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Abstract

Let S be a reduced commutative cancellative atomic monoiglidfa nonzero element
of S, then we explore problems related to the computation(ef, which represents the
number of distinct irreducible factorizations efe S. In particular, if S is a saturated
submonoid ofN?, then we provide an algorithm for computing the positive integer r
for which ™)

L !
We further show that(s) is constant on the Archimedean components.diVe apply the
algorithm to show how to compute

n(s")

n—o00 nr(x)fl
and also consider various stability conditions studied earlier for Krull monoids with finite
divisor class group.
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1. Introduction

The study of factorization properties of a commutative cancellative monoid has
been an active area of research in the recent mathematical literature. In this paper,
we continue an investigation begun in the papers [1,2,8] concerning the number of
different factorizations of an element into a product of irreducible elements. In a
multiplicative monoids, if we seta ~ b if and only if a|b andb|a, then the factor
monoidS/ ~ is called theeductionof S. By the results of [7] or [15], the study of
the factorization properties of a commutative cancellative moSaégdequivalent
to the study of the same propertiessin~. Thus, throughout the remainder of this
paper, we assume that all monoids are commutative, cancellative, and reduced.

If (S, -) is such a monoid with minimal system of generatggs. . ., s, }, then
it is well known that$ is atomic (i.e., every nonzero element$€an be written
as a product of irreducible elements$)fand that the set of atoms (or irreducible
elements) ofS is A(S) = {s1, ..., sp}. For a givens € S denote by

¢ 1(s) the number of factorizations ofinto irreducibles,
o R(s)={(kn,....kp) € NP | s1... 5% — sk for somek € N\ {0}}, and
e 1(s) the dimension of (R(s)), theQ-vector space spanned bysR

From [8] we deduce the following result.

Theorem 1.1. Let S be a finitely generated reduced cancellative commutative
monoid and let € S. There exists a rational positive constats) € Q such that

n(sn) — A(S)nr(s)—l + O(nr(s)—Z).

SupposeS is a monoid satisfying the hypothesis of Theorem 1.1 ard
S\ {0}. We break the results of this paper into three sections. After this
introduction, Section 2 gives an upper bound @) iin terms of a presentation of
the monoidS. We further show that the function r is constant on the Archimedean
components of. Section 3 contains the principal goal of this work, an algorithm
to compute ¢s) from a presentation of whens is a saturated submonoid bf .
In Section 4, we consider the limit

ii(s) = lim n(s")

n—oo nr(s)—l :

In [1] and [2] this limit is used to characterize Dedekind domains and Block
Monoids with particular finite class groups. In view of Theorem Il is
exactly the constant @), and we will show how, given the results in Section 3, the
formula given in [9] for A(s) can be used to compute this value. We close with a
brief discussion of stability properties examined for more specific structuresin [2]
and [1].
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2. Boundson r(s) and Archimedean components

Let (S, -) be afinitely generated reduced cancellative commutative monoid. As
we pointed out aboves is then atomic and = (A(S)). If A(S) = {s1,...,sp},
then we can define the map

. ay a
¢ NP — S, g(a,...,ap) =575,

which is usually known as théactorization homomorphisnof S. In [14,
Chapter 1] it is shown that K&p) = {(a,b) € N? x N? | ¢p(a) = ¢(b)} =
~u, Where M is a subgroup ofZ? such thatM N NP = {0} and ~, is the
congruence oN? defined bya ~y b if a — b € M. Hence,S is isomorphic

to the monoidN? /~ s, +) (see [14, Chapter 3] for a complete description of the
equations of\f in terms of the generators 6. Thus, for studying factorization
problems onS, we can restrict ourselves to the study of factorization problems
onN? /~,r with M NN?” = {0}, where we will use additive notation. Fore N?,
[x]~,, denotes the--class ofx. Observe thap([x]~,,) = #([x]~,,) and that
[x]~,, = (x + M) NNP. Actually, for a givens € S, the setp~—1(s) contains the
coefficients of all the factorizations in terms ofsy, . . ., s,,. Moreover, for every

x € p7L(s), [x]~,, = ¢~ L(s). In this setting,

R(s) = R([x1~,) = U[nx]NM.

neN

LemmaZ2.l. Letx € N”\ {0} andM be a subgroup df.” such that NN? = {0}.
Takems1, ...,m, € M. The following conditions are equivalent.

