonnegative nontrivial integer solution of the system of equations:

a11x1 + · · · + a1pxp − a11xp+1 − · · · − a1px2p ≡ 0 (mod d1),
...

ar1x1 + · · · + arpxp − ar1xp+1 − · · · − arpx2p ≡ 0 (mod dr),

a(r+1)1x1 + · · · + a(r+1)pxp − a(r+1)1xp+1 − · · · − a(r+1)px2p = 0,
...

a(r+k)1x1 + · · · + a(r+k)pxp − a(r+k)1xp+1 − · · · − a(r+k)px2p = 0.

By using the results appearing in [16], we can transform the congruences into linear homogeneous equations. Then
we can use the algorithm appearing in [4] in order to find the minimal nonnegative nontrivial integer solutions of this
system of equations. This transformation is analogous to the one already given above to obtain bounds for the primitive
elements. The idea consists of replacing a1x1 + · · · + anxn ≡ 0 mod b with a1x1 + · · · + anxn + by1 − by2 = 0. This
yields two new variables for each congruence in the original system. Once we obtain the minimal solutions to the new
system, we project onto the original variables. The resulting set is I(∼M).

Note that we have used a different system of the equations for obtaining the bound of Proposition 4. This is due to
the fact that if we use this latter system of equations, then the bound is worse than the one obtained in Proposition 4,
since the number of unknowns is twice the number of unknowns appearing in the system used to obtain the mentioned
bound.

Let us illustrate the procedure for computing P(∼M) with a few examples.

Example 6. Let S be the submonoid of N2 generated by

{(1, 2), (0, 3), (1, 1), (2, 3)}.
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Clearly S is a cancellative commutative monoid, since it is a submonoid of N2. The Abelian group M is the subgroup
of Z4 whose defining (the columns of these equations are the generators of S) are

x1 + x3 + 2x4 = 0,

2x1 + 3x2 + x3 + 3x4 = 0.

The monoid S is isomorphic to N4/∼M . In order to compute a presentation for S it suffices to find the set of primitive
elements of ∼M . Thus, we must find the set of minimal nonnegative nontrivial integer solutions of the system of
equations:

x1 + x3 + 2x4 − x5 − x7 − 2x8 = 0,

2x1 + 3x2 + x3 + 3x4 − 2x5 − 3x6 − x7 − 3x8 = 0.

By using an implementation of the algorithm appearing in [4] performed by our student P. Rodríguez Archilla, we
obtain that this set of minimal solutions is

{(0, 0, 0, 1, 0, 0, 0, 1), (0, 0, 0, 3, 0, 1, 6, 0), (0, 0, 0, 1, 1, 0, 1, 0), (0, 0, 1, 0, 0, 0, 1, 0),

(0, 1, 6, 0, 0, 0, 0, 3), (0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 5, 0, 1, 0, 0, 2), (0, 1, 0, 3, 6, 0, 0, 0),

(0, 1, 1, 2, 5, 0, 0, 0), (0, 1, 4, 0, 2, 0, 0, 1), (0, 1, 2, 1, 4, 0, 0, 0), (0, 1, 3, 0, 3, 0, 0, 0),

(1, 0, 1, 0, 0, 0, 0, 1), (1, 0, 0, 2, 0, 1, 5, 0), (6, 0, 0, 0, 0, 1, 0, 3), (5, 0, 0, 0, 0, 1, 1, 2),

(2, 0, 0, 1, 0, 1, 4, 0), (4, 0, 0, 0, 0, 1, 2, 1), (3, 0, 0, 0, 0, 1, 3, 0), (1, 0, 0, 0, 1, 0, 0, 0)}.
Whenever (a, b) is in a system of generators of a congruence, we do not need (b, a). Also we can remove elements of
the form (a, a). Hence we obtain that

{((0, 0, 0, 3), (0, 1, 6, 0)), ((0, 0, 0, 1), (1, 0, 1, 0)), ((0, 1, 5, 0), (1, 0, 0, 2)),

((0, 1, 0, 3), (6, 0, 0, 0)), ((0, 1, 1, 2), (5, 0, 0, 0)), ((0, 1, 4, 0), (2, 0, 0, 1)),

((0, 1, 2, 1), (4, 0, 0, 0)), ((0, 1, 3, 0), (3, 0, 0, 0))}
is a presentation (though not minimal) of S.

