
Trinity University Trinity University 

Digital Commons @ Trinity Digital Commons @ Trinity 

Mathematics Faculty Research Mathematics Department 

2017 

Global Stability of Higher Dimensional Monotone Maps Global Stability of Higher Dimensional Monotone Maps 

Eduardo C. Balreira 
Trinity University, ebalreir@trinity.edu 

Saber Elaydi 
Trinity University, selaydi@trinity.edu 

Rafael Luís 

Follow this and additional works at: https://digitalcommons.trinity.edu/math_faculty 

 Part of the Mathematics Commons 

Repository Citation Repository Citation 
Balreira, E. C., Elaydi, S. & Luís, R. (2017). Global stability of higher dimensional monotone maps. Journal 
of Difference Equations and Applications, 23(12), 2037-2071. http://doi.org/10.1080/
10236198.2017.1388375 

This Article is brought to you for free and open access by the Mathematics Department at Digital Commons @ 
Trinity. It has been accepted for inclusion in Mathematics Faculty Research by an authorized administrator of 
Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu. 

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/math_faculty
https://digitalcommons.trinity.edu/math
https://digitalcommons.trinity.edu/math_faculty?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu


JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017
VOL. 23, NO. 12, 2037–2071
https://doi.org/10.1080/10236198.2017.1388375

Global stability of higher dimensional monotone maps

E. Cabral Balreiraa, Saber Elaydia and Rafael Luísb

aDepartment of Mathematics, Trinity University, San Antonio, TX, USA; bCenter for Mathematical Analysis,
Geometry, and Dynamical Systems, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

ABSTRACT

We develop a notion of monotonicity for maps defined on Euclidean
spaces R

k+, of arbitrary dimension k. This is a geometric approach
that extends the classical notion of planar monotone maps or planar
competitive difference equations. For planar maps, we show that
our notion and the classical notion of monotonicity are equivalent.
In higher dimensions, we establish certain verifiable conditions
under which Kolmogorov monotone maps on R

k+ have a globally
asymptotically stable fixed point. We apply our results to two
competition population models, the Leslie–Gower and the Ricker
models of two- and three-species. It is shown that these two models
have aunique interior fixedpoint that is globally asymptotically stable.
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1. Introduction

One of the fundamental problems in the area of discrete dynamical systems is the global
stability of periodic or fixed points. In this paper we shall consider continuous maps
F : R

k+ → R
k+, where R

k+ = [0,∞)k. The map F generates a discrete dynamical system or
a difference equation of the form

xn+1 = F(xn), (1)

where Fn(x0) = xn and Fn is the nth composition of the map F. A fixed point x∗ of the
map F is said to be globally asymptotically stable if it is stable and globally attracting in the
sense that its basin of attraction is the entire interior of R

k+, see [12,28] for more details.
The first comprehensive investigation of global stability of maps was initiated by LaSalle

[23]. His approach is to construct a Liapunov function which would show whether or not
a fixed point of a difference equation is globally or locally asymptotically stable. Due to the
lack of a systematic method to construct suitable Liapunov functions, this approach has
had a limited success [11,20]. Focusing on planar maps, the authors [6] used singularity
theory due to Whitney [33] to show that, under certain conditions, local stability implies
global stability. Extending this approach to higher-dimensional maps is yet to be done as
singularities are not classified as well as in the plane.

More successful efforts have been directed towards a special class of maps. One such
special class is the class of triangular maps [5,9]. These are maps for which the Jacobian
matrix is upper or lower triangular.Here one can show that, under certain conditions, every
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orbit in the domain converges to a fixed point and, consequently, if one has a unique fixed
point then it must be globally asymptotically stable. In applications to biology, triangular
maps model competition systems with hierarchy [2].

In this paper, our focus will be on another special class of maps, monotone maps. Hal
Smith [32] has established an effectivemethod to show global stability formonotone planar
maps.

Unfortunately, extending Smith’s results to maps on R
k+ has alluded many researchers

for several decades. On a more positive note, several authors have succeeded in proving
the existence of a global attractor, called the carrying simplex, for a certain class of maps,
for instance, Herrera [16], Hirsch [18], Wang and Jiang [21]. A carrying simplex for the
map F is a compact invariant hypersurface � ⊂ R

k+ such that the omega limit set of every
orbit (except the origin) lies in �. It should be noted that Hirsch was the first to prove,
under certain conditions on a map, the existence, uniqueness, and the global attractivity
of the carrying simplex [18, Theorem 1].

In this paper, we assume that our maps possess the carrying simplex. For this purpose,
we are going to use the results given by Herrera [16, Corollary 6.1] which give conditions
under which a map possesses a unique carrying simplex. Our main aim, however, is to
establish a general theory of the global stability of the unique fixed point of monotone
maps or competitive systems on R

k+. We accomplish our task by developing a geometric
notion of monotonicity that does not depend on the notion of competitiveness. Roughly
speaking, a map is normally monotone if it preserves positive normals (a more precise
definition will be given in the next section). It should be noted that for planar maps, our
notion of monotonicity coincides with that of Smith. Henceforth, we will omit the prefix
normally when we talk about monotone maps.

The last section of the paper is dedicated to demonstrate the effectiveness of our results
using concrete examples.Weprovide detailed proofs of the global stability of two important
competition models, the planar and the three-dimensional Leslie–Gower competition
model [25] and the Ricker competition model [29]. This illustrates how our theory can
be applied beyond the theory of monotone planar maps of Smith [32] and what are the
techniques required to verify our set of conditions in applications.

2. Geometric monotonicity andmain results

Given a map F : R
k → R

k, we say F is order preserving if it preserves an order generated
by an orthant. Formally, each of the orthants O of R

k generates a partial order ≤O where
x ≤O y if and only if y − x ∈ O. We also write x <O y when y − x ∈ O\{0}. In the case
when O is the positive orthant R

k+, we denote the induced order as the canonical order
and simply drop the subscript above. In addition, it may be useful to consider an orthant
generated by a vector v, that is, all vectors that belong to the same orthant as v. Formally, we
candefine the orthant generated by v to be denoted byO(v) = {x ∈ R

k| sgn(xi) = sgn(vi)}.
We are also interested with the restriction of a map and the order relation within to a

subspace ofRk. The following definition makes it easier to handle these situations. Indeed,
for I = {i1, i2, . . . , in} ⊆ {1, . . . , k}, let HI be the subspace spanned by the coordinate axes
in I . Formally, we consider the coordinate axes to be generated by the canonical vectors
{e1, e2, . . . , ek}, where each ei is a vector with all coordinates zero but one in coordinate i.
Thenwe letHI = R

k∩span{ei1 , ei2 , . . . , ein} and for a set� ⊆ R
k, we denote�I = HI ∩�.
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Next, we also consider the projections onto such subspaces, i.e. consider πI : R
k → HI

to be the projection of a point in R
k into its coordinates in HI . Finally, in an effort to ease

the notation, we hope that it will be clear from context whenHI refers to the positive cone
instead of using H+

I .
With this notation in place, we can say that a map F : � → R

k is O-order preserving if
whenever x ≤O y, then F(x) ≤O F(y). It is common to say that a map ismonotone if it is
order preserving for at least one orthant. In the study of monotone planar maps, one has
essentially two orderings induced by the first or third quadrant and the second or fourth
quadrant. In the work of Smale [30] and Smith [32], these maps are defined as cooperative
and competitive maps. Later in a seminal paper, Smith [31] initiated the theory of higher
dimensional monotone maps, but the examples given and recent developments in the field
have been done on planar or essentially planar maps.

Our goal is to develop a geometric theory of monotone maps. We provide a new
definition of monotonicity of maps that uses the notion of preservation of normals of
hypersurfaces that can yield results on global stability in higher dimensions. Our definition
will be shown to be equivalent to the usual definition of competitive planar maps.

Let us recall the idea of a normal vector and refer the reader to [24] for complete details
on basic concepts fromdifferential geometry.Given anoriented differentiable hypersurface
� ⊆ R

k and p ∈ �, let η�(p) denote the normal vector to the tangent space T�(p) at p.

Definition 2.1: An open set R ⊆ R
k+ is a monotone region if � = ∂R is a hypersurface

such that for any p ∈ � ∩ int(Rk+), we have η�(p) > 0. That is, the normal at every point
in the boundary of � not in a coordinate subspace is a positive vector.

Intuitively, a monotone region is a region bounded by the positive cone and a hypersur-
face with positive normal. Observe that if R = R

k+, vacuously R
k+ is a monotone region.

We are now ready to give our definition of monotonicity for maps.
Definition 2.2: Let F : � → R

k+ be a local diffeomorphism of class C1. We say that
F is monotone at p if for any hypersurface � containing p with η�(p) > 0, we have
ηF(�)(F(p)) > 0. We say F monotone if it is so at every point.