(1) The vectorsni, ..., m,; are Q-linearly independent.
(2) The vectorse, x + mz, ..., x + m,; are Q-linearly independent.

Proof. (1) = (2). Assume thatox + z1(x + m1) + - - + z:(x + m;) = 0 with
20,...,2t € Z. Then(zo+---+z;)x = (—z1)m1+- - -+ (—z,)m;. SinceM NN? =
{0}, we obtain thatg+- - - +z; =0, whencg—z1)m1+- - -+ (—z;)m; = 0. Since
{ma,...,m,;} are Q-linearly independent, we conclude that=--- =z, =0,
which leads tqg = 0.

(2) = (1). Assume thatni,...,m; are not linearly independent. We can
assume without loss of generality that there exigt..., ¢;—1 € Q such that
m;=qimi+---+¢q;—1m;—1. Then

qu(x +my) + -+ g Fme—1) = (qut e+ g1 — Dy =x+my,
which contradicts the fact that x +m1, ..., x +m, are linearly independent.c)

Proposition 2.2. Let M be a subgroup oZ? such thatM N N? = {0}. Then

(1) for everyx e N”, r([x]~,,) < rankM) +1,
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(2) rI(,...,Dl~,,) =rankM) + 1.

Proof. (1) Let{as,...,a;} € N? beabasis of §(R([x]~,,)). From the definition
of R([x]~,,), we deduce that there exigi,...,k; € N\ {0} such thata; €

(kix1~ys - ar € [kex]~y,. If m = k1---k;, then Z‘—lal,..., km,al € [mx]~,,.
Furthermore, these elements are linearly independentand by Lemma 2.1, the same
holds for

mae, M e _Mcm

kzaz klal,...,klat klale .

Hencer — 1 < rank(M).
(2) Lett =rankM) and let{m1, ..., m,} be a basis oM. Clearly there exists
n € N\ {0} such thatn(1,...,1) + ma,...,n(1,...,1) + m; € NP. Moreover,
using again Lemma 2.1, we have that the elemef(is..., 1), n(1, ..., 1) +mq,
.., n(l,...,1) + m, are linearly independent. Since these elements belong to
[n(1,...,D]~,,, they all belong to Kx]~,,), whence ([(1,...,1)]~,) >t + 1.
Using (1) we now conclude that

r((@...., 1)]~M) =t+1l=rankM)+1. O

We see next how the map r behaves on the Archimedean components of
a monoid. This behavior will allow us in a practical manner to compute r. On
a commutative monoids, -) define the following binary relatiomi /b if there
existn,m € N\ {0} andx, y € S such thata"” = xb andb™ = ya. In [16] it is
shown that\ is a congruence ofi. The A/-classes are called thirchimedean
componentsf S. We will now show that ¢x) = r(y) wheneverc 'y (of course
assuming the hypothesis of Theorem 1.1). We begin with a lemma which follows
directly from the definitions of r angl.

Lemma 2.3. Let (S, -) be a finitely generated reduced cancellative commutative
monoid and take € S\ {1}. Then

(1) r(s) =r(s*) forall k e N'\ {0},
(2) n(s) < n(ss’) forall s € S.

Lemma 2.3 allows us to deduce the following.

Proposition 2.4. Let (S, -) be a finitely generated reduced cancellative commuta-
tive monoid. Take, y, z € S andk € N\ {0} such thate = yz. Thenr(y) < r(x).

Proof. By Lemma 2.3, we have that(y") < n(y"z") for all n € N. Applying
Theorem 1, we obtain thaty) < r(yz) = r(x¥). Again using Lemma 2.3 we
obtainy) <r(x). O

As a consequence of this result we obtain the following.
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Corollary 2.5. Let (S, -) be afinitely generated reduced cancellative commutative
monoid. Ifx, y € §\ {1} are such thakt Ny, thenr(x) =r(y).