Example 7. Let S be the submonoid of Z3 × Z spanned by

{(1, 2), (2, 5)}.
The equations of M are

x1 + 2x2 ≡ 0 (mod 3),

2x1 + 5x2 = 0.

We already know that S is isomorphic to N2/∼M and that for computing a presentation of S, we must determine the
set P(∼M). As we have seen before, we must find the set of minimal nonnegative nontrivial integer solutions of the
system of equations:

x1 + 2x2 − x3 − 2x4 ≡ 0 (mod 3),

2x1 + 5x2 − 2x3 − 5x4 = 0.

From the results appearing in [16], we can first compute the set of minimal nonnegative nontrivial integer solutions of
the system of equations

x1 + 2x2 − x3 − 2x4 + 3x5 − 3x6 = 0,

2x1 + 5x2 − 2x3 − 5x4 = 0,
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and then project onto the first four coordinates. By using once more the algorithm presented in [4] we obtain that this
set is

{(0, 0, 0, 0, 1, 1), (0, 1, 0, 1, 0, 0), (0, 6, 15, 0, 1, 0), (15, 0, 0, 6, 0, 1), (1, 0, 1, 0, 0, 0)}.
Therefore the set of minimal solutions of the original system of equations is

{(0, 1, 0, 1), (0, 6, 15, 0), (15, 0, 0, 6), (1, 0, 1, 0)},
which means that

{((0, 6), (15, 0))}
is a presentation of S.

3. Computing the irreducibles, an alternative approach

For a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ Np write

gcd(a, b) = (min{a1, b1}, . . . , min{ap, bp}),
�(a, b) = (a, b) − (gcd(a, b), gcd(a, b))

and

supp(a) = {i ∈ {1, . . . , p} | ai �= 0}.
Clearly supp(a) ∩ supp(b) is empty if and only if gcd(a, b) = 0. Let R be a submonoid of (Nn × Nn, +). We say that
R is simplified if �(R) ⊆ R. We characterize this property and show its important connection with the computation of
the set of primitive elements of a congruence of the form ∼M .

Lemma 8. Let (a1, b1), . . . , (ar , br ) ∈ Nn × Nn be such that gcd(ai, bi) = 0 for all i ∈ {1, . . . , r}. Let (a, b) =
(a1, b1)+· · ·+ (ar , br ). If �(a, b) �= (a, b), then there exist i, j ∈ {1, . . . , r}, i �= j , such that �((ai, bi)+ (aj , bj )) �=
(ai, bi) + (aj , bj ).

Proof. If �(a, b) �= (a, b), then gcd(a, b) �= 0. Hence, there exists k ∈ supp(a) ∩ supp(b) = supp(a1 + · · · + ar) ∩
supp(b1 + · · · + br). Thus there are i ∈ {1, . . . , r} such that k ∈ supp(ai) and j ∈ {1, . . . , r} with k ∈ supp(bj ). Since
supp(ai) ∩ supp(bi) = ∅, i cannot be equal to j. We deduce then that supp(ai + aj ) ∩ supp(bi + bj ) is not empty, and
thus �((ai, bi) + (aj , bj )) �= (ai, bi) + (aj , bj ). �

Theorem 9. Let R be a submonoid of Nn×Nn generated by {(a1, b1), . . . , (at , bt )}. Assume that gcd(ai, bi)=0 for all
i ∈ {1, . . . , t}. Then R is simplified if and only if for all i, j ∈ {1, . . . , t} with i < j we have �((ai, bi) + (aj , bj )) ∈ R.