Simply said, amap F ismonotone if it preserves positive normals. Viewed geometrically,
a monotone map has the property that it preserves the structure of graphs. In fact, if �

satisfies η�(p) > 0, then by the implicit function theorem the hypersurface� can be viewed
as a graph of a function with respect to any subspace HI . This is consistent with the usual
definition of monotone maps in one dimension. Indeed, the image of an interval can be
viewed as the graph of a function with respect to both axes. We will show later that this is
also the case for monotone maps in two dimensions.

In general, if one is only concerned with the graph preservation property, then the
work of Basu, Gabrielov, and Vorobjov [7,8] establishes an important theory on general
monotone sets. From our perspective, as we are interested in global stability, we will focus
on the dynamics of monotone maps and how we can analytically verify whether a map is
monotone inR

k+. In fact, to check if an orientation preserving map is normally monotone,
it suffices to check that the inverse Jacobian matrix is a positive matrix, that is, entries of
JF−1(p) are positive. This is similar to the original analytic condition proposed by Smith
[31] and it will be verified by a straightforward computation using the Cauchy–Binet
formula [22] to find the determinant of the product of matrices.
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Another concept we will use in our geometric theory of monotone maps is the idea of
a carrying simplex �, informally this is an attracting hypersurface of the dynamics of our
system. This has been well-study by Baigent [3], Hirsch [18], and Herrera [16] and here
we provide the formal definition.
Definition 2.3: We say that F : R

k+ → R
k+ admits a carrying simplex, denoted by

� ⊆ R
k+\{0}, if the following hold.

(i) � is homeomorphic to a (n − 1)-simplex.
(ii) � is unordered, that is, if x, y ∈ � and y ≥ x then y = x.
(iii) � is invariant under F and F : � → � is a homeomorphism.
(iv) For every x > 0, there exists y ∈ � such that limn→∞ |Fn (x)− Fn

(
y
) | = 0.

As we begin focusing the analyses to global stability of maps, we will make additional
assumptions for our maps. Since we are concerned with applications to mathematical
biology and mathematical economics, we will restrict ourselves to the case where F is a
map of Kolmogorov type, i.e. the map F is given by

F(x) = (x1f1(x), x2f2(x), . . . , xkfk(x)) , (2)

where fi : R
k+ → R+ and x = (x1, x2, . . . , xk). Themain feature of this class ofmaps is that

the origin is a fixed point and all the coordinate hyperplanes are invariant. The hypotheses
that are to follow are similar to thosemade by Smale, Smith, Hsu, andWaltman [19,30–32].

(H1) There exists a monotone region R such that F|R is orientation preserving local
homeomorphism with F(�\R) ⊆ F(R).

(H2) The map F|R is a monotone map.
(H3) For each I ⊆ {1, 2 . . . , k} with |I| = k − 1, the restriction map F|�I is invariant

in �I and F|�I has a unique interior fixed point EI that is globally asymptotically
stable in �I , but a saddle in �.

(H4) The map F admits a carrying simplex.

In order to verify (H1), one must find a monotone region R that has the property that
F(R) does not contain any critical points and for any x ∈ �, either x ∈ R or F(x) ∈ F(R).
For instance, this can be done when the region bounded by the set of critical points is
the monotone region R and the image of F is contained in R. For conditions (H2) and
(H3), we will show that one must simply check analytic conditions. Indeed, we shall verify
that the Jacobian matrix of F has all the information required to check (H2) and standard
methods of stability of fixed points are used to check (H3). Next, to check (H4), the work
in [17] has established analytic conditions under which F admits a carrying simplex which
are checked to be satisfied for the Leslie–Gower and Ricker competition models in higher
dimensions and can be extended to other models as well.

We are now ready to state our main result establishing global stability of monotone
maps.
Theorem 2.4: Assume that F : � → � satisfies (H1)–(H4). If F has a unique positive
coexistence fixed point E∗, then E∗ is globally asymptotically stable in the interior of �.

The proof of Theorem 2.4 is geometric in nature. Due to the interest in planar maps,
or competition maps between two species, we first introduce in Section 3 our techniques
for two dimensional maps where we will show that our geometric definition of monotone
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planar maps is equivalent to the classical notion of competitive maps. In Section 4, we state
and prove our results for higher dimensionalmaps and, in Section 5, we focus our attention
on how to check the hypotheses of our main result for specific competition models.

In addition, we find a sufficient set of conditions that can be directly verified in
applications. Let us consider F : � → � to be a map of class C1 and suppose that
the global stability of the model is known in lower dimensions, in particular in dimension
k − 1. More precisely, for each r = 1, 2, . . . , k, denote Ir = {1, 2, . . . , k} − {r} and assume
themap F|�Ir in invariant inHIr and has a unique coexistence fixed point Er that is globally
asymptotically stable.

The following result provides verifiable conditions to check hypotheses (H1)–(H4) and
establishing global stability as well.
Corollary 2.5: Let F : � → � be a Kolmogorov map as in (2) and satisfying the following
conditions:

(a) � is a monotone region.
(b) det JF(x) > 0 for any x ∈ �.
(c) JF−1 (x) > 0 for any x ∈ �.
(d) For each r = 1, 2, . . . , k, the eigenvalues of JF

(
Er
)
satisfy |λr | > 1 and |λi| < 1, for

i �= r.
(e) For each i = 1, 2, . . . , k, we have fi(y) > fi(x) whenever yifi(y) > xifi(x).

Then E∗ is globally asymptotically stable in the interior of �.
Note that since F : � → �, the image is trivially contained in the domain and from

(a) and (b) we have that (H1) holds. In Section 4, we will show in Lemma 4.1 that (c)
is equivalent to say F is monotone and thus (H2) holds. Next, for (H3), condition (d) is
simply the standard methods of stability of fixed points. Finally, it is shown in [17] that
condition (e), together with the property that F is retrotone, is needed to establish (H4).

Recall that a map F : R
k+ → R

k+ is said to be retrotone if whenever F
(
y
)
> F

(
x
)
, we

have y > x, provided x, y �= 0.
We remark that monotonicity, or condition (c), is crucial to show that F is retrotone.
We conclude this section with a discussion of the structure of the stable and unstable

manifolds associated with the fixed points and recalling some of the principal properties
that we will need. Given an open neighbourhoodU of a fixed point x∗ of F, the local stable
manifold for x∗ in this neighbourhood is defined to be the set

Ws
loc(x

∗,U) = {z ∈ U |Fn(z) ∈ U for n > 0, and lim
n→∞ Fn(z) = x∗}.

Beforewe define the local unstablemanifold of x∗, let us consider the following notation.
Definition 2.6: Let z ∈ R

k. We say that z has a complete negative orbit under F, if there
exists a sequence denoted by

O−(z) = {z−n| z0 = z, F(z−n) = z−n+1, n = 1, 2, 3, . . .} .

The local unstable manifold of x∗ in the neighbourhood U is the set

Wu
loc(x

∗,U) = {z ∈ U | ∃O−(z) ⊂ U such that lim
n→∞ z−n = x∗}.
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Figure 1. At each point in the interior of the heteroclinic connection, we can find a tubular
neighbourhood Tηp where each point is globally attracted to A.

Namely,Wu
loc(x

∗,U) is the set of points that have a complete negative orbit converging
to x∗. The stable manifold theory [12,28] guarantees the existence of the local stable and
unstable manifolds in a suitable open neighbourhood U of the fixed point x∗. In this case,
we denote the stable and unstable manifolds of x∗ byWs

loc(x
∗) andWu

loc(x
∗), respectively.

Moreover, these manifolds are invariant.
Once we have the local unstable manifold, then the global unstable manifold is given by

Wu(x∗) =
⋃
n≥0

Fn
(
Wu

loc(x
∗)
)
.

It should be noted that since F is of class C1, bothWu
loc andW

s
loc are C

1 manifolds with no
self-intersection.

Lastly, we will be interested in considering the dynamics of F when restricted to the
unstable manifolds. At times, these can be connected in the sense that as we leave the
unstable manifold of a fixed point, we may be contained in the stable manifold of another
fixed point. Formally, we say the fixed points x∗ and y∗ are a heteroclinic pair with
heteroclinic connection γ if x∗ and y∗ are fixed points of F and γ ⊆ Wu(x∗) ∩ Ws(y∗).

In the sequel, we need the following general result concerning the dynamics of hetero-
clinic pairs of a saddle and an attractor.
Lemma 2.7: Let F : R

k+ → R
k+ be a continuous map and S,A ∈ R

k be a local saddle
and local attractor of F, respectively. Assume that S ∈ ∂R

k+ with Ws(S) ⊆ ∂R
k+ and A ∈

int(Rk+). If S andA are a heteroclinic pair with heteroclinic connection γ ⊂ Wu(S)∩Ws(A),
then there is a neighbourhoodG of γ such that for all x ∈ G∩int(Rk+), then lim

n→∞ Fn(x) = A.

