
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 2039

Next, we also consider the projections onto such subspaces, i.e. consider πI : R
k → HI

to be the projection of a point in R
k into its coordinates in HI . Finally, in an effort to ease

the notation, we hope that it will be clear from context whenHI refers to the positive cone
instead of using H+

I .
With this notation in place, we can say that a map F : � → R

k is O-order preserving if
whenever x ≤O y, then F(x) ≤O F(y). It is common to say that a map ismonotone if it is
order preserving for at least one orthant. In the study of monotone planar maps, one has
essentially two orderings induced by the first or third quadrant and the second or fourth
quadrant. In the work of Smale [30] and Smith [32], these maps are defined as cooperative
and competitive maps. Later in a seminal paper, Smith [31] initiated the theory of higher
dimensional monotone maps, but the examples given and recent developments in the field
have been done on planar or essentially planar maps.

Our goal is to develop a geometric theory of monotone maps. We provide a new
definition of monotonicity of maps that uses the notion of preservation of normals of
hypersurfaces that can yield results on global stability in higher dimensions. Our definition
will be shown to be equivalent to the usual definition of competitive planar maps.

Let us recall the idea of a normal vector and refer the reader to [24] for complete details
on basic concepts fromdifferential geometry.Given anoriented differentiable hypersurface
� ⊆ R

k and p ∈ �, let η�(p) denote the normal vector to the tangent space T�(p) at p.

Definition 2.1: An open set R ⊆ R
k+ is a monotone region if � = ∂R is a hypersurface

such that for any p ∈ � ∩ int(Rk+), we have η�(p) > 0. That is, the normal at every point
in the boundary of � not in a coordinate subspace is a positive vector.

Intuitively, a monotone region is a region bounded by the positive cone and a hypersur-
face with positive normal. Observe that if R = R

k+, vacuously R
k+ is a monotone region.

We are now ready to give our definition of monotonicity for maps.
Definition 2.2: Let F : � → R

k+ be a local diffeomorphism of class C1. We say that
F is monotone at p if for any hypersurface � containing p with η�(p) > 0, we have
ηF(�)(F(p)) > 0. We say F monotone if it is so at every point.

Simply said, amap F ismonotone if it preserves positive normals. Viewed geometrically,
a monotone map has the property that it preserves the structure of graphs. In fact, if �

satisfies η�(p) > 0, then by the implicit function theorem the hypersurface� can be viewed
as a graph of a function with respect to any subspace HI . This is consistent with the usual
definition of monotone maps in one dimension. Indeed, the image of an interval can be
viewed as the graph of a function with respect to both axes. We will show later that this is
also the case for monotone maps in two dimensions.

In general, if one is only concerned with the graph preservation property, then the
work of Basu, Gabrielov, and Vorobjov [7,8] establishes an important theory on general
monotone sets. From our perspective, as we are interested in global stability, we will focus
on the dynamics of monotone maps and how we can analytically verify whether a map is
monotone inR

k+. In fact, to check if an orientation preserving map is normally monotone,
it suffices to check that the inverse Jacobian matrix is a positive matrix, that is, entries of
JF−1(p) are positive. This is similar to the original analytic condition proposed by Smith
[31] and it will be verified by a straightforward computation using the Cauchy–Binet
formula [22] to find the determinant of the product of matrices.



2040 E. C. BALREIRA ET AL.

Another concept we will use in our geometric theory of monotone maps is the idea of
a carrying simplex �, informally this is an attracting hypersurface of the dynamics of our
system. This has been well-study by Baigent [3], Hirsch [18], and Herrera [16] and here
we provide the formal definition.
Definition 2.3: We say that F : R

k+ → R
k+ admits a carrying simplex, denoted by

� ⊆ R
k+\{0}, if the following hold.

(i) � is homeomorphic to a (n − 1)-simplex.
(ii) � is unordered, that is, if x, y ∈ � and y ≥ x then y = x.
(iii) � is invariant under F and F : � → � is a homeomorphism.
(iv) For every x > 0, there exists y ∈ � such that limn→∞ |Fn (x)− Fn

(
y
) | = 0.