Proof.
Necessity: Trivial.
Sufficiency: Assume that R is not simplified. Let (a, b) ∈ Nn × Nn be minimal with respect to the condition that

(a, b) ∈ R and �(a, b) /∈ R. There exist i1, . . . , ir ∈ {1, . . . t} such that (a, b)=(ai1 , bi1)+· · ·+(air , bir ). Since �(a, b) �=
(a, b), we have some j, k ∈ {1, . . . , r} such that �((aij , bij ) + (aik , bik )) �= (aij , bij ) + (aik , bik ) by Lemma 8. Hence
�((aij , bij )+(aik , bik ))=(aij , bij )+(aik , bik )−(c, c) for some c ∈ Nn\{0}. By hypothesis �((aij , bij )+(aik , bik )) ∈ R,
and thus (a, b)− (c, c) also belongs to R. But (a, b)− (c, c) < (a, b) and �((a, b)− (c, c))= �(a, b) /∈ R, contradicting
the minimality of (a, b). �

Let M be a subgroup of Zn. Set, as we did above,

∼M = {(a, b) ∈ Nn × Nn | a − b ∈ M}.
We already know that ∼M is a congruence on Np and a submonoid of Nn × Nn generated by its irreducibles. It is
well known (see for instance [17, Chapter 8]) that I(∼M) =P(∼M) ∪ {(e1, e1), . . . , (en, en)}, where ei is the ith row
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of the n by n identity matrix. Clearly ∼M is simplified, moreover, if (a, b) and (c, d) are elements in ∼M such that
(a, b)�(c, d), then (c, d)−(a, b) belongs also to ∼M (this is in fact the idea used to prove that ∼M is finitely generated
as a monoid).

Let X be a subset of a monoid T. Then

〈X〉 = {a1x1 + · · · + akxk | k ∈ N, a1, . . . , ak ∈ N, x1, . . . , xk ∈ X}
is a submonoid of T, the submonoid of T generated by X.

Lemma 10. Let A ⊆ ∼M . Then P(∼M) ⊆ A if and only if {(a, b) ∈ ∼M | gcd(a, b) = 0} ⊆ 〈A〉.

Proof. Observe that every primitive element (a, b) satisfies gcd(a, b) = 0. The necessity condition is trivial. For
sufficiency, observe that every primitive element (a, b) of ∼M is in 〈A〉. By the minimality of (a, b), it must
belong to A. �

For u ∈ M , one clearly has that (u+, u−) ∈ ∼M and that gcd(u+, u−) = 0.

Proposition 11. Let A = {(a1, b1), . . . , (at , bt )} be a subset of ∼M . Then P(∼M) ⊆ A if and only if

(1) {a1 − b1, . . . , at − bt } generates M as a monoid and
(2) 〈A〉 is simplificable.

Proof.
Necessity: Assume that P(∼M) ⊆ A.

(1) Letu ∈ M\{0}.Then (u+, u−) ∈ ∼M .AsI(∼M)generates∼M as a monoid, there exist (ai1 , bi1), . . . , (air , bir ) ∈
I(∼M) such that (u+, u−) = (ai1 , bi1) + · · · + (air , bir ). Since supp(u+) ∩ supp(u−) is empty, every (aij , bij ) ∈
P(∼M) and thus (aij , bij ) ∈ A. Hence, u = u+ − u− = (ai1 − bi1) + · · · + (air − bir ).

(2) Let (a, b) ∈ 〈A〉. Then (a, b) ∈ ∼M and �(a, b) ∈ ∼M . By Lemma 10, we have that �(a, b) ∈ 〈A〉.

Sufficiency: By Lemma 10, it suffices to show that if (a, b) ∈ ∼M and gcd(a, b) = 0, then (a, b) ∈ 〈A〉. As
a − b ∈ M , there are i1, . . . , ir ∈ {1, . . . , t} such that a − b = ai1 − bi1 + · · · + air − bir . Then there exists c ∈ Nn

with (a, b) + (c, c) = (ai1 , bi1) + · · · + (air , bir ) ∈ 〈A〉. By (2), we have that (a, b) = �((a, b) + (c, c)) ∈ 〈A〉. �

Remark 12. Observe that if {v1, . . . , vr} is a system of generators of M as a group, then {v1, −v1, . . . , vr , −vr}
generates M as a monoid.