Proof: Since A is a local attractor, we know there is ε > 0 such that the open ball B(A; ε)

is contained in the basin of attraction. For every point p ∈ γ , except the endpoints, we are
able to find a tubular neighbourhood in R

k+ starting at p along γ up to the local attractor
A, which we will denote by Tηp . This neighbourhood Tηp will have the property that orbits
that start in Tηp , will eventually be in the basin of attractor of A, and thus, will converge to
A.

Let us now formalize and provide the details of this idea which is illustrated in Figure 1.
Consider a parametrization γ : [0, 1] → R

k+ such that γ (0) = S and γ (1) = A. For each
t ∈ (0, 1], there is nt ∈ N such that for n ≥ nt , Fn(γ (t)) ∈ B(A; ε), since γ ⊆ Ws(A). By
continuity of F, and its composition, there is δt > 0 so that Fnt

(
B
(
γ (t); δt

)) ⊆ B(A; ε).
Note that when t = 1, we can take any n1 ∈ N, as γ (1) = A is a fixed point and δ1 = ε.
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More importantly, for any x ∈ B(γ (t); δt), the orbits of x will converge to A, that is,
lim Fn(x) = A.

Now, let us fix t0 ∈ (0, 1) and call p = γ (t0). For each s ∈ [t0, 1] we obtain the
open ball B(γ (s); δs) where points will converge to the basin of attraction of A, as defined
above. By compactness of γ

([t0, 1]), we can extract a finite subcover from the open cover
{B(γ (s); δs)}. Using the Lebesgue Covering Lemma, we are able to find ηp > 0 and a
tubular neighbourhood Tηp around γ ([t0, 1]) with the property that for each x ∈ Tηp , we
have lim Fn(x) = A as depicted in Figure 1.

Next, we must extend the tubular neighbourhood beyond γ ([t0, 1]) to be a tubular
neighbourhood of γ . As we approach the saddle point S the neighbourhood Tηp could
degenerate. Nevertheless, the local structure of S will enable us to find the desired tubular
neighbourhood around the heteroclinic connection. Indeed, using theHartman-Grobman
Theorem [27], the map F is locally topologically conjugate to its derivative JF, that
is, the Jacobian matrix of F. Hence, there is a neighbourhood U of S and a conjugate
diffeomorphism ϕ : U → V such that ϕ(U) = V ⊆ R

k and ϕ ◦F = JF ◦ϕ or equivalently
F = ϕ−1 ◦ JF ◦ ϕ as depicted in Diagram (3). Let us denote by H+ the half-space of R

k+
that contains ϕ(γ ). In what follows, all neighbourhoods are with respect to the subspace
topology of H+.

U F−−−−→ F(U)⏐⏐�ϕ

⏐⏐�ϕ

V JF−−−−→ JF(V)

(3)

Let t0 ∈ (0, 1] with p = γ (t0) ∈ U and p̂ = ϕ(p) ∈ V , as depicted in Figure 2, then
choose δ > 0 such that B(p̂; δ) ⊆ ϕ

(
Tηp

)
. Next, for s ∈ [0, t0], denote q = γ (s) and q̂ =

ϕ(q). By the local structure of the linear system generated by JF, for any ẑ ∈ B(q̂; δ) ∩H+,
we have that JFm(ẑ) ∈ B(p̂; δ), for some m > 0. This means that for any point ẑ within a
distance δ to γ̂t = ϕ(γ ([0, t0])), the orbit of ẑ under the linear system generated by JF will
eventually be in B(p̂; δ), which implies that the orbit of z = ϕ−1 (ẑ) will eventually be in
Tηp and thus will converge to the attractor A.

Therefore, letW = B(γ̂t; δ)∩H+ be the neighbourhoodof γ̂t as shown inFigure 2. Then
the set G = Tηp ∪ ϕ−1(W) is the desired neighbourhood of γ , where for x ∈ G∩ int(Rn+),
lim Fn(x) = A.

3. Planar maps

The concept of monotonicity introduced in Definition 2.2 may be easily stated for planar
maps. Indeed, given a curve γ : [0, 1] → R

2, we say that γ is a monotone curve if for any
t ∈ (0, 1), the normal vector η(γ (t)) is positive, that is, it belongs to the first quadrant.
Since our primary concern is with the sign of the coordinates of the normal vector, we do
not need to normalize η(γ (t)).

When we compute the normal vector, we are implicitly requiring that our curve γ is
differentiable. However, as we will soon observe, this is not needed as the main interest
is on the geometry associated with monotonicity. In fact, we can see that positivity of the
normal vector is simply a way to capture that the curve γ is increasing with respect to
the x-axis and decreasing with respect to the y-axis. Indeed, if γ (t) = (α(t),β(t)), then
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Figure 2. The local structure of a saddle point and its dynamics.

η(γ (t)) = ( − β ′(t),α′(t)). Hence to say that γ is a monotone curve is equivalent to say
that α(t) is increasing and β(t) is decreasing.

The discussion above essentially shows that for planar maps, our concepts of monotone
maps and competitive maps are equivalent. Recall that a map F : R

2 → R
2 is called

competitive (monotone in the sense of Smith [32]) if it preserves the southeast order, that
is, the order induced by the fourth quadrant, to be denoted by K . Also, a domain � is said
to be K-convex if it contains the line segment joining any two points that are ordered with
respect to K .
Lemma 3.1: Let � be a K-convex region in R

2 and F : � → R
2 be a C1 map. Then the

map F is monotone according to Definition 2.2 if and only if it is a competitive map.

Proof: First, let us assume that F is competitive. Take a curve γ (t) = (
α1(t),α2(t)

)
with

positive normal. This means that the map α1 is increasing and α2 is decreasing.
Next, let F(γ (t)) = (

β1(t),β2(t)
)
. In order to show that F is monotone, we need to

show that β1 is increasing and β2 is decreasing. Indeed, for s < t we have that

α1(s) < α1(t), α2(s) > α2(t).

Since F is K-order preserving, we have

β1(s) < β1(t), β2(s) > β2(t).

Hence, this shows that β1 is increasing and β2 is decreasing, i.e. F is monotone.
For the converse, let us assume that F ismonotone. Pick two points x = (x1, x2) and y =

(y1, y2) such that x ≤K y. Consider the segment γ (t) = ((1 − t)x1 + ty1, (1 − t)x2 + ty2
)

fromx to y.We can see thatγ ′(t) = (y1−x1, y2−x2) andhenceη(t) = (x2−y2, y1−x1) > 0.
Let F(γ (t)) = (

β1(t),β2(t)
)
. Since F is monotone, it will satisfy that β1 is increasing

and β2 is decreasing. Therefore, it is straightforward to see that F(x) ≤K F(y) and thus F
is K-preserving.

It is an important problem to find an analytic condition to detect when a map is
competitive or, equivalently, monotone. In fact, Smith [32, Proposition 2.1] has provided
this condition. That is, F is monotone if the Jacobian matrix JF is a K-positive matrix.
Here a matrix is said to beK-positive if its diagonal entries are positive and its off-diagonal
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entries are negative. We further observe that this is equivalent to say that the cofactors of
the matrix are positive when the determinant is positive. We remark that Smith himself
noted in [32] that these conditions are not the most general one can find, for example,
one may consider nonnegative and nonpositive entries, and so forth. Indeed, one could
consider preservation of nonnegative normals and modify the conditions on JF. Although
this is an important consideration that can easily be addressed when actually checking
for monotonicity, we believe that it will detract us from the geometric arguments and the
appreciation of the novel geometric ideas. Thus, just as Smith [32] did, we will not consider
it here.

It is a simple computation to show that if JF is a K-positive matrix, then F is monotone.
Let F(x1, x2) = (f1(x1, x2), f2(x1, x2)) be a C1 map and assume that JF is K-positive matrix,
that is,

JF(x, y) =
(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

has positive diagonal terms ∂f1
∂x1 and

∂f2
∂x2 and has negative off diagonal terms ∂f1

∂x2 and
∂f2
∂x1 .

Let γ be a monotone curve given by γ (t) = (x1(t), x2(t)). The image of γ under the
map F is given by

F(γ (t)) = (f1(x1(t), x2(t)), f2(x1(t), x2(t))).

Now, we compute
dF
dt

and we have:

dF
dt

=
(

∂f1
∂x1

dx1
dt

+ ∂f1
∂x2

dx2
dt

,
∂f2
∂x1

dx1
dt

+ ∂f2
∂x2

dx2
dt

)
.