As we begin focusing the analyses to global stability of maps, we will make additional
assumptions for our maps. Since we are concerned with applications to mathematical
biology and mathematical economics, we will restrict ourselves to the case where F is a
map of Kolmogorov type, i.e. the map F is given by

F(x) = (x1f1(x), x2f2(x), . . . , xkfk(x)) , (2)

where fi : R
k+ → R+ and x = (x1, x2, . . . , xk). Themain feature of this class ofmaps is that

the origin is a fixed point and all the coordinate hyperplanes are invariant. The hypotheses
that are to follow are similar to thosemade by Smale, Smith, Hsu, andWaltman [19,30–32].

(H1) There exists a monotone region R such that F|R is orientation preserving local
homeomorphism with F(�\R) ⊆ F(R).

(H2) The map F|R is a monotone map.
(H3) For each I ⊆ {1, 2 . . . , k} with |I| = k − 1, the restriction map F|�I is invariant

in �I and F|�I has a unique interior fixed point EI that is globally asymptotically
stable in �I , but a saddle in �.

(H4) The map F admits a carrying simplex.

In order to verify (H1), one must find a monotone region R that has the property that
F(R) does not contain any critical points and for any x ∈ �, either x ∈ R or F(x) ∈ F(R).
For instance, this can be done when the region bounded by the set of critical points is
the monotone region R and the image of F is contained in R. For conditions (H2) and
(H3), we will show that one must simply check analytic conditions. Indeed, we shall verify
that the Jacobian matrix of F has all the information required to check (H2) and standard
methods of stability of fixed points are used to check (H3). Next, to check (H4), the work
in [17] has established analytic conditions under which F admits a carrying simplex which
are checked to be satisfied for the Leslie–Gower and Ricker competition models in higher
dimensions and can be extended to other models as well.

We are now ready to state our main result establishing global stability of monotone
maps.
Theorem 2.4: Assume that F : � → � satisfies (H1)–(H4). If F has a unique positive
coexistence fixed point E∗, then E∗ is globally asymptotically stable in the interior of �.

The proof of Theorem 2.4 is geometric in nature. Due to the interest in planar maps,
or competition maps between two species, we first introduce in Section 3 our techniques
for two dimensional maps where we will show that our geometric definition of monotone
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More importantly, for any x ∈ B(γ (t); δt), the orbits of x will converge to A, that is,
lim Fn(x) = A.

Now, let us fix t0 ∈ (0, 1) and call p = γ (t0). For each s ∈ [t0, 1] we obtain the
open ball B(γ (s); δs) where points will converge to the basin of attraction of A, as defined
above. By compactness of γ

([t0, 1]), we can extract a finite subcover from the open cover
{B(γ (s); δs)}. Using the Lebesgue Covering Lemma, we are able to find ηp > 0 and a
tubular neighbourhood Tηp around γ ([t0, 1]) with the property that for each x ∈ Tηp , we
have lim Fn(x) = A as depicted in Figure 1.

Next, we must extend the tubular neighbourhood beyond γ ([t0, 1]) to be a tubular
neighbourhood of γ . As we approach the saddle point S the neighbourhood Tηp could
degenerate. Nevertheless, the local structure of S will enable us to find the desired tubular
neighbourhood around the heteroclinic connection. Indeed, using theHartman-Grobman
Theorem [27], the map F is locally topologically conjugate to its derivative JF, that
is, the Jacobian matrix of F. Hence, there is a neighbourhood U of S and a conjugate
diffeomorphism ϕ : U → V such that ϕ(U) = V ⊆ R

k and ϕ ◦F = JF ◦ϕ or equivalently
F = ϕ−1 ◦ JF ◦ ϕ as depicted in Diagram (3). Let us denote by H+ the half-space of R

k+
that contains ϕ(γ ). In what follows, all neighbourhoods are with respect to the subspace
topology of H+.