In [14, Chapter 13] there is a procedure for computing the Archimedean
components of a monoid of the forlNY /~j; once we are given the subgroitp
Hence, if we want to compute the image of the map#/~y \ {[0]~,,} = N,
then we only have to choose an elemgni~,, from each of the Archimedean
components ofN” /~, different from the one containingd]~,, and compute
r([x;]1~,,) (there are at most”2Archimedean components iN”/~ ). In the
next section, we will show how to computgx]-,,) fromx and M.

Example 2.6. Let S be a numerical monoid (i.e., the submonoid®f +) mini-
mally generated byn1, ..., nt}). ThenS has two Archimedean componen}
ands$ \ {0}. MoreoverS = N/~ with M = {(x1, ..., x;) € Z¥ | nix1 + -+ +

nixr = 0} (see Proposition 3.1 in [14]). Since ratk) = k — 1, Proposition 2.2
and Corollary 2.5 state thatsh = & for all s € S\ {0}. Hence the only values of r
are 0 andk, which means that we may encounter atomic monoids with big “gaps”
in the image of r.

3. Analgorithm for computing r (s)

Fora = (as,...,ap) € N7, set suppu) = {i | a; # 0}. If X is a subset oN”,
take suppX) to be [ J, .y Suppx). For everyi € {1,..., p} denote bye; the
element inN? all of whose coordinates are zero except tttewhich is equal
to one.

Lemma3.1. Letx € N?\ {0} and letM be a subgroup af.” such that NN? =
{0}. Assume without loss of generality ttsaipgR([x]~,,)) ={1,...,¢}. Then
r([x]"’M) = r([el +t eq]NM)'
Proof. Since supgpx) C {1,..., g}, there exisk € N\ {0} andy € N? such that
k(ex+---+e4) = x + y. By Proposition 2.4, this implies that
r([x]~y) <r(len+---+egley).

Since{l, ..., g} € supR([x]~,)), there existy, ..., y, € N” andky, ..., k; €
N\ {0} such thafe;]~,, + [yil~, = [kix]~,, foralli € {1, ..., q}. This implies
that

le1+ - +egley + 1t +ygloy = [(k1+-~-+kq)x]NM.
Using once again Proposition 2.4, we obtaies+- - -+e¢41~,) <r((xl~,). O

Define onNY the congruence by
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(X1, ., X)) T (Y1, ..o, yg) F
(x1,...,%4,0,...,0 ~» (y1,...,¥4,0,...,0).

SinceN? /~,, is cancellative and reduced, it follows th¥ft /7 is also cancellative
and reduced (note thatis the restriction ofvj, to the firstg-coordinates). Thus
there exists a subgroufd’ of Z4 such thatr = ~ ;.. Moreover, once we know
the defining equations d#f,

11x1 4 - -+ a1px, = 0 (Moddy),

QX1+ Fapxp, = 0 (Mmodéy),

Ak+11X1+ - F Qg pxp = 0,

p1X1+ -+ oppxp = 0,

the equations oM’ are just

11x1 + -+ agxg = 0 (Modédy),

ap1x1+ -+ aggxg = 0 (modéy),

Q11X + - F g 1gXg = 0,

Qp1X1+ -+ apgxg = 0.
Proposition 3.2. Letx, M, and M’ be as above. Ther[x]~,,) = rankM’) + 1.

Proof. Letn € N\ {0}. Define
f:[n(l,...,l)] —>[n(el+...+eq)]

~u ~M
by

FOL - Y) =1+, ¥4,0,...,0).
If (y1,....,¥¢) ~w n(d,..., 1), then

01, -, ¥4,0,...,0) ~yn(er+--- +eg),

which means thaf is well defined. Clearlyf is injective. We see next that it is
also surjective. If(y1, ..., yp) ~my nler+---+ey), theny,y1=--- =y, =0,
because otherwise we could deduce that éRfp]~,,)) # {1,...,q}. Hence
fO1, ..., ¥9) =1, ..., yp). Thisimplies thatf is bijective and therefore
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n([n(d ..., 1)]~M,) #n@ ..., D~ | =#(nt1+--+ eq)]NM)

= (et ep).,)

Applying now Theorem 1.1, we obtain that

r((@....D]. ) =r(ler+-- +egl~y).