Let A be a subset of Nn × Nn. Denote the set of minimal elements with respect to the usual partial order � by
Minimals� (A). The set A is reduced if Minimals�A = A.

Corollary 13. Assume that M �= 0. Let A = {(a1, b1), . . . , (at , bt )}. Then P(∼M) = A if and only if

(1) {a1 − b1, . . . , at − bt } generates M as a monoid,
(2) 〈A〉 is simplified,
(3) gcd(ai, bi) = 0 for all i ∈ {1, . . . , t} and
(4) A is reduced.

Proof. The necessity follows directly from our preceding results. For the converse, we already know (by Proposition
11) that P(∼M) ⊆ A. Assume that there exists (a, b) ∈ A\P(∼M). Then there exists (c, d) ∈ P(∼M) such that
(c, d) < (a, b), contradicting the fact that A is reduced. �

Algorithm 14. Reduce(A).
INPUT: A ⊆ Nn × Nn such that gcd(a, b) = 0 for all (a, b) ∈ A and {a − b | (a, b) ∈ A} generates M as a monoid.
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OUTPUT: B ⊆ Nn × Nn reduced such that gcd(a, b) = 0 for all (a, b) ∈ B and {a − b | (a, b) ∈ B} generates M as
a monoid.

While A �= Minimals� (A) do
A = Minimals� (A) ∪ {(a, b) − (c, d) | (a, b), (c, d) ∈ A and (c, d) < (a, b)}.

Return A.

Let Ai be the resulting set after the ith execution of the while loop in the above algorithm (A0 = A). Clearly, this
gives a sequence

A0 + (Nn × Nn) ⊆ A1 + (Nn × Nn) ⊆ · · · ⊆ Ai + (Nn × Nn) ⊆ · · · .

The algorithm stops, since this sequence must be stationary (this is an easy consequence of Dickson’s Lemma; see
for instance [17, Lemma 6.9]). The following proposition yields a procedure to compute P(∼M) from a system of
generators of M as a monoid (thus it suffices to know a basis of M).

Proposition 15. Let A = {(a1, b1), . . . , (at , bt )} ⊆ Nn × Nn be such that

(1) {a1 − b1, . . . , at − bt } generates M as a monoid,
(2) gcd(ai, bi) = 0 for all i ∈ {1, . . . , t} and
(3) A is reduced.

Let B = {�((ai, bi) + (aj , bj )) | i, j ∈ {1, . . . , t}, i < j}. Then A =P(∼M) if and only if Reduce(A ∪ B) = A.

Proof. If A = P(∼M), then clearly Reduce(A ∪ B) = A. Now assume that Reduce(A ∪ B) = A. We prove that
A =P(∼M). In view of Corollary 13, it suffices to show that 〈A〉 is simplified. By Theorem 9, it suffices to show that
B ⊆ 〈A〉. Let (x, y) ∈ B. Since Reduce(A∪B)=A, there exists i1 ∈ {1, . . . , t} such that (ai1 , bi1)�(x, y). If equality
holds, then (x, y) ∈ A. Otherwise, by using again that Reduce(A ∪ B) = A, we have that there exists i2 ∈ {1, . . . , t}
such that (ai2 , bi2)�(x − ai1 , y − bi1). If equality holds, then (x, y) = (ai1 , bi1) + (ai2 , bi2) ∈ 〈A〉. If this is not the
case, we find i3. If we continue doing this, we construct a descending chain that must become stationary. Thus, there
exists ik ∈ {1, . . . , t} such that (aik , bik ) = (x − ai1 − · · · − aik−1 , y − bi1 − · · · − bik−1). Hence, (x, y) ∈ 〈A〉. �

Algorithm 16. An algorithm to compute P(∼M).
INPUT: A ⊆ Nn × Nn such that gcd(a, b) = 0 for all (a, b) ∈ A and {a − b | (a, b) ∈ A} generates M as a monoid.
OUTPUT: P(∼M).