U F−−−−→ F(U)⏐⏐�ϕ

⏐⏐�ϕ

V JF−−−−→ JF(V)

(3)

Let t0 ∈ (0, 1] with p = γ (t0) ∈ U and p̂ = ϕ(p) ∈ V , as depicted in Figure 2, then
choose δ > 0 such that B(p̂; δ) ⊆ ϕ

(
Tηp

)
. Next, for s ∈ [0, t0], denote q = γ (s) and q̂ =

ϕ(q). By the local structure of the linear system generated by JF, for any ẑ ∈ B(q̂; δ) ∩H+,
we have that JFm(ẑ) ∈ B(p̂; δ), for some m > 0. This means that for any point ẑ within a
distance δ to γ̂t = ϕ(γ ([0, t0])), the orbit of ẑ under the linear system generated by JF will
eventually be in B(p̂; δ), which implies that the orbit of z = ϕ−1 (ẑ) will eventually be in
Tηp and thus will converge to the attractor A.

Therefore, letW = B(γ̂t; δ)∩H+ be the neighbourhoodof γ̂t as shown inFigure 2. Then
the set G = Tηp ∪ ϕ−1(W) is the desired neighbourhood of γ , where for x ∈ G∩ int(Rn+),
lim Fn(x) = A.

3. Planar maps

The concept of monotonicity introduced in Definition 2.2 may be easily stated for planar
maps. Indeed, given a curve γ : [0, 1] → R

2, we say that γ is a monotone curve if for any
t ∈ (0, 1), the normal vector η(γ (t)) is positive, that is, it belongs to the first quadrant.
Since our primary concern is with the sign of the coordinates of the normal vector, we do
not need to normalize η(γ (t)).

When we compute the normal vector, we are implicitly requiring that our curve γ is
differentiable. However, as we will soon observe, this is not needed as the main interest
is on the geometry associated with monotonicity. In fact, we can see that positivity of the
normal vector is simply a way to capture that the curve γ is increasing with respect to
the x-axis and decreasing with respect to the y-axis. Indeed, if γ (t) = (α(t),β(t)), then
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Figure 2. The local structure of a saddle point and its dynamics.

η(γ (t)) = ( − β ′(t),α′(t)). Hence to say that γ is a monotone curve is equivalent to say
that α(t) is increasing and β(t) is decreasing.

The discussion above essentially shows that for planar maps, our concepts of monotone
maps and competitive maps are equivalent. Recall that a map F : R

2 → R
2 is called

competitive (monotone in the sense of Smith [32]) if it preserves the southeast order, that
is, the order induced by the fourth quadrant, to be denoted by K . Also, a domain � is said
to be K-convex if it contains the line segment joining any two points that are ordered with
respect to K .
Lemma 3.1: Let � be a K-convex region in R

2 and F : � → R
2 be a C1 map. Then the

map F is monotone according to Definition 2.2 if and only if it is a competitive map.

Proof: First, let us assume that F is competitive. Take a curve γ (t) = (
α1(t),α2(t)

)
with

positive normal. This means that the map α1 is increasing and α2 is decreasing.
Next, let F(γ (t)) = (

β1(t),β2(t)
)
. In order to show that F is monotone, we need to

show that β1 is increasing and β2 is decreasing. Indeed, for s < t we have that

α1(s) < α1(t), α2(s) > α2(t).

Since F is K-order preserving, we have

β1(s) < β1(t), β2(s) > β2(t).

Hence, this shows that β1 is increasing and β2 is decreasing, i.e. F is monotone.
For the converse, let us assume that F ismonotone. Pick two points x = (x1, x2) and y =

(y1, y2) such that x ≤K y. Consider the segment γ (t) = ((1 − t)x1 + ty1, (1 − t)x2 + ty2
)

fromx to y.We can see thatγ ′(t) = (y1−x1, y2−x2) andhenceη(t) = (x2−y2, y1−x1) > 0.
Let F(γ (t)) = (

β1(t),β2(t)
)
. Since F is monotone, it will satisfy that β1 is increasing

and β2 is decreasing. Therefore, it is straightforward to see that F(x) ≤K F(y) and thus F
is K-preserving.

It is an important problem to find an analytic condition to detect when a map is
competitive or, equivalently, monotone. In fact, Smith [32, Proposition 2.1] has provided
this condition. That is, F is monotone if the Jacobian matrix JF is a K-positive matrix.
Here a matrix is said to beK-positive if its diagonal entries are positive and its off-diagonal
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Figure 7. Region S1 in the parameter space b1Ob2 correspond to set where conditions (15) are satisfied.
If (b1, b2) ∈ S1 the positive fixed point E∗ is globally asymptotically stable (GAS). If (b1, b2) ∈ O the
origin is GAS. If (b1, b2) ∈ R1 the exclusion fixed point E1 is GAS while if (b1, b2) ∈ Q1 the exclusion fixed
point E2 is GAS. Lines l1 and l2 is where we have equality in (15).