~u

Finally, Proposition 2.2 and Lemma 3.1 assert thiatr.,,) =rankM’) +1. O

In view of the preceding results, for computing[x]~,) it suffices to
determine supfiR([x]~,,). This is the step we accomplish next.

The congruence-, is itself a submonoid oN? x N? that is generated by
its set of minimal nonzero elements, which turns out ta4{e-y,). There is an
algorithm for computing this set from the equationsf(see [14, Chapter 8]).

Proposition 3.3. Let M be a subgroup oZ” such thatM N N? = {0} and let
x € NP, Then

supp(R([x1~,)) = U suppb).
(a,b)e A(~n),
Supfa) Ssuppx)

Proof. Let (a,b) € A(~y) such that supf@) € suppx). Then there exists
n € N\ {0} such thatix — a € NP, whencenx — a + b ~y; nx. This implies

that suppb) € suppR([x]~,,))-
For the other inclusion, tak@1, ..., y,) € R([x]~,,). Then(y1, ..., yp) ~m
nx for somen € N” \ {0}. Hence

k
(nx, (1,0 ¥p)) = Y (@i, by),
i=1

for some (a;, b;) € A(~py) (this set generates); as a monoid). For every
ie{l, ... k},

SUp[a;) C suppnx) =supgx) and

k
SUPHYL. - ... yp) S | suppbn). O
i=1

For a givens € S, supfR(s)) = {i1,...,i,} implies that the irreducibles
appearing in the factorizations of the powers @ire actually;,, ..., s;, .
We illustrate these results with an example.
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Example3.4.LetS = ((2,4, 1), (0,1, 2), (3,6, 1)) € N2 x Z/3Z. The semigroup
is thus cancellative. By [14, Proposition 3.3]js isomorphic taN3/~,,, where
M is the subgroup of? with defining equations

2x +3z=0,
4x +y+6z=0,
x+2y+z=0 (mod3

(the columns of the equations &f are just the generators §§. ClearlyM N\N° =
{0} and consequently is reduced. Take = 3(2,4,1) — 2(3,6,1) = (0,0, 1)
which is in the quotient group of (the group generated Wyin Z2 x Z/37) and
is notin S. Notice that 3 = (0, 0, 0) € S, whenceS is not root-closed, which in
particular means thet is not a Krull monoid.

Applying the results obtained in [14, Chapter 8] we get that

A(~u) = {(9e1, 6e3), (Be3, Y1), (e1, e1), (€2, €2), (€3, €3) }

(this in particular means thdfe1]~,,, [e2]~,,, [e3]l~,} IS @ minimal system of
generators forS; otherwise we would find an element of the for@, ) in
A(~p) with i ¢ suppb)).

We compute ((e1]~,,). By Proposition 3.3 we deduce that

sup(R([e1]~,)) = {1, 3}.
HenceM' is the subgroup of2 with defining equations

2x +3z=0,
4x + 6z =0,
x+z=0 (mod3.

Clearly rankM’) = 1 and therefore(fe1]~,,) = 2.

In some special settings there are alternative ways for compukingvithout
computingA(~y). These methods could be cumbersome in some cases. One of
special interest in factorization theory is explained next.§_.be a submonoid of
N for some positive integef. For a given subset of N¢ write Q(A) for the
subgroup ofZ¢ generated byd. The monoids is saturatedif Q(S) NN? = §

(this kind of monoid has been widely studied in the literature, and is sometimes
called a full affine semigroup; see for instance [10,13]). It is well known that every
finitely generated reduced Krull monoid is isomorphic to a saturated submonoid
of N? for some positive integef (see for instance [3]). Sinc& is reduced and
cancellative, it is atomic. The set(S) coincides with the set of minimal elements

of $\ {0} = (Q(S) NN%)\ {0} with respect to the usual partial order&ifi, which

by Dickson’s lemma is finite.