(1) B = Reduce(A).
(2) C = {�((a, b) + (c, d)) | (a, b), (c, d) ∈ B and (a, b) �= (c, d)}.
(3) D = Reduce(B ∪ C).
(4) If D = B, then return B, else set B = D and goto (2).

If M is given by generators, then it is easy to obtain A. If M is given in terms of equations, then we use the computation
of the Smith normal form associated to the matrix of coefficients of these equations in order to compute a system of
generators of M, as explained in [17, Chapter 2].

From Proposition 15, we deduce that if the algorithm returns something, then the output is preciselyP(∼M). Besides,
the algorithm must stop for the same reason Algorithm 14 does: there are not infinite ascending chains of ideals in
Nn × Nn.

Lemma 17. Under the standing hypothesis and definitions of Algorithm 16, if D �= B, then B + (Nn × Nn)�D +
(Nn × Nn).

Proof. Observe that if (a, b) is not a minimal element of B, and (c, d) ∈ B is such that (c, d) < (a, b), then (a, b) ∈
(a − c, b − d) + (Nn × Nn); and precisely (a, b) is substituted by (a − c, b − d) in the Reduce step. This proves that
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B + (Nn × Nn) ⊆ D + (Nn × Nn). The inclusion is proper because D �= B implies that new elements that are not
greater than or equal to any element in B are added. �

3.1. A not so neat but faster version of the algorithm

The Reduce step in Algorithm 16 is highly time consuming. In this section we show an alternative way to avoid
reduction in each loop.

For x ∈ Nn ×Nn and L a sequence of elements of Nn ×Nn, we say that x is in normal form with respect to L if there
is no element in L less than or equal to x (with respect to the usual partial order). If x is not in normal form with respect
to L, then we can consider the first element of L less than or equal to x, say y1. Then we can see whether x − y1 is in
normal form with respect to L. If not, we find y2 ∈ L such that x − y1 − y2 ∈ Nn × Nn. Since there are only finitely
many elements less than or equal to x, after a finite number of steps, we find yk ∈ L such that x′ = x − y1 − · · · − yk

is in normal form with respect to L. We say that x′ is a normal form of x with respect to L. The following algorithm
computes a normal form of x with respect to L.

Algorithm 18. NormalForm(x, L).
INPUT: x ∈ Nn × Nn, L a sequence of elements in Nn × Nn.
OUTPUT: a normal form of x with respect to L.

Set x′ = x.
While M = {y ∈ L | y�x′} �= ∅ do

y = first(M),
x′ = x′ − y.

Return x′.

Let B be any (finite) subset of Nn × Nn. Set

• B0 = B,
• Bi+1 = Bi ∪ {NormalForm(�((a, b) + (c, d)), Bi) | (a, b), (c, d) ∈ Bi}.

Let xi ∈ Bi+1\Bi . Then xi is in normal form with respect to Bi , and thus xi /∈ Bi + (Nn × Nn). This proves that if
Bi�Bi+1, then Bi + (Nn × Nn)�Bi+1 + (Nn × Nn). As pointed out above, there exists k ∈ N such that Bk = Bk+1
(see [17, Lemma 6.9]). Thus, the following algorithm stops after a finite number of execution steps. We say that⋃

i �0 Bi = Bk is the saturation of B.

Algorithm 19. Saturation(B).
INPUT: B ⊆ Nn × Nn

OUTPUT:
⋃

i �0 Bi .

(1) C = {NormalForm(�((a, b) + (c, d)), B) | (a, b), (c, d) ∈ B, (a, b) �= (c, d)}\{0}.
(2) D = B ∪ C.
(3) If D = B, then return B, else set B = D and goto (1).

Lemma 20. Let B be a finite subset of Nn × Nn with �(B) = B. Let B̄ = Saturation(B). Then R = 〈B̄〉 is simplified.