Case (i): Suppose c11c22 > c12c21,
(
b1 − 1

)
c22 >

(
b2 − 1

)
c12 and

(
b2 − 1

)
c11 >(

b1 − 1
)
c21, or equivalently,

c12
c22

<
b1 − 1
b2 − 1

<
c11
c21

. (15)

A straightforward manipulation of the inequalities in (15) yields

b2c11(
b1 − 1

)
c21 + c11

> 1 and
b1c22(

b2 − 1
)
c12 + c22

> 1. (16)

Next, the eigenvalues of JF, at the fixed points E1 and E2 are given by

σ
(
JF
(
E1
)) =

{
b2c11(

b1 − 1
)
c21 + c11

,
1
b1

}

and

σ
(
JF
(
E2
)) =

{
b1c22(

b2 − 1
)
c12 + c22

,
1
b2

}
.

From (16) and the fact that 1
bi < 1, for i = 1, 2, it follows that E1 and E2 are saddle fixed

points. Thus, hypothesis (H3) is satisfied.
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The coordinates of the coexistence fixed point E∗ are given in the Appendix 1 since
they include long expressions for each of the coordinates. Nevertheless, because each of
the previous fixed points have positive coordinates, except for those that are clearly zero,
we conclude that E∗ is a positive coexistence fixed point.

Next, we need to determine stability of the fixed points interior to each coordinate planes
to show that hypotheses (H3) holds. This task requires consideration of all 12 parameters
given in the Leslie–Gower model. Since our main goal is to provide a concrete illustration
on how to apply our main ideas, instead of considering the general case, we focus our
analyses in the totally symmetric case, i.e. cij = c, i �= j and cii = 1 and b = bi, for
i, j = 1, 2, 3.

By symmetry let us consider the fixed point E12 which we will show it is a saddle. We
have two possible scenarios: either c < 1 or c ≥ 1. In the last case where c ≥ 1, the system
depends on initial conditions and the behaviour will be similar as we described in case (ii)
for the planar system. Hence, this scenario does not fit the assumptions and will not be
considered. Therefore, we assume c < 1.

The eigenvalues of JF(E12) are given by

σ
(
JF(E12)

) =
{
1
b
,
2bc − c + 1

bc + b
,

b(c + 1)
(2b − 1)c + 1

}
.

Since c < 1, a simple computation shows that b(c+1)
(2b−1)c+1 > 1. By the fact that b > 1 we have

that 1
b < 1 and 2bc−c+1

bc+b < 1. This implies that E12 is a saddle. A similar analyses shows that
this is the case for E13 and E23 as well.

Consequently, hypothesis (H3) is verified whenever b = bi, cii = 1 and cij = c < 1,
i �= j for all i, j = 1, 2, 3.

Since (H1)–(H4) is satisfied and there is a unique positive fixed point of F, it follows by
Theorem 2.4 that the coexistence fixed point E∗ is globally asymptotically stable.

5.2. Ricker competitionmodel

The planar Ricker competition model is given by the following autonomous difference
equation:

⎧⎨
⎩
x1(n + 1) = x1(n) exp (r1 − c11x1(n) − c12x2(n))

x2(n + 1) = x2(n) exp (r2 − c21x1(n) − c22x2(n))
, n ∈ Z

+. (18)

Here x1(n) and x2(n) represents the population sizes of two species at time unit n.
The parameters r1 and r2 are the inherent exponential growth rates at low densities and
ci,j, i, j = 1, 2, are the competition intensity coefficients measuring the effects of intra-
specific competition and inter-specific competition. More precisely, c11 and c22 are the
intra-specific competition parameters while c12 and c21 are the inter-specific competition
parameters. Notice that, these six parameters are assumed to be positive. The dynamics of
the Ricker competition model has been well studied, see for instance, [1,10,26].