Since dx1
dt > 0 and dx2

dt < 0, we obtain,

∂f1
∂x1

dx1
dt

+ ∂f1
∂x2

dx2
dt

> 0 and
∂f2
∂x1

dx1
dt

+ ∂f2
∂x2

dx2
dt

< 0. (4)

This shows that if JF is a K-positive matrix, then the image of a monotone path is a
monotone path. In fact, the computation above in (4) provides the analytic condition that
one needs to verify condition (H2).

We are now ready to prove our main result in the particular case of planar maps. The
proof in the planar case does not require the existence of the carrying simplex, in fact, we
directly show its existence in this case.We include the proof here to highlight the geometric
approach of our argument.
Theorem 3.2: Let F : � → � be a C1 map. Assume that F satisfies (H1)–(H3). If there is
a unique positive fixed point E∗, then for every p > 0, Fn(p) → E∗ as n → ∞, that is, E∗ is
globally asymptotically stable in the interior of �.

Proof: For simplicity, let E{i} = Ei. Since F satisfies (H2), it follows that Lemma 3.1 holds.
Thus, F is competitive and by a change of coordinate, say (u, v) �→ (u,−v), the Jacobian
matrix JF becomes a positive matrix. By (H3), for i = 1, 2, we have that σ(JF(Ei)) ={
λi1, λ

i
2
}
with |λi1| < 1 < |λi2|.

Using the Perron–Frobenius Theorem, the associated eigenvector is positive. Changing
it back to the original coordinates, the eigenvector will have coordinates with opposite
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Figure 3. Points on the xi-axis will converge to Ei . At a fixed iterationm0, we can find an interior point pδ
i

that will be contained in the neighbourhood Ui afterm0 iterations.

signs. We then conclude that the locally unstable manifold of Ei, Wu
loc(Ei), is a normally

monotone curve, and by (H2), we have thatWu(Ei) is a normally monotone curve as well.
Thismeans that F|Wu

(
Ei
) will be componentwisemonotone and thus the orbits of all points

inWu(Ei) must converge to a fixed point. By assumption, there is only one fixed point E∗,
so orbits of points in F|Wu

(
Ei
) must converge to E∗.

Let p ∈ �, andwithout lost of generality, we can assume that p ∈ R. Indeed, if that is not
the case, then by (H1)we can find q ∈ Rwith F(p) = F(q). Next, by hypotheses (H2), there
is a curve γ : [0, 1] → R that ismonotone passing through p such that γ (0) = (0, p2) = p2
and γ (1) = (p1, 0) = p1.

We will show that there are points near the boundary of γ , pδ
1 and pδ

2 that will be
attracted to E∗. More precisely, afterm iterations, their orbits will be contained in an ε-ball
around E∗ denoted by B

(
E∗; ε

)
. Since metrics are equivalent in a finite dimensional vector

space, we can consider balls to be in the max norm, that is, balls are squares.
Since E∗ is a local attractor, let B

(
E∗; ε

)
be a subset of the immediate basin of attraction

of E∗ contained in the basin of attraction of E∗. For each i = 1, 2, we have that Ei is a
saddle point and E∗ is a local attractor with a heteroclinic connectionWu (Ei) between Ei
and E∗. Thus, by Lemma 2.7, there is a tubular neighbourhoodUi ofWu (Ei) such that for
x ∈ Ui ∩ int(R2+), we have Fn

(
x
) ∈ B

(
E∗; ε

)
for n sufficiently large.

For each i = 1, 2, we have that Ei is a globally asymptotically stable point of F restricted
to the axis xi. Thus, there ismi ∈ N such that for n ≥ mi, we have Fn

(
pi
) ∈ Ui as depicted

in Figure 3. Letm0 = max{m1,m2} then for this fixedm0 ∈ NN we have Fm0
(
pi
) ∈ Ui for

each i = 1, 2.
Since Fm0 is a continuous map, there is a neighbourhood Vi of pi, say Vi = B(pi; δi)

for δi > 0 such that if q ∈ Vi, then Fm0
(
q
) ∈ Ui. Let δ = min{δ1, δ2} > 0 and choose

pδ
i ∈ B(pi; δ) ∩ γ and pδ

i is between p and pi along γ . By the choice of δ, we have that
Fm0

(
pδ
i
) ∈ Ui as illustrated in Figure 3.

Now, by the choice of Ui, we know that there is ni ∈ N such that for n ≥ ni, we have
Fn
(
pδ
i
) ∈ B

(
E∗; ε

)
. Then choosem = max{n1, n2}.

Because γ is a monotone curve, the images of γ under F will be a graph of a function
with respect to both axes. This means that for all n ∈ N, the coordinates of Fn

(
p
)
will lie

between the coordinates of Fn
(
pδ
1
)
and Fn

(
pδ
2
)
as depicted in Figure 4. More precisely as

γ is a monotone curve increasing in the x1-direction and decreasing in the x2-direction:

π1
(
Fn
(
pδ
2
)) ≤ π1

(
Fn
(
p
)
)
) ≤ π1

(
Fn
(
pδ
1
))
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Figure 4. Dynamics of the image of a monotone path. The endpoints will converge to Ei and points near
the axes will converge to E∗. Monotonicity of F ensures that the image of the path will also converge
to E∗.

and

π2
(
Fn
(
pδ
2
)) ≥ π2

(
Fn
(
p
)
)
) ≥ π2

(
Fn
(
pδ
1
))

.

Form as chosen above, we have that Fm
(
pδ
i
) ∈ B

(
E∗; ε

)
, so it must be that Fm

(
p
)
must

be contained in a square of size ε centered at E∗ as depicted in Figure 4.
Since the argument is valid for any ε > 0, we have that Fn(p) → E∗ as n → ∞ as we

wanted to show.

Before end this section, we remark that the argument used in the proof that the
restriction of F to the unstable manifold is componentwise monotone can be stated in
general for planar retrotone maps as follows.
Proposition 3.3: Suppose F : R

2+ → R
2+ is a retrotone map and E is a saddle fixed point.

If Wu
loc
(
E
)
is not contained in the positive or negative cone centered at E, then the restriction

of F to Wu (E) is componentwise monotone.

Proof: Let σ(JF(E)) = {λ1, λ2} with |λ1| < 1 < |λ2| and v2 be the eigenvector associated
to λ2. Thus Wu

loc
(
E
)
is locally in the same direction as v2. Hence to say that Wu

loc
(
E
)
is

contained in the positive or negative cone is equivalent to say that the coordinates of v2
have the same sign.

Next, we see that Wu (E) can be viewed as a smooth curve as it is the image of
Wu

loc
(
E
)
under F which is a smooth curve. We will prove our result by establishing the

contrapositive. Indeed, suppose that the restriction of FWu (E) is not a componentwise
monotone. Then, there is x ∈ Wu (E) where the curve Wu (E) changes direction. This
means that the curveWu (E)will stay in the same half-plane if we consider x as the origin.
Thus, we can find y ∈ Wu (E) in one of the quadrants such that x and y are ordered with
respect to the usual order, that is, without loss of generality, say y > x.

Since F is retrotone, we have that F−1(y) > F−1(x) and because Wu (E) is invariant
F−1(y), F−1(x) ∈ Wu (E). For n ∈ N sufficiently large F−n(y), F−n(x) ∈ Wu

loc(E) and
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F−n(y) > F−n(x). Hence Wu
loc
(
E
)
must be contained in the positive or negative cone

centered at E.

4. Normally monotonemaps in R
k

In this section, we discuss how our geometric definition of monotonicity in terms of
preservation of the direction of the normal vector is the appropriate generalization of the
results from planar maps to higher dimensional maps and provides a generalization of
competitive maps in higher dimensions.

Let us recall some basic terminology from Linear Algebra to facilitate the description
of our results. Given a k × k matrix M, for 1 ≤ i, j ≤ k, let Mi be the (k − 1) × k matrix
obtained fromM by deleting its ith row andMj be the k × (k − 1) matrix obtained from
M by deleting its jth column. Since in the sequel we will not consider power of matrices,
this notation should not cause any ambiguity. Thus we denote detMj

i to be the (i, j)-minor
and Cij(M) = ( − 1)i+j detMj

i to be the (i, j)-cofactor.
In the previous section, we showed that if the Jacobian matrix of a planar map is K-

positive, then themap is normallymonotone. In higher dimensions, the analogous result is
true. However, one should not be looking at the signs of individual entries of the Jacobian
matrix. Instead, one should look at the sign of the cofactors of the Jacobianmatrix. Observe
that in the plane, when the Jacobian matrix is 2 × 2, the sign of the cofactors is given by
the sign of the corresponding entries. Our result is as follows.
Lemma 4.1: Let � ⊂ R

k and F = (f1, . . . , fk) : � → R
k be a map of class C1. Let p be

a regular value. The cofactors of the Jacobian matrix JF(p) are positive if and only if F is
normally monotone at p.