Proof. Assume that B̄ = {(a1, b1), . . . , (at , bt )}. We use Theorem 9 to prove that R is simplified. Observe that

(1) For (a, b) ∈ Nn × Nn, if NormalForm((a, b), B̄) = 0, then (a, b) ∈ R.
(2) Since B̄ = Saturation(B), for every (a, b), (c, d) ∈ B̄, NormalForm(�((a, b) + (c, d)), B̄) = 0.

The proof now follows easily. �
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Lemma 21. Let M be a subgroup of Zn, and let {b1, . . . , bt } be a basis of M. Let B = {(b+
1 , b−

1 ), . . . , (b+
t , b−

t )}, and
let B̄ = Saturation(B). If (u+, u−) ∈ ∼M is a primitive element such that u = ∑t

i=1 aibi with a1, . . . , at ∈ N, then
(u+, u−) ∈ B̄.

Proof. Since u = ∑t
i=1 aibi , there exists a ∈ Nn such that (u+, u−) + (a, a) = ∑t

i=1 ai(b
+
i , b−

i ). This implies that
(u+, u−) + (a, a) ∈ 〈B̄〉. By Lemma 20, 〈B̄〉 is simplified, and thus (u+, u−) = �((u+, u−) + (a, a)) ∈ 〈B̄〉. Since
(u+, u−) is irreducible, we deduce that (u+, u−) ∈ B̄. �

Proposition 22. Let M be a subgroup of Zn, and let {b1, . . . , bt } be a basis of M. For every element s = (s1, . . . , st ) ∈
{−1, 1}t , set

Bs = {((s1b1)
+, (s1b1)

−), . . . , ((stbt )
+, (stbt )

−)}.
Then

P(∼M) ⊆
⋃

s∈{−1,1}t
Saturation(Bs).

Proof. Let (u+, u−) ∈ P(∼M). Then there exist a1, . . . , at ∈ Z such that u = ∑t
i=1 aibi . For every i ∈ {1, . . . , t}, if

ai < 0, then set ci =−ai , and let si =−1; otherwise, set ci =ai and si =1. Then, u=∑t
i=1 ci(sibi) with c1, . . . , ct ∈ N

and {s1b1, . . . , st bt } is a basis of M. By Lemma 21, (u+, u−) ∈ Saturation(Bs). �

Thus, the following algorithm computes the set of primitive elements of ∼M , for M a subgroup of Zn.

Algorithm 23. PrimitiveElements(M).
INPUT: M a subgroup of Zn.
OUTPUT: P(∼M).

If a basis for M is not known, compute {b1, . . . , bt }, a basis of M.
For every s ∈ {−1, 1}t ,

compute Bs = Saturation(Bs), where Bs is defined as in Proposition 22.
Return Minimals�

⋃
s∈{−1,1}t Bs .

Observe that we can economize half of the work performed, since (a, b) ∈ P(∼M) implies that (b, a) ∈ P(∼M).
Thus, we can consider s1 to be always equal to one and add to the output the symmetric of the resulting set.

Example 24. We go back to Example 6. M is given by the equations

x1 + x3 + 2x4 = 0,

2x1 + 3x2 + x3 + 3x4 = 0.

We identify (a, b) with a − b, since �((a, b) + (c, d)) in Step (1) of Algorithm 19 can be obtained directly from
(a − b) + (c − d). By taking z = (a − b) + (c − d), we have that �((a, b) + (c, d)) = (z+, z−).

A basis for M is {(−1, 0, −1, 1), (−3, 1, 3, 0)}. Thus, we must compute the saturation of B(1,1) = {(−1, 0, −1, 1),

(−3, 1, 3, 0)} and B(1,−1) = {(−1, 0, −1, 1), (3, −1, −3, 0)}. We outline this computation as follows.