The Ricker competitionmodel can also be generalized tomore than two species. In fact,
for k species interacting in an environment, the k-dimensional Ricker competition model
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is given by ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1(n + 1) = x1(n) exp (r1 −∑k
i=1 c1ixi(n))

x2(n + 1) = x2(n) exp (r2 −∑k
i=1 c2ixi(n))

...

xk(n + 1) = xk(n) exp (rk −∑k
i=1 ckixi(n))

. (19)

We shall now focus our attention to establish global stability for the planar and the three
dimensional Ricker competition model.

5.2.1. Planar Ricker competitionmodel
When considering the planar Ricker competition model, we can scale the state variables
against the inherent carrying capacities to reduce the number of parameters and represent
(18) by the map F : R

2+ → R
2+ given by

F(x1, x2) = (x1er1−x1−ax2 , x2er2−bx1−x2).

Since we interested in the analyses of a system that does not go to extinction and has
a unique positive coexistence fixed point, a simple computation establishes that ar2 < r1,
br1 < r2, and ab < 1, see [6] for details.

It is awell-known result fromSmith [32, Proposition 6.1], that when 0 ≤ r1, r2 ≤ 1, local
stability of theuniquepositive coexistencefixedpoint implies global stability.Asmentioned
in the beginning of this section, the crucial step in the proof of this theoremmakes reference
to an unpublished work. Recent work by the authors in [6] using singularity theory, can
easily show global stability of the monotone planar Ricker competition model. We shall
take the opportunity to illustrate how to apply our ideas and verify our conditions to have
a recorded version of the proof of this important result.

Let us compute the Jacobian matrix of F which is given by

JF(x1, x2) =
(

(1 − x1)er1−x1−ax2 −ax2er1−x1−ax2

−bx2er2−bx1−x2 (1 − x2)er2−bx1−x2

)
. (20)

It is straightforward to see that the origin is an unstable fixed point of F since the
eigenvalues of JF(0) are eri > 1 for i = 1, 2. Our next objective is find the monotone region
R that satisfy (H1) and (H2).

First, the determinant of JF is given by

det JF(x1, x2) = er1+r2−x1−bx1−x2−ax2(1 − x1 − x2 + x1x2 − abx1x2). (21)

The set where det JF(x1, x2) = 0 is called the critical curve LC−1 and it is given by

LC−1 =
{
(x1, x2) ∈ R

2+ : x2 = 1 − x1
1 − (1 − ab)x1

, x1 �= 1
1 − ab

}
. (22)

There exists a region R1 containing the origin so that whenever (x1, x2) ∈ R1,
det JF(x1, x2) > 0. Indeed, R1 is the region containing the origin bounded by the left
component of LC−1, denoted by LC1−1 (see [6] for details).We claim thatR1 is amonotone
region we seek.
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Similarly to the Leslie–Gower model, in each coordinate plane, the restriction of F behaves
as the planar model. Hence, we assume that the parameters for each restriction satisfies the
same conditions as the planar case, i.e. r < 1 and a < 1.

The coexistence fixed point E∗ is given by

E∗ =
(

r
1 + 2a

,
r

1 + 2a
,

r
1 + 2a

)
, (30)

which is clearly a positive fixed point.
Now, we turn our attention to the local stability of the fixed points in the coordinate

planes. For instance, the eigenvalues of E12 are

σ
(
JF
(
E12
)) =

{
er

1−a
1+a , 1 − r,

a + 1 + (a − 1)r
a + 1

}
.

Since 1−a
1+a > 0, it follows that er

1−a
1+a > 1. Trivially, we verify that 1 − r < 1. Next, from the

condition that a < 1, we have a + 1 + r(a − 1) < a + 1 and consequently a+1+(a−1)r
a+1 < 1.

This implies that E12 is a saddle fixed point, since 1− r < 1. Finally, similar conclusion can
be taken in the case of E13 and E23 which are also saddle fixed points.

From Section 5.2.1 it follows that the coexistence fixed point of the restriction of F to
each planar subspace is globally asymptotically stable. Consequently, hypothesis (H3) is
verified whenever r < 1 and a < 1.