We remark that the requirement that p is a regular value, i.e. det JF(p) �= 0, is simply
to ensure that the tangent space and normal vector are well-defined. Note that for a local
orientation preserving diffeomorphism F of class C1, if JF−1(p) is a positive matrix, then
F is normally monotone. This is precisely the conditions from Smith’s original work on
competitive maps in [31] where the condition of positivity and irreducibility of a matrix
was used to verify the hypotheses of the Perron–Frobenius Theorem. From our geometric
approach, one of our contributions is to use the positivity of JF−1 to show that F is
componentwise monotone when restricted to the one-dimensional unstable manifold of
the fixed points in the coordinates hyperplanes. This will be formally stated in Lemma 4.3.

For now, we proceed with the outline of the proof of Lemma 4.1 which will be a
simple computation. Namely, starting with a hypersurface with positive normal vector, we
compute the normal vector to the image. Then, we show that the coordinate of the normal
vector is given by summands that involve the cofactors of the Jacobian matrix. The terms
in the summand will appear from the classical Cauchy–Binet formula [22] which states
that if A, B are two matrices of sizesm × k, k × m, respectively, withm ≤ k, then

det (AB) =
∑
σ

det (Aσ ) det (Bσ ). (5)

The sum is taken over all σ = (σ1 < σ2 < · · · < σm), with σi ∈ {1, . . . , k}, where Aσ

(and Bσ ) is the submatrix of A (and the submatrix of B) obtained by deleting all columns
(all rows) except those with indices in σ .
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Proof of Lemma 4.1: Consider a hypersurface � ⊆ � and p ∈ � such that η�(p) > 0,
that is, the normal vector at p is a positive vector. Let the local coordinates of � be given
by � : R

k−1 → R
k where

�(u1, . . . , uk−1) = (x1(u1, . . . , uk−1), . . . , xk(u1, . . . , uk−1)).

Thus the tangent space of � at p is spanned by the column vectors of the matrix

D� =

⎛
⎜⎜⎝

∂x1
∂u1 · · · ∂x1

∂uk−1
...

. . .
...

∂xk
∂u1 · · · ∂xk

∂uk−1

⎞
⎟⎟⎠ .

Therefore, the normal vector η = η�(p) may be computed as

η =
k∑

i=1

(
( − 1)1+i det

(
(D�T )i

) )
ei =

k∑
i=1

(
( − 1)1+i det

(
D�i

) )
ei.

Considering the coordinates of η = (
η1, . . . , ηk

)
, from the assumption that η > 0, we

have for i = 1, 2, . . . , k that

ηi = ( − 1)1+i det
(
D�i

)
> 0. (6)

Now, we consider the image of p and the normal vector at F(p) to F(�). First, the
tangent space is spanned by vectors Fu1 , . . . , Fuk−1 where

Fuj =
(

∂f1
∂uj

, . . . ,
∂fk
∂uj

)
.

From the chain rule, we have that

∂fi
∂uj

=
k∑

r=1

∂fi
∂xr

∂xr
∂uj

,

which is the (i, j)-entry of JF ·D�. Next, we compute the normal vector at the F(p), denoted
by ηF = ηF(�)(F(p)), and obtain

ηF =
k∑

i=1

(
( − 1)1+i det

([
(JF · D�)T

]i))
ei

=
k∑

i=1

(
( − 1)1+i det

(
(JF · D�)i

) )
ei.
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Observe that (JF · D�)i = JFi · D� where JFi is a (k − 1) × k matrix and D� is an
k × (k − 1) matrix. Now, using the Cauchy–Binet formula (5), we obtain:

det (JFi · D�) =
k∑

j=1

det
(
JFji
)
det
(
D�j

)
. (7)

Hence the ith coordinate of ηF is given by

(
ηF
)
i =

k∑
j=1

( − 1)1+i det JFji · detD�j

=
k∑

j=1

( − 1)i+j det JFji · ( − 1)1+j detD�j

=
k∑

j=1

Cij(JF) · ηj > 0. (8)

From (8), we directly verify that if all the cofactors of the Jacobian matrix JF(p) are
positive, then F is monotone. Indeed, if η > 0, then each ith coordinate of ηF is also
positive.

In the other direction, assume F is monotone. Assume towards a contradiction that
there is one cofactors of the Jacobian matrix JF(p) that is negative. Observe that given
a1, a2, . . . , ak ∈ R, if at least one ai is negative, then there exists x1, . . . , xk > 0 with∑

x2i = 1 such that
∑

aixi < 0. From this observation, we can choose a hypersurface �

nearly parallel to a coordinate hyperplane so that (8) is negative, a contradiction.
This establishes that the geometric hypotheses that F is normally monotone may be

characterized by the analytic condition that the cofactors of the Jacobian matrix JF(p) are
positive. �

Wehighlight that similarly to the planar case, condition (H2) can be analytically verified
using Lemma 4.1. This allow us to show via a simple computation that F is retrotone.
Indeed, this is also found in [31, Proposition 2.3] and [17, Proposition 4.1] and we include
it here for completeness.
Lemma 4.2: Let F : � → � be a C1 that satisfies (H1)–(H2). Then F is retrotone.

Proof: Let us consider x, y ∈ R. Take a path in F(R) joining F(x) and F(y) given by
β(t) = tF(y) + (1 − t)F(x) for t ∈ [0, 1]. Further, assume that

α(t) = F−1 (tF(y) + (1 − t)F(x)
)

is well-defined. Since F(α(t)) = β(t), we may differentiate both sides to obtain
JF(α(t))α′(t) = F(y) − F(x). That is,

α′(t) = [JF(α(t))
]−1 (F(y) − F(x)

)
. (9)
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Now, we can integrate both sides of (9) to obtain

∫ 1

0
α′(t) dt = α(1) − α(0) = y − x.

Thus by (9),

y − x =
(∫ 1

0

[
JF(α(t))

]−1 dt
) (

F(y) − F(x)
)
. (10)

Since the map F is monotone, we have by Lemma 4.1 that JF−1 is a positive matrix.
Therefore if F

(
y
)
> F

(
x
)
, then (10) implies that y > x. Hence F is a retrotone map.

Next, we state the resultmentioned above that establishes componentwisemonotonicity
of F when restricted to the one dimensional unstable manifold.
Lemma 4.3: Assume that the map F : � → � satisfies (H1)–(H4). Then for each I ⊂
{1, . . . , k} with |I| = k − 1, the restriction map F|Wu(EI ) is componentwise monotone.

Without loss of generality, let us consider I = {1, . . . , k− 1} and denote EI = Ek. From
hypothesis (H4), F admits a carrying simplex � andWu(Ek) ⊆ �.

Since F is monotone, and thus preserves positive normal vectors, the carrying simplex
� has positive normals at each point. Indeed, � may be approximated by the image of a
boundary of a disk around the origin inside the positive cone. Hence,� can be viewed as a
graph of a function over each hyperplane. More importantly, for each i ∈ I , the projection
map πik : � → Hik admits a right inverse π−1

ik .
Now, let us consider the dynamics of Wu(Ek) ⊆ Hik using the planar map F̃ : Hik →

Hik as follows
�

F−−−−→ ��⏐⏐π−1
ik

⏐⏐�πik

Hik
F̃−−−−→ Hik

(11)

Note that because the carrying simplex is invariant, we can reduce the analysis of the
componentwisemonotonicity of F|Wu(Ek) to the dynamics of a planarmap F̃. First, observe
that F̃ is a monotone map. This follows directly from the structure of the Jacobian matrix
for the projection maps which are the i and k columns of the identity matrix. Thus, by the
chain rule, it is clear to see that JF̃−1 > 0 as it is the product of positive matrices.

Now, we can use Proposition 3.3 to show that F|Wu(Ek) is componentwise monotone
in the components i and k. First, we see that πik

(
Wu (Ek)) is an invariant subset under

F̃ asWu (Ek) is invariant under F. Next, the normal vector to πik
(
Wu (Ek)) at πik

(
Ek
)
is

positive since it is the projection of the normal vector toWu (Ek) which is positive. Thus
the tangent vector to πik

(
Wu (Ek)) at πik

(
Ek
)
has opposite coordinates. The argument in

Proposition 3.3 can then be used to conclude that F|Wu(Ek) is componentwise monotone
in the components i and k.

By repeating this argument for each i ∈ I , we establish that F|Wu(Ek) is componentwise
monotone. �

The significance of Lemma 4.3 is that when considering the dynamics of a monotone
map restricted to the one dimensional unstable manifold, the map is componentwise
monotone and the orbits inWu(EI)must converge to a fixed point. In fact, as we consider
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the orbits in Wu(EI), we observe that they must be contained in the stable manifold of
another fixed point, that is, we will have a heteroclinic connection. Moreover, if we know
the nature of the stability of the two fixed points, say between a saddle and an attractor, then
as shown in Lemma 2.7 points near the heteroclinic connection will be in the immediate
basin of attraction of the stable fixed point. We are now ready to prove our main result,
which we restate it here.
Theorem 2.4: Assume that F : � → � satisfies (H1)–(H4). If F has a unique positive
coexistence fixed point E∗, then E∗ is globally asymptotically stable in the interior of �.