Lemma 3.5. Let S be a saturated submonoid bf and let{sy, ..., sp) be its set
of atoms. Take € S. Then

supdR(s)) = {i € {1, ..., p} | suppis;) < suppis)}.
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Proof. Leti € supgR(s)). Thenthere existéy, ..., k,) € R(s) such thak; # 0.
This implies thatks = k151 + - - - + ks, fOr some nonnegative integer and as
k; # 0, this yields sup@;) C supps).

Now assume that sugp) C supps) for somei € {1,..., p}. Then we can
find k € N\ {0} such thatcs — s; € N?. Sinceks —s; € Q(S) andS is saturated,
we get thatks — s; € S. Thus there exist&s, ..., k, € S such thatks — s; =
kisi+---+kps,. Hence

(ky, ... ki—a, ki +1,kiga, ..., kp) € R(s)

andk; + 1 # 0, which implies that € supR(s)). O

Proposition 3.6. Let S be a saturated submonoid B and lets € S \ {0}. Set

I(s) = {a € A(S) | suppa) € supps)}.
Then

r(s) =#I(s) — rank Q({I(s)))) + 1.

Proof. Assume thatd(S) = {s1,...,s,} and I(s) = {s;,, ..., s;,}. As we pointed
out above, the factorization homomorphism

p
¢: NP =8, o¢ar,....,ap)= Zaisi,
i=1

yields an isomorphism betweehandN” /~,,, whereM is the subgroup of.”
with defining equations

x1
<>( ; ) W
Xp

such that the coordinates of € N¢ are written in columns (this makes
linear equations; see [12] or [14, Chapter 3]). By Lemma 3.5, we know that
supaR(s)) = {i1,...,i;}. Using Proposition 3.2, and taking into account that
suppR(s)) = suppR([x]~,) for every x € ¢~ 1(s), we obtain that ) =
rankM’) + 1, whereM’ is the subgroup of! with defining equations

X1
(sil...si]) ( ) =0.
Xt

Notice that rankM’) =t —rank Q({s;,, .. ., si,})), which concludes the proof.c0

Example 3.7. While Proposition 3.6 is not a direct generalization of [2,
Proposition 6] or [1, Proposition 1.3], it can be used to compute value&pf r
for a wider class of monoids than either of these two cited results. For instance,
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Proposition 3.6 can be used to compute values(of in Krull monoids with
torsion free divisor class group. In particular, fetbe the Diophantine monoid
defined by the equatiom + xo = x3 + x4 (i.e., S = {(x1, x2, x3, x4) € N*| x1 +

x2 = x3+ x4}). Every Diophantine monoid is a Krull monoid (see [5]) and by [4,
Theorem 1.3], the divisor class group®fs Z. Now,

A($)=1{(1,0,0,1),(1,0,1,0),(0,1,0,1),(0,1,1,0)}

and hence fos # 0 in S we have that ranlQ((1(s)))) = supfs) — 1. Thus by
Proposition 3.6,

_ |1 ifsupps)=2o0r3,
r(s)_{z if supp(s) = 4.

4. Some applicationsand examples
4.1. The computation &(s)

Recall thatij(s) = lim,— oo (7(s™)/n"®)~1) and by Theorem 1.1 we g8ts) =
A(s). If r(s) = 1, then the corresponding’ computed fors as explained in the
preceding section is trivial (its rank is zero). Hence, the irreducibles appearing in
the factorizations of the collective powerssadire not “related.” This in particular
means that there is actually a unique factorization for each of these elements and
thus#(s) = 1= A(s).