This analyses shows that whenever ri = r, aij = a, for all i, j = 1, 2, 3 and 0 < r < a < 1
and a < e1−r − 1, there is a unique positive fixed point E∗ given by (30) and the three
dimensional Ricker competition model is globally asymptotically stable in the interior of
R
3+. In Figure 9 we depict the set of parameters r and a that satisfy the global stability

condition.
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Appendix 1. Computations related to the 3D Leslie–Gowermodel
The three dimensional Leslie–Gower model F : R

3+ → R
3+ is given by

F(x1, x2, x3) =
(

b1x1
1 +∑3

i=1 c1ixi
,

b2x2
1 +∑3

i=1 c2ixi
,

b3x3
1 +∑3

i=1 c3ixi

)
.

A computation of the Jacobian matrix shows that the matrix JF := JF(x1, x2, x3) in this case is
given by

JF =

⎛
⎜⎜⎜⎝

b1
(
c12x2+c13x3+1

)(
c11x1+c12x2+c13x3+1

)
2 − b1c12x1(

c11x1+c12x2+c13x3+1
)
2 − b1c13x1(

c11x1+c12x2+c13x3+1
)
2

− b2c21x2(
c21x1+c22x2+c23x3+1

)
2

b2
(
c21x1+c23x3+1

)(
c21x1+c22x2+c23x3+1

)
2 − b2c23x2(

c21x1+c22x2+c23x3+1
)
2

− b3c31x3(
c31x1+c32x2+c33x3+1

)
2 − b3c32x3(

c31x1+c32x2+c33x3+1
)
2

b3
(
c31x1+c32x2+1

)(
c31x1+c32x2+c33x3+1

)
2

⎞
⎟⎟⎟⎠ .

Next, we compute the determinant of JF and find that it is given by

b1b2b3
(
c21x1

(
c31x1 + c32x2 + c13x3 + 1

)+ c31x1
(
c12x2 + c23x3 + 1

))
∏3

i=1

(
1 +∑3

j=1 cijxj
)2

+
(
c12x2 + c13x3 + 1

) (
c32x2 + c23x3 + 1

)
∏3

i=1

(
1 +∑3

j=1 cijxj
)2 > 0

Since det JF > 0, we can check that JF−1 > 0 because all the cofactors of JF are positive. Indeed,
a computation shows that the cofactors are, for {i, j, k} = {1, 2, 3},

Cii(JF) = bjbk
(
cjkxk(ckixi + 1) + ckjxj(cjixi + 1) + (ckixi + 1)(cjixi + 1)

)
(
cj1x1 + cj2x2 + cj3x3 + 1

)2 (ck1x1 + ck2x2 + ck3x3 + 1
)2

Cjk(JF) = bkbixk
(
ckj(cijxj + 1) + ckicijxi + cikckjxk

)
(
cj1x1 + cj2x2 + cj3x3 + 1

)2 (ck1x1 + ck2x2 + ck3x3 + 1
)2

Next, a computation of the fixed points of F shows that the origin is an extinction fixed point, and
E1 =

(
b1−1
c11 , 0, 0

)
, E2 =

(
0, b2−1

c22 , 0
)
, and E3 =

(
0, 0, b3−1

c33

)
are exclusion fixed points. In addition,

the map F has the following fixed points in the coordinate planes

E12 =
((

b1 − 1
)
c22 − (b2 − 1

)
c12

c11c22 − c12c21
,
(
b2 − 1

)
c11 − (b1 − 1

)
c21

c11c22 − c12c21
, 0

)
,

E13 =
((

b1 − 1
)
c33 − (b3 − 1

)
c13

c11c33 − c13c31
, 0,
(
b3 − 1

)
c11 − (b1 − 1

)
c31

c11c33 − c13c31

)
,

and

E23 =
(
0,
(
b2 − 1

)
c33 − (b3 − 1

)
c23

c22c33 − c23c32
,
(
b3 − 1

)
c22 − (b2 − 1

)
c32

c22c33 − c23c32

)
.