Proof: Consider p ∈ � and without loss of generality we can assume that p ∈ R. Indeed,
if that is not the case, then by (H1) we can find q ∈ R with F(p) = F(q). Next, choose �

to be a normally monotone hypersurface containing p. Indeed, � can be chosen to be the
boundary of a ball at the origin or a translation of the boundary of R. We will show that the
orbit of p will converge to the interior fixed point E∗ by showing that for any ε > 0 so that
B
(
E∗; ε

)
is contained in the local basin of attraction of E∗, the orbit of p will eventually be

inside B
(
E∗; ε

)
.

For each r = 1, 2, . . . k, let Ir = {1, 2, . . . , k} − {r} and consider the fixed point EIr . By
hypotheses (H3), EIr is a saddle point which is globally stable for the restriction map F|HIr .
This means that we have a one dimensional global unstable manifold Wu (EIr ). From
Lemma 4.3, we conclude that any orbit inWu (EIr )will converge to an interior fixed point,
in fact the unique fixed point E∗.

The argument above shows thatWu (EIr ) is a heteroclinic connection between EIr and
E∗. Thus, by Lemma 2.7 we can find a tubular neighbourhood Ur ofWu (EIr ) so that each
point x ∈ Ur ∩ int(Rk+), we have Fn

(
x
) ∈ B

(
E∗; ε

)
for n sufficiently large.

Before we proceed, we will briefly outline the geometric idea of the proof. We will show
that there it will be possible to find a small retraction of the boundary of � so that the
orbits of the boundary points will be contained in the basin of attraction of E∗. The main
challenge, and hence the introduction of some heavier notation, is to find one fixedm ∈ N

so that afterm iterations the boundary will be contained in B
(
E∗; ε

)
. We will find finitely

many anchor points that will be mapped to B
(
E∗; ε

)
. Then, similarly to the planar proof

of Theorem 3.2, the boundary monotone sets will be mapped to B
(
E∗; ε

)
and will remain

monotone (or graphs of functions over hyperplanes). This implies that the interior of the
monotone sets will also be contained in B

(
E∗; ε

)
.

Let us now begin introducing some notation and providing the details of this argument.
First, let us denote γ = ∂� and �er to be the ray from the origin to the fixed point EIr .
We define pr = �er ∩ γ ∈ HIr which is an interior point of HIr . By (H3), the orbit of pr
converges to EIr and we can find mr ∈ N such that for n ≥ mr , Fn(pr) ∈ Ur . Now, let
m0 = max{m1,m2, . . . ,mk} and then for a fixed m0, whenever n ≥ m0, Fn(pr) ∈ Ur as
illustrated in Figure 5.

Using that Fm0 is continuous, we can find δr > 0 so that for each x ∈ B
(
pr; δr

)
we

have that Fm0(x) ∈ Ur . Then let δ = min{δ1, δ2, . . . , δk} > 0 and define �δ = {x ∈
�| dist(x, γ ) ≥ δ/2}, that is, �δ is a small retraction of � away from the boundary and
γ δ = ∂�δ . Now we can select a anchor point pδ

r ∈ �δ ∩ B
(
pr; δ

)
, that is, a point in the

interior of R
k+ in � within δ from pr such that Fm0(pδ

r ) ∈ Ur .
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Figure 5. At each hyperplane, we can choose anchor points pδ
r that afterm0 iterations will be contained

in Ur and thus eventually attracted to E∗. It is also indicated how the one dimensional boundary above
is decomposed into the 1-cells γ δ

13 and γ δ
23.

Therefore, the orbit of pδ
r will eventually be contained in B

(
E∗; ε

)
and because there are

finitelymany of these anchor points pδ
r , there is a fixedm ∈ N such that Fm(pδ

r ) ∈ B
(
E∗; ε

)
for all r = 1, 2, . . . k. Indeed, for each k, we can find the first iteration where pδ

r will be
contained in B

(
E∗; ε

)
and selectm to be the maximum of these iterations.

Now, we will reassemble �δ by considering its cell complex (CW) topological decom-
position from zero dimensional cells up to k-dimensions, see [15] for details. In fact, by [7],
we know that �δ is topologically a k-cell and so we can use the notation and combinatorial
approach in [4] to complete the reassembly. First, we begin with the 0-cells of �δ to be the
points pδ

r . For notational purposes, we let γ δ{r} = pδ
r . Next, for 1 ≤ � ≤ k − 1, we consider

all the subsets J ⊆ {1, 2, . . . k} with cardinality �, that is, |J| = �. For each of these subsets,
we will have a �-cell γ δ

J such that the CWdecomposition of the boundary will be as follows:

∂γ δ
J =

∑
S⊂J ,|S|=�−1

γ δ
S . (12)

In Figure 5 we illustrate this decomposition for the three dimensional case when �δ

is a two dimensional complex with a one dimensional boundary γ δ . In general, we start
with the 0-cells of �δ , that is, the k points pδ

r , will belong to B
(
E∗; ε

)
after m iterations.

Next, assume that for 0 ≤ � < k − 1, all the �-cells of �δ will belong to B
(
E∗; ε

)
after

m iterations. Then for � + 1 and by (12) the boundary of a (� + 1)-cell γ δ
J will belong to

B
(
E∗; ε

)
after m iterations. By monotonicity of F, the graph condition will be preserved

and the (� + 1)-cell must also be contained in B
(
E∗; ε

)
as depicted in Figure 6 for the

three dimensional case. We do this up to � = k − 2 to show that �δ , the k − 1-cell is also
eventually contained in B

(
E∗; ε

)
.

Indeed, consider the projection of γ δ
J onto each hyperplane of R

k+, say for instanceHIr ,
and the continuous function dr defined to be the distance for πr(q) to πr(E∗) in HIr
for q ∈ γ δ

J . By compactness, this function has a maximum which must be contained in
πr
(
B
(
E∗; ε

))
. Indeed, suppose this were not the case, then the maximum would have to
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Figure 6. Dynamic of the image of the normally monotone hypersurface. The points near the boundary
will converge to the interior fixed point E∗. The monotonicity of the map ensures the images will be a
graph over each hyperplane and hence the images will belong to an ε-cube centered at E∗.

be at an interior point of γ δ
J . Therefore, a component, namely the r-component, of the

normal vector of points in γ δ
J would have to change sign and this would contradict the

monotonicity of F.
Finally, iterating the argument until the top dimensional cell of �δ , we conclude that

after m iterations �δ will be contained in the immediate basin of attraction of E∗, namely
B
(
E∗; ε

)
. In particular, the orbit of pmust belong to B

(
E∗; ε

)
. Since this argument is true

for any ε > 0, we have that E∗ is globally asymptotically stable as we wanted to prove.

5. Applications

In this section, we illustrate how to verify and apply our results to two models. We will
consider the Leslie–Gower competition model used by Park and Leslie [25] and the Ricker
Competition model [29]. We will first discuss the planar case and then address the three
dimensional case. Although the planar results are known in the area, our main goal is to
illustrate how to check the hypotheses (H1)–(H4). We remark that the work in [17] has
already shown that the Leslie–Gower and Ricker competition models admits a carrying
simplex. Hence, since (H4) is verified for these two models, our main concerned here is to
check (H1)–(H3). In addition, the global stability of the monotone Ricker planar map is
often refereed in the literature to the work of Smith [32]. Unfortunately, the proof relies
on a result, [32, Theorem 5.3], that does not have a published proof hence we included it
here for completeness.
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5.1. Leslie–Gowermodel

The planar Leslie–Gower competition model is given by the following autonomous differ-
ence equation: ⎧⎪⎨

⎪⎩
x1(n + 1) = b1x1(n)

1+c11x1(n)+c12x2(n)

x2(n + 1) = b2x2(n)
1+c21x1(n)+c22x2(n)

, n ∈ Z
+. (13)

The model has been rescaled to reduce the number of parameters, here x1(n) and x2(n)
represents the population size of two species x1 and x2, respectively, at time unit n. The
parameters cij, i �= j are the interspecific competition parameters, cii are the intraspecific
competition parameters and bi, i = 1, 2 are the intrinsic growth rates. All these parameters
are assumed to be positive constants. The asymptotic dynamics of the Leslie–Gowermodel
(13) is well studied, see, for instance, Cushing et al. [10].