Now assume that € N” \ {0}, M is a subgroup of.” such that N"N? = {0}
and K[x]~,,) = 2. From the results obtained in the last section, we can also
assume that supB([x]~,)) = {1,..., p} (otherwise we would us&?/~ ;)
and thus rankM) = 1. Hence, there exists € ZP such thatM = {zm | z € Z}.
Let m™ andm™ be elements oN” such thatn = m™ —m~ and suppn™) N
supfm ™) = 0 (these elements are necessarily unique).

Lemma 4.1. Under the above hypothesisait N? \ {0}, then
lal~,, = {—k+(a)m +a,...,a,...,a +k7(a)m},

where
k*(a)=maxkeN|a—km* eN’} and
k~(a)=max{keN|a—km~ e N}

(notice thatk™ (¢) andk ™ (a) are both finite sinces N N? = {0}).

Proof. Clearly{—k*(a)m +a,...,a,...,a+k (a)m} < [al~,,, Sincea — (a —

Im) € M. For the other inclusion, note thi]~,, = (¢ + M) N N? and that
suppgm™T) Nsuppgm ™) =@. O
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From this result, we deduce that[x]~,,) = k" (x) + k~(x) + 1. The integers
kT (x) andk~(x) can be easily computed. For a given elemert N”, denote
by a; its ith coordinate. Then

kT (x) = Lmin{;—fF ‘ i€ supp(zn*)”,
and

k™ (x)= Lmin{

Xi

i€ Supr(m_)}J,
i
where|« | denotes the integer part of the rational number
With these facts, it is straightforward to prove the following result.

Proposition 4.2. Under the above hypothesis,

_ N X, _
A([x]~y) = mm{ﬁ ‘ i€ supr(m*)} + mln{é ‘ i € supm )}.
Example 4.3. Let S be the Diophantine monoid given by the equatiof 2y —
3z =0, thatis,S = {(x, y, z) € N® | x 4+ 2y — 3z = 0}. The monoidS is minimally

generated by(3,0, 1), (0, 3, 2), (1, 1, 1)}, its set of irreducible elements. By [14,
Proposition 3.1] is isomorphic td\3/~,;, whereM has defining equations

3x1+x3=0, _
w=faninze  ofgaresd
x1+ 2x2+x3=0, 2=

whence rankM) =1 and
r(4.4,9)=r(les+e2+esle,)=1+1=2

(the formula given in Proposition 3.6 yields-32 + 1 = 2). The subgroup/
is generated byn = (1,1, —3) which implies thatm™ = (1,1,0) andm™ =
(0,0, 3). Using the formula given in Proposition 4.2, we obta&i(4, 4, 4)) =
4+4/3=16/3.

If one wants to compute &) for an element such thatshy > 2, then one
can use the formula given in [9] extracted from [11, Chapter VI, Section 2,
Theorem 2]. An explanation of this formula follows. Lete N” and M be
a subgroup ofZ? such thatM N N? = {0}. As above, we can assume that
suppR([al~,)) ={1,..., p}. Then([al~, ) =rankM)+1. Lets = rank M) =
r([al~,,) —1and{my, ..., ms} be a basis oM. Set

F(M) = {tim1+ -+ t;my | 0<; < 1 for alli}.
F(M) is called afundamental domaifor M. Let
Po={xeLlp) |x>—a}={yca+Lr@)|y>0},
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where(xy, ..., xp) = (y1,...,yp) if x; > y; forall i and Lr(M) is theR-vector
space spanned by (that is, the subspace @” generated by{mz, ..., m}).

Then
vol(P,)
A(lal~,) = ——"—,
(lalw) = SoiEmny

where vol-) is the volume computed ind(M). One can in fact use this formula
for r(s) = 2, but it turns out that the formula given in Proposition 4.2 is much
easier to use and compute. These volumes are computed in the following manner
(the formulas can be found in any elementary differential geometry textbook).
The vector spacefg(M) can be parametrized by

S
X(tl,...,ts):Zt,-m,-.

Then
1 1
vol(F(M)) = f dA = f /«/Edtl...dts,
F(M) 0 0
where
0X 0X
G=de at atj>”€{1 ..... }—dei(mi-mj)i,je{l ..... s}

(x - y represents the dot product.ofandy) and

voI(P)_[dA ffdtl -y,

P, tieR

whereR is the region inR* determined by the inequalities) ;_, t;m; > —a.
Let us illustrate this with an example.