Recall that, in order to have the right dynamics, we have to assume conditions similar to Condition
(15) for each one of these fixed points.
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The coordinates of the coexistence fixed point E∗ are given by(
(b1 − 1)(c23c32 − c22c33) + (b2 − 1)(c12c33 − c13c32) + (b3 − 1)(c13c22 − c12c23)

c13
(
c22c31 − c21c32

)+ c12
(
c21c33 − c23c31

)+ c11
(
c23c32 − c22c33

) ,

(b1 − 1)(c21c33 − c23c31) + (b2 − 1)(c13c31 − c11c33) + (b3 − 1)(c11c23 − c13c21)
c13
(
c22c31 − c21c32

)+ c12
(
c21c33 − c23c31

)+ c11
(
c23c32 − c22c33

) ,

(b1 − 1)(c22c31 − c21c32) + (b2 − 1)(c11c32 − c12c31) + (b3 − 1)(c12c21 − c11c22)
c13
(
c22c31 − c21c32

)+ c12
(
c21c33 − c23c31

)+ c11
(
c23c32 − c22c33

)
)

.

By assumption, each of the coordinates of the positive coexistence fixed point E∗ are positive,
hence it belongs to R

3+.

Appendix 2. Computations related to the 3D Ricker model
Let us consider F : R

3+ → R
3+ to be the three dimensional Ricker competition model given by the

following map

F(x1, x2, x3) = (x1er1−x1−a12x2−a13x3 , x2er2−a21x1−x2−a23x3 , x3er3−a31x1−a32x2−x3).

We restrict ourselves to the case 0 < ri < 1, for i = 1, 2, 3. We shall also assume that F has a positive
fixed point and an interior fixed point in each coordinate plane. This automatically imposes certain
conditions on the parameters of the model. In fact, a computation shows that F has the origin,
E1 = (r1, 0, 0), E2 = (0, r2, 0), and E3 = (0, 0, r3) as fixed points. In addition, the following fixed
points in the coordinate planes

E12 =
(
r1 − a12r2
1 − a12a21

,
r2 − a21r1
1 − a12a21

, 0
)
,

E13 =
(
r1 − a13r3
1 − a13a31

, 0,
r3 − a31r1
1 − a13a31

)
,

E23 =
(
0,

r2 − a23r3
1 − a23a32

,
r3 − a32r2
1 − a23a32

)
,

and the interior fixed point E∗ has coordinates given by

E∗ =
(

a12(r2 − a23r3) + a13(r3 − a32r2) + r1(a23a32 − 1)
a12a21 + a13a31 + a23a32 − a12a23a31 − a13a21a32 − 1

,

a21(r1 − a13r3) + a23(r3 − a31r1) + r2(a13a31 − 1)
a12a21 + a13a31 + a23a32 − a12a23a31 − a13a21a32 − 1

,

a31(r1 − a12r2) + a32(r2 − a21r1) + r3(a12a21 − 1)
a12a21 + a13a31 + a23a32 − a12a23a31 − a13a21a32 − 1

)
. (B1)

For simplicity, let pi be the numerator of the ith coordinate of E∗ and q the common denominator
in each coordinate. Thus, we are assuming that our parameters satisfy for i, j = 1, 2, 3 and i �= j

ri − aijrj > 0, 1 − aijaji > 0, and pi · q > 0. (B2)

In the analysis that follows, we can also assume without loss of generality that xi < 1 as the max
value of xi is eri−1 < 1. Next, a computation shows that

JF := JF(x1, x2, x3) =
⎛
⎝ (1 − x1)eK1 −a12x1eK1 −a13x1eK1

−a21x2eK2 (1 − x2)eK2 −a23x2eK2

−a31x3eK3 −a32x3eK3 (1 − x3)eK3

⎞
⎠ ,
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where
K1 = r1 − x1 − a12x2 − a13x3,

K2 = r2 − a21x1 − x2 − a23x3,

and
K3 = r3 − a31x1 − a32x2 − x3.

Computing its determinant we obtain det JF = eK1+K2+K3�, where

� = 1 − (x1 + x2 + x3) + (1 − a12a21)x2x1 + (1 − a13a31)x3x1 + (1 − a23a32)x2x3
− (1 − a12a21 − a13a31 − a23a32 + a12a23a31 + a13a21a32)x1x2x3.