It can also be generalized to more than two species. In fact, for k species interacting in
an environment, the k-dimensional Leslie Gower competition model is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1) = b1x1(n)
1+∑k

i=1 c1ixi(n)

x2(n + 1) = b2x2(n)
1+∑k

i=1 c2ixi(n)
...

xk(n + 1) = bkxk(n)
1+∑k

i=1 ckixi(n)

. (14)

It is assumed that the parameters are positive and the inherent growth rate of each
species is such that in the absence of competition each species will growth to its individual
carrying capacity. Notice that if bi ≤ 1, for any i = 1, 2, . . . , k, then species xi goes to
extinction, i.e. xi(n) → 0 as n → ∞. Since our main assumption is that our system
does not go to extinction, we will only consider the system (14) when bi > 1, for all
i = 1, 2, . . . , k. We also observe that the origin is a fixed point.

We shall now focus our global stability analyses for the planar and the three dimensional
Leslie–Gower model.

5.1.1. Planar Leslie–Gowermodel
We can represent the planar Leslie–Gower system (13) by the map F : R

2+ → R
2+ given

by

F(x1, x2) =
(

b1x1
1 + c11x1 + c12x2

,
b2x2

1 + c21x1 + c22x2

)
.

Under some restrictions on the parameters, the model has at most one interior fixed
point and the dynamics is similar to the classical Lotka–Volterra competition system of
ordinary differential equations [10].

Our goal is to show that the planar Leslie–Gower satisfies the assumptions of our
main result and thus we will conclude that the unique interior fixed point is globally
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asymptotically stable. First, we compute the Jacobian matrix of F which is given by

JF(x1, x2) =
⎛
⎜⎝

b1
(
1+c12x2

)
(
1+c11x1+c12x2

)2 − c12b1x1(
1+c11x1+c12x2

)2
− c21b2x2(

1+c21x1+c22x2
)2 b2

(
1+c21x1

)
(
1+c21x1+c22x2

)2

⎞
⎟⎠ .

It is straightforward to see that the origin is an unstable fixed point of F since the
eigenvalues of JF(0) are bi > 1 for i = 1, 2. Our next objective is to show that the map F
satisfy (H1). We will do so by computing the determinant of the Jacobian matrix, which is
given by

det JF(x1, x2) = b1b2
(
c21x1 + c12x2 + 1

)
(
c11x1 + c12x2 + 1

)
2
(
c21x1 + c22x2 + 1

)
2 > 0 .

Thus, F is orientation preserving and for all x ∈ R
2+, F satisfies (H1) by taking R = R

2+.
Next, we consider (H2) and check that F is a monotone map. In fact, by Lemma 4.1 we
compute the cofactors of JF and obtain

C11
(
JF(x1, x2)

) = b2
(
c21x1 + 1

)
(
c21x1 + c22x2 + 1

)
2 ,

C12
(
JF(x1, x2)

) = b2c21x2(
c21x1 + c22x2 + 1

)
2 ,

C21
(
JF(x1, x2)

) = b1c12x1(
c11x1 + c12x2 + 1

)
2 ,

C22
(
JF(x1, x2)

) = b1
(
c12x2 + 1

)
(
c11x1 + c12x2 + 1

)
2 .

Since all four cofactors are positive, we conclude that map F is monotone and (H2) is
satisfied.

We now consider hypotheses (H3), that is, the stability analysis of the fixed points in the
coordinate subspaces. First, it is well-known that x∗ = b−1

c is a global asymptotically stable
fixed point of the one-dimensional Leslie–Gower map f (x) = bx

1+cx whenever b > 1. For
the planar Leslie–Gower map, F has four fixed points. The origin, which is a unstable fixed
point, two exclusions fixed points on the axis E1 =

(
b1−1
c11 , 0

)
and E2 =

(
0, b2−1

c22

)
and,

possibly, a coexistence fixed point (positive fixed point in the interior of the first quadrant)
given by

E∗ =
((

b1 − 1
)
c22 − (b2 − 1

)
c12

c11c22 − c12c21
,
(
b2 − 1

)
c11 − (b1 − 1

)
c21

c11c22 − c12c21

)
.

Since our main objective is to study the global stability of E∗, we will have two scenarios in
order to guarantee that E∗ exists and it is a positive fixed point (Figure 7).
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Figure 7. Region S1 in the parameter space b1Ob2 correspond to set where conditions (15) are satisfied.
If (b1, b2) ∈ S1 the positive fixed point E∗ is globally asymptotically stable (GAS). If (b1, b2) ∈ O the
origin is GAS. If (b1, b2) ∈ R1 the exclusion fixed point E1 is GAS while if (b1, b2) ∈ Q1 the exclusion fixed
point E2 is GAS. Lines l1 and l2 is where we have equality in (15).

Case (i): Suppose c11c22 > c12c21,
(
b1 − 1

)
c22 >

(
b2 − 1

)
c12 and

(
b2 − 1

)
c11 >(

b1 − 1
)
c21, or equivalently,

c12
c22

<
b1 − 1
b2 − 1

<
c11
c21

. (15)

A straightforward manipulation of the inequalities in (15) yields

b2c11(
b1 − 1

)
c21 + c11

> 1 and
b1c22(

b2 − 1
)
c12 + c22

> 1. (16)

Next, the eigenvalues of JF, at the fixed points E1 and E2 are given by

σ
(
JF
(
E1
)) =

{
b2c11(

b1 − 1
)
c21 + c11

,
1
b1

}

and

σ
(
JF
(
E2
)) =

{
b1c22(

b2 − 1
)
c12 + c22

,
1
b2

}
.

From (16) and the fact that 1
bi < 1, for i = 1, 2, it follows that E1 and E2 are saddle fixed

points. Thus, hypothesis (H3) is satisfied.
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Case (ii) Suppose c11c22 < c12c21,
(
b1 − 1

)
c22 <

(
b2 − 1

)
c12 and

(
b2 − 1

)
c11 <(

b1 − 1
)
c21, or equivalently,

c11
c21

<
b1 − 1
b2 − 1

<
c12
c22

. (17)

In this scenario, it is an easy computation to verify thatE1 andE2 are both locally asymp-
totically stable and E∗ is saddle. This is a phenomenon known in population dynamics as
the competitive exclusion principle, also referred to as Gause Law of competitive exclusion,
see [14]. It states that two species that compete for the exact same resources cannot stably
coexist. In other words the dynamics of the system depends on initial conditions. There
exists a separatrix in the first quadrant where the orbit goes either to x−axis or y−axis
depending on the location of the initial condition. Hence only one species will survive.
Since this scenario does not fit the objectives of the paper, that is, no extinction of any
species, we shall not consider it.

Finally, as we consider the Leslie–Gower model with parameters satisfying condition
(15) in case (i), we find that (H1)–(H4) are satisfied and there is a unique positive fixed
point E∗ of F. Thus by Theorem 3.2, it follows that the coexistence fixed point is globally
asymptotically stable in the interior of R

2+.

5.1.2. Three Dimensional Leslie–Gowermodel
We now consider the three dimensional Leslie–Gower model, F : R

3+ → R
3+ given by

F(x1, x2, x3) =
(

b1x1
1 +∑3

i=1 c1ixi
,

b2x2
1 +∑3

i=1 c2ixi
,

b3x3
1 +∑3

i=1 c3ixi

)
.

It is a straightforward, but long computation to show that F is orientation preserving as
det JF > 0 and the cofactors of JF are positive. This computation is given in the Appendix 1.
Thus, we can immediately see that F trivially satisfies (H1) by taking the monotone region
to be R = R

3+ and that F is monotone, that is, it satisfies (H2).
It remains to determine if F satisfy (H3). In this direction, we find that there are eight

fixed points of F as follows: the origin, three fixed points on each axis, three fixed points on
each plane, and a coexistence fixed point E∗. For each coordinate plane, from Section 5.1.1
it follows that the coexistence fixed point of the restriction of F to each planar subspace is
globally asymptotically stable. In addition, we assume that the three fixed points on each
plane given below have positive coordinates, except for one that is clearly zero. The fixed
points are

E12 =
((

b1 − 1
)
c22 − (b2 − 1

)
c12

c11c22 − c12c21
,
(
b2 − 1

)
c11 − (b1 − 1

)
c21

c11c22 − c12c21
, 0

)
,

E13 =
((

b1 − 1
)
c33 − (b3 − 1

)
c13

c11c33 − c13c31
, 0,
(
b3 − 1

)
c11 − (b1 − 1

)
c31

c11c33 − c13c31

)
,

and

E23 =
(
0,
(
b2 − 1

)
c33 − (b3 − 1

)
c23

c22c33 − c23c32
,
(
b3 − 1

)
c22 − (b2 − 1

)
c32

c22c33 − c23c32

)
.
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The coordinates of the coexistence fixed point E∗ are given in the Appendix 1 since
they include long expressions for each of the coordinates. Nevertheless, because each of
the previous fixed points have positive coordinates, except for those that are clearly zero,
we conclude that E∗ is a positive coexistence fixed point.