• (−1, 0, −1, 1) + (−3, 1, 3, 0) = (−4, 1, 2, 1), which is in normal form with respect to B(1,1). So we add it to
D : =B(1,1).
Observe now that we do not have to check whether the normal form of (−4, 1, 2, 1) + (−3, 1, 3, 0) with respect
to {(−1, 0, −1, 1), (−3, 1, 3, 0), (−4, 1, 2, 1)} is zero, since by looking at the signs we know that this is the case.
(−1, 0, −1, 1) + (−4, 1, 2, 1) = (−5, 1, 1, 2), which is in normal form, and we add it to our set D.
(−1, 0, −1, 1) + (−5, 1, 1, 2) = (−6, 1, 0, 3), also in normal form. Thus we include it in our set D.
No more combinations are possible by using the argument of the signs given above (this actually speeds up the
implementation of this procedure).
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• (−1, 0, −1, 1) + (3, −1, −3, 0) = (2, −1, −4, 1), in normal form; so we add it to B(1,−1).
(−1, 0, −1, 1) + (2, −1, −4, 1) = (1, −1, −5, 2) is also in normal form.
(−1, 0, −1, 1) + (1, −1, −5, 2) = (0, −1, −6, 3) in normal form as well, and there are no more possibilities.

Thus we obtain

((0, 0, 0, 1), (1, 0, 1, 0)), ((0, 1, 3, 0), (3, 0, 0, 0)), ((0, 1, 2, 1), (4, 0, 0, 0)),

((0, 1, 1, 2), (5, 0, 0, 0)), ((0, 1, 0, 3), (6, 0, 0, 0)), ((2, 0, 0, 1), (0, 1, 4, 0)),

((1, 0, 0, 2), (0, 1, 5, 0)) and ((0, 0, 0, 3), (0, 1, 6, 0)).

The rest of primitive elements are obtained by symmetry.

Example 25. We now revisit Example 7. The equations of M are

x1 + 2x2 ≡ 0 (mod 3),

2x1 + 5x2 = 0,

and a basis for M is {(15, −6)}. Here computations are not necessary, since this set is already saturated (has only one
element). Thus, the primitive elements are ((15, 0), (0, 6)) and its symmetry ((0, 6), (15, 0)).

The algorithms were implemented in GAP [23]. In the examples we run,Algorithm 23 was much faster thanAlgorithm
16. As we indicated above, the main reason for this is that the Reduce step is too slow. Algorithm 23 works fine if the
rank of M is small, that is, if the number of independent defining equations approaches the number of generators of the
monoid. This of course is a handicap of this method if we plan to use it for numerical semigroups, where there is only
one equation. Next, we give a table comparing both algorithms. The second and third columns are execution times in
milliseconds.

Semigroup Algorithm 23 Algorithm 16

〈(3, 0, 0), (0, 3, 0), (0, 0, 3), (1, 2, 1), (1, 1, 2)〉 0 15
〈(3, 0, 0), (0, 3, 0), (0, 0, 3), (1, 2, 1), 219 328

(2, 1, 2), (1, 1, 2)〉
〈(4, 0, 0), (0, 3, 0), (0, 0, 2), (1, 2, 1), 735 9625

(3, 1, 2), (1, 1, 2)〉
〈(3, 0, 0, 0), (0, 3, 0, 0), (0, 0, 3, 0), (0, 0, 0, 2), 453 3610

(1, 2, 1, 1), (1, 1, 1, 2), (1, 1, 1, 1)〉
For numerical semigroups with a big minimal system of generators, if we are looking for a minimal presentation in-

stead of the irreducibles, we recommend using the function MinimalPresentationOfNumericalSemigroup
of the package [5] which implements the algorithm given in [15]. Observe that for computing some invariants of the
semigroup, such as the elasticity, a minimal presentation is not enough (see [2]).

Semigroup Algorithm 23 [5]

〈12, 34, 57〉 687 16
〈91, 239, 372〉 219 2594
〈9, 15, 23, 37〉 21687 15

In this table we highlight several aspects. For low embedding dimension (with respect to the number of minimal
generators), the algorithm can somehow compete against the one given in [15] and implemented in [5]. Due to its
programming structure, the latter algorithm gains some advantage when the multiplicity (with respect to the least
minimal generator) is big. However, the last row and the remarks given above stress that the algorithm of [15] will
work better for large embedding dimension.
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