The set LC−1 = {(x1, x2, x3) ∈ R
3+ : det JF = 0

}
can be found by setting� = 0 and isolating the

expression for x3. Formally, this yields

x3 = �(x, y) = P(x1, x2)
Q(x1, x2)

, (B3)

where P(x1, x2) = 1− x1 − x2 + x1x2 − a12a21x1x2 andQ(x1, x2) = P(x1, x2) + a13a31x1(1− x2) +
a23a32x2(1 − x1) + a12a23a31x1x2 + a13a32a21x1x2. We are looking for the region bounded by the
component of LC−1 closest to the origin, denoted by R1. We have that have (0, 0, 0) ∈ R1 and

∂R1 := LC1−1 =
{
(x1, x2, x3) : x3 = P(x1, x2)

Q(x1, x2)
, P(x1, x2) > 0

}
.

Observe that P(x1, x2) > 0 whenever x2 < 1−x1
1−(1−a12a21)x1 . Also, from the definition of Q(x1, x2),

we see that if P(x1, x2) > 0, then Q(x1, x2) > 0, so it suffices to require that P(x1, x2) > 0 in the
definition of LC1−1.

To find the normal at each point in LC1−1, we compute

∂�

∂x1
= −

(
a13
(
1 − x2

)+ a12a23x2
) (
a31
(
1 − x2

)+ a21a32x2
)

Q(x1, x2)2
< 0

∂�

∂x2
= −

(
a23
(
1 − x1

)+ a13a21x1
) (
a32
(
1 − x1

)+ a12a31x1
)

Q(x1, x2)2
< 0 (B4)

Since η = (−∂x1�,−∂x2�, 1
)
, we see that η > 0 at LC1−1.

Next, we check the concavity of LC1−1 at the restriction of LC1−1 to each plane perpendicular to
the x1 and x2 axes. This requires computation of ∂x1x1� and ∂x2x2�. Before we begin, we observe
that as we fixed one of the variables x1 or x2, we can view Q(x1, x2) as a linear function in x2 or x1,
respectively. Indeed, we can verify that

Q(x1, x2) = α1(x1) − x2β1(x1) = α2(x2) − x1β2(x2),

where for {i, j} = {1, 2} we have
αi(t) = 1 − (1 + ai3a3i)t

and
βi(t) = 1 − aj3a3j − (1 + a12a23a31 + a13a21a32 − a12a21 − a13a31 − a23a32)t.

Thus, computing the second derivatives of �, we obtain

∂2�

∂2x1
= −2β2(x2)

(
a13
(
1 − x2

)+ a12a23x2
) (
a31
(
1 − x2

)+ a32a21x2
)

Q(x, y)3
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and
∂2�

∂2x2
= −2β1(x1)

(
a23
(
1 − x1

)+ a21a13x1
) (
a32
(
1 − x1

)+ a31a12x1
)

Q(x, y)3
.

We claim that there are some conditions under which βi(t) > 0 for t ∈ [0, 1]. Indeed, but
modifying the notation, we can obtain a convenient simplification. Let us denote aijaji = A2

k , for{
i, j, k

} = {1, 2, 3}. Notice that the relation 0 < aijaji < 1 implies 0 < Ak < 1. Then for {i, j} = {1, 2},
we have

βi(t) = −ta12a23a31 − ta13a21a32 + ta12a21 + ta13a31 + ta23a32 − aj3a3j − t + 1

= −ta12a23a31 − t
A2
3A

2
2A

2
1

a12a23a31
+ tA2

3 + tA2
2 + tA2

1 − A2
i − t + 1

= (1 − Ai
) (
2AjA3t + (1 − t

) (
Ai + 1

))+ t
(
A3 − Ai

)2 − t
(
A3A2A1 − a12a23a31

)2
a12a23a31

.

Under condition ( ∗2 ), that is, whenever a12a23a31 = a13a32a21, we have A3A2A1 = a12a23a31.
This implies that βi(t) > 0 and hence for {i, j} = {1, 2}, we have

∂2�

∂2xi
= −2βj(xj)

(
ai3
(
1 − xj

)+ aijaj3xj
) (
a3i
(
1 − xj

)+ a3jajixj
)

Q(x1, x2)3
< 0. (B5)