Example 4.4. Let S be the submonoid dN generated by3, 4, 5}. We already
know by Example 2.6 thais) = 3 for all s € S\ {0}. By [14, Proposition 3.1]§
is isomorphic taN3/~,, with M given by the equation:d + 4x» + 5x3 = 0. Let
a=(1,1,0). Then

r([1,1,0l~,) =rB+4) =r(7)=3
and suppR([(1, 1,0)]~,,)) ={1, 2, 3}. A basis forM is {(4, -3, 0), (5, =5, D)}.
In this setting,
Hence

vol(F(M)) = [ dA= f / /'ég 3 o =5v2

F(M) 00
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The inequalityr1(4, —3,0) + r2(5, —5,1) > —(1, 1, 0) yields 41 + 51 > —1,
—3t1 — 512 > —1 andr > 0. Using this,

—-1/4 (1-3t1)/5 1/3 (1-311)/5
vol(P,) = [dA sf([ [ dtldt2+[ [ dtldt2>
—2 —(1+411)/5 -4 0
49 49
=5 5V2—,
f<160 480) \/—120

whence A7) = 49/120.
4.2. A-stability and ia-stability

Let S be a finitely generated reduced cancellative commutative monoid. An
elementr € S\ {0} is asymptotically stabléa-stablefor short) if r(x) < 2. We say
thats itself isa-stablefr(x) < 2 forall x € S, andS isirreducibly asymptotically
stable (ia-stable for short) if r(x) < 2 for all x € A(S). Observe that from a
presentation ofS (in fact it suffices to knowM for which § is isomorphic to
NP /~ ) one can determine the a-stable elementS.df an element is a-stable,
then by Corollary 2.5 the whole Archimedean component containing it is formed
by a-stable elements of. In this way, it is also easy to decide whether the
monoidsS is a-stable or ia-stable. From Proposition 2.2 one obtains the following
consequence.

Corollary 4.5. Let M be a subgroup dZ? such thatM NN” = {0}. ThenN? /~,
is a-stable if and only ifank(M) € {0, 1}.

Proof. Note that if rankM) € {0, 1}, then by Proposition 2.2, every element
[x]~, in N7/~ , satisfies ([x]~,,) <14 1=2 and thusN?/~, is a-stable.

If rank(M) > 2, then by Proposition 2.2,(I(1,...,1)]~,,) > 3, whence
NP/~ is not a-stable, sincgl, ..., 1)]~,, is not a-stable. O

In view of Example 2.6, a numerical semigroup is ia-stable if and only if it is
a-stable and this occurs if and only if it is minimally generated by less than three
elements (that is, its embedding dimension is less than or equal to two).

It may happen thalN” /~,, is ia-stable but not a-stable, as the following
example shows.

Example 4.6. Let M be the subgroup df’2" with defining equations

x1+x2 =0,
X3+ x4 =0,

X2p-1+x2, = 0.
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By Proposition 2.2, ({1,...,1]~,) = n + 1, since rankM) = n. Therefore
N2/~ is not a-stable fon > 2.
The setA(~y) is equal to

{(e1,e1). ..., (e2n. €21), (e1,€2), (€3, €4), ..., (€20-1, €2).
(e2,€1), (4, €3), ..., (21, €21-1)}.

Using Proposition 3.3, we get that
sup(R([e-1]~,)) = SupHR(le2x]~,,)) = {2k — 1, 2k}

for all k € {1, ...,n} and the correspondinyy’ for each of these supports is of
rank one (one equation in dimension two). Hence

r(leak—1l~y) =r(lexl~y) =1+1=2

for all k € {1,...,n}, which means thalN?'/~, is ia-stable. One possible
interpretation of this example is that ia-stability has nothing to do with the rank
of M, while a-stability depends strongly on it.

Observe also that if we take; = Zle ex—1, k € {1,...,n}, then
SUppR([xk]~,)) = f{e1,e2,...,ex} and its correspondingd’ has rankk,
which means that(fxx]~,,) = k + 1. Thus the image of r for this monoid is
{0,2,3,...,n+1}.

We can use Proposition 3.6 in order to study a-stability on saturated
submonoids oN¢.

Proposition 4.7. Let S be a saturated submonoid BF. For a givens € S, set
Ml (s) to be the set of elements lity) with minimal suppor{with respect to set
inclusion in the set of all supports of elements4is)). If #1(s) — #MI(s) > 2,
thens is nota-stable.

Proof. In [6] it is shown that ifa € A(S) is not of minimal support, then

a =7y ;_1ria; with 4; € (0,1) N Q andg; elements ofA(S) with minimal
support. If there is an elemeatin I(s) that is not of minimal support, then it

can be written as a combination of elemeats. .., a, with minimal support

in A(S). Since the support of these elements must be contained in the support
of a, it follows that supge;) C supps) forall i e {1,...,r}, whencea; € Ml (s)

for all i. Notice that if this is the case, then

rank Q({a, a1, ..., a,})) =rankQ({ax, ..., a})).

Using this, we obtain that ra(I(s))) = rank(Q (Ml (s))). By Proposition 3.6,
it follows that

((s) = #1(s) — rank(Q(MI (s))) + 1> #I(s) — #MI(s) + 1> 2+ 1=3.

Thereforeys is not a-stable. O
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Lemma4.8. Let S be a saturated submonoid&f and letsy, s> € A(S) such that
Supps1) = supps2) = I. Then there existss € A(S) whose support is properly
contained in/.

Proof. Lets; = (x1,...,xq) @ands2 = (y1, ..., yq). Takei € I such thaty; /x; =
max(y;/x; | j € I}. Theny;x; — x;y; > 0 for all j € I, which means that
yis1 — xis2 € N4, SinceS is saturated, we get thafs1 — x;s2 € S. The element
vis1 — x;s2 # 0, because otherwise we hayg/x; = y;/x; for all j € I. This
would lead tosy = As» for somex € Q\ {0}, which is impossible sincg, s, € N¢
are incomparable elements with respecttdence, there must be an ategof
S such thaksz < y;s1—x;s2 (recall thatA(S) = Minimalsg (S\ {0})). Thisimplies
thati € I \ supp(s3) and supgs3z) C 1. O

Corollary 4.9. Let S be a saturated submonoid 8F and lets € S. If s is of
minimal support among the elementsSinthens is a-stable.

Proof. Sinces is of minimal support, by Lemma 4.8(sl) = {a}, for some
a € A(S). Using now Proposition 3.6 we obtain thaty=1—-1+1=1,
whences is a-stable. O

Example 4.10. The a-stability and ia-stability properties are examined in [1,
Theorem 3.5] and [2, Proposition 8 and Theorem 9] for certain Krull monoids
with torsion divisor class groups. As with our earlier comments in Section 3
concerning the computation ofsp, the results of this section can be applied
to a wider class of monoids than those listed above. For instancg,betthe
Diophantine monoid defined by the equatien+ x> + x3 = x4 + x5. By [4,
Theorem 1.3], the divisor class group$fs Z. It is easy to see that this monoid

is not a-stable by Corollary 4.5. In this example,

A(S) = {(1, 0,0,1,0,(,0,0,0,1),(0,1,0,1,0),(0,1,0,0, 1),
0,0,1,0,1),(0,0,1,1, 0)}

and hence every irreducible is of minimal support amongst the elemerfts of
Thus, I(s) =1 — 1+ 1 for everys € A(S) and S is ia-stable (this is actually
Corollary 4.9). Notice that the largest value daf) in S is achieved by the
Archimedean component @2, 2, 2, 3, 3), where ((2,2,2,3,3))=6—4+1=3

by Proposition 3.6. Moreover, in this example Proposition 4.7 does not detect that
(2,2,2,3,3) is not a-stable.
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