Next, we need to determine stability of the fixed points interior to each coordinate planes
to show that hypotheses (H3) holds. This task requires consideration of all 12 parameters
given in the Leslie–Gower model. Since our main goal is to provide a concrete illustration
on how to apply our main ideas, instead of considering the general case, we focus our
analyses in the totally symmetric case, i.e. cij = c, i �= j and cii = 1 and b = bi, for
i, j = 1, 2, 3.

By symmetry let us consider the fixed point E12 which we will show it is a saddle. We
have two possible scenarios: either c < 1 or c ≥ 1. In the last case where c ≥ 1, the system
depends on initial conditions and the behaviour will be similar as we described in case (ii)
for the planar system. Hence, this scenario does not fit the assumptions and will not be
considered. Therefore, we assume c < 1.

The eigenvalues of JF(E12) are given by

σ
(
JF(E12)

) =
{
1
b
,
2bc − c + 1

bc + b
,

b(c + 1)
(2b − 1)c + 1

}
.

Since c < 1, a simple computation shows that b(c+1)
(2b−1)c+1 > 1. By the fact that b > 1 we have

that 1
b < 1 and 2bc−c+1

bc+b < 1. This implies that E12 is a saddle. A similar analyses shows that
this is the case for E13 and E23 as well.

Consequently, hypothesis (H3) is verified whenever b = bi, cii = 1 and cij = c < 1,
i �= j for all i, j = 1, 2, 3.

Since (H1)–(H4) is satisfied and there is a unique positive fixed point of F, it follows by
Theorem 2.4 that the coexistence fixed point E∗ is globally asymptotically stable.

5.2. Ricker competitionmodel

The planar Ricker competition model is given by the following autonomous difference
equation:

⎧⎨
⎩
x1(n + 1) = x1(n) exp (r1 − c11x1(n) − c12x2(n))

x2(n + 1) = x2(n) exp (r2 − c21x1(n) − c22x2(n))
, n ∈ Z

+. (18)

Here x1(n) and x2(n) represents the population sizes of two species at time unit n.
The parameters r1 and r2 are the inherent exponential growth rates at low densities and
ci,j, i, j = 1, 2, are the competition intensity coefficients measuring the effects of intra-
specific competition and inter-specific competition. More precisely, c11 and c22 are the
intra-specific competition parameters while c12 and c21 are the inter-specific competition
parameters. Notice that, these six parameters are assumed to be positive. The dynamics of
the Ricker competition model has been well studied, see for instance, [1,10,26].

The Ricker competitionmodel can also be generalized tomore than two species. In fact,
for k species interacting in an environment, the k-dimensional Ricker competition model
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is given by ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1(n + 1) = x1(n) exp (r1 −∑k
i=1 c1ixi(n))

x2(n + 1) = x2(n) exp (r2 −∑k
i=1 c2ixi(n))

...

xk(n + 1) = xk(n) exp (rk −∑k
i=1 ckixi(n))

. (19)

We shall now focus our attention to establish global stability for the planar and the three
dimensional Ricker competition model.

5.2.1. Planar Ricker competitionmodel
When considering the planar Ricker competition model, we can scale the state variables
against the inherent carrying capacities to reduce the number of parameters and represent
(18) by the map F : R

2+ → R
2+ given by

F(x1, x2) = (x1er1−x1−ax2 , x2er2−bx1−x2).

Since we interested in the analyses of a system that does not go to extinction and has
a unique positive coexistence fixed point, a simple computation establishes that ar2 < r1,
br1 < r2, and ab < 1, see [6] for details.

It is awell-known result fromSmith [32, Proposition 6.1], that when 0 ≤ r1, r2 ≤ 1, local
stability of theuniquepositive coexistencefixedpoint implies global stability.Asmentioned
in the beginning of this section, the crucial step in the proof of this theoremmakes reference
to an unpublished work. Recent work by the authors in [6] using singularity theory, can
easily show global stability of the monotone planar Ricker competition model. We shall
take the opportunity to illustrate how to apply our ideas and verify our conditions to have
a recorded version of the proof of this important result.

Let us compute the Jacobian matrix of F which is given by

JF(x1, x2) =
(

(1 − x1)er1−x1−ax2 −ax2er1−x1−ax2

−bx2er2−bx1−x2 (1 − x2)er2−bx1−x2

)
. (20)

It is straightforward to see that the origin is an unstable fixed point of F since the
eigenvalues of JF(0) are eri > 1 for i = 1, 2. Our next objective is find the monotone region
R that satisfy (H1) and (H2).

First, the determinant of JF is given by

det JF(x1, x2) = er1+r2−x1−bx1−x2−ax2(1 − x1 − x2 + x1x2 − abx1x2). (21)

The set where det JF(x1, x2) = 0 is called the critical curve LC−1 and it is given by

LC−1 =
{
(x1, x2) ∈ R

2+ : x2 = 1 − x1
1 − (1 − ab)x1

, x1 �= 1
1 − ab

}
. (22)

There exists a region R1 containing the origin so that whenever (x1, x2) ∈ R1,
det JF(x1, x2) > 0. Indeed, R1 is the region containing the origin bounded by the left
component of LC−1, denoted by LC1−1 (see [6] for details).We claim thatR1 is amonotone
region we seek.
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Indeed, F|R1 is orientation preserving and by [6, Theorem 4.7], we have that F
(R1

) =
F(R2+). Finally, to check that ∂R1 = LC1−1 is a monotone curve (according to Defini-
tion 2.1), we can simply consider the function ϕ : [0, 1] → R given by ϕ(t) = 1−t

1−(1−ab)t ,
and observe that ϕ′(t) = − ab(

abt−t+1
)2 < 0. Thus (H1) is satisfied with R = R1.

Furthermore, we remark that R1 is a convex region. Indeed, computing the second
derivative of the parameterization of h shows that

ϕ′′(t) = − 2ab
(
1 − ab

)
(
1 − (1 − ab

)
t
)3 < 0. (23)

Next, we consider the cofactors of JF which are given by:

C11
(
JF(x1, x2)

) = eK
(
1 − x2

)
,

C12
(
JF(x1, x2)

) = eKbx2,
C21
(
JF(x1, x2)

) = eKax1,
C22
(
JF(x1, x2)

) = eK
(
1 − x1

)
,

where K = r1 + r2 − x1 − bx1 − x2 − ax2. Since all four cofactors are positive in R1 as
x1, x2 < 1, we conclude from Lemma 4.1 the map F is monotone and (H2) is satisfied.

We now consider hypotheses (H3). It is well-known [13] that x∗ = r is a global asymp-
totically stable fixed point of the one dimensional Ricker map f (x) = xer−x whenever
0 < r ≤ 2. The planar Ricker competition model has four fixed points: the origin, which is
an unstable fixed point, two exclusions fixed points on the axisE1 = (r1, 0) andE2 = (0, r2)
and, possibly, a coexistence fixed point given by

E∗ =
(
r1 − ar2
1 − ab

,
r2 − br1
1 − ab

)
.

When ab > 1 we have the exclusion principle, see [26] for details, and this shall not be
considered. As mentioned before we will consider the case ab < 1, r2 > br1, and r1 > ar2
which ensures the existence of a unique positive coexistence fixed point. In addition, we
are considering the inherent growth rates to be less than 1, i.e. ri < 1, i = 1, 2.

Next, we compute the eigenvalues of JF at the fixed points E1 and E2 which are given by

σ
(
JF(E1)

) =
{
er2−br1 , 1 − r1

}
and σ

(
JF(E2)

) = {er1−ar2 , 1 − r2
}
.

Due the restrictions on the parameters it follows that E1 and E2 are saddle fixed points on
the axis. Thus, hypothesis (H3) is satisfied.

In summary, as we consider the Ricker competition model with parameters satisfying
ab < 1, br1 < r2 < 1 and ar2 < r1 < 1 we have that hypotheses (H1)–(H4) are satisfied
and there is a unique coexistence fixed E∗ of F. It now follows from Theorem 2.4 that the
coexistence fixed point E∗ is globally asymptotically stable in the interior of R

2+.
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5.2.2. Three dimensional Ricker competitionmodel
We now focus on the three dimensional Ricker competition model where the map F :
R
3+ → R

3+ is given by

F(x1, x2, x3) = (x1er1−x1−a12x2−a13x3 , x2er2−a21x1−x2−a23x3 , x3er3−a31x1−a32x2−x3).

Our objective is to find a region of parameters of the three dimensional Ricker compe-
tition map where the assumptions (H1)–(H3) are satisfied.

We will begin as we did in the planar case. First, we shall restrict ourselves to the case
where the interior positive fixed point exists. The computation of E∗ is straightforward, but
involve long expressions. Thus we include the details of the restrictions of the conditions
on the parameters, to be denoted by (B2), in Appendix 2.

We will show that the three dimensional analogue of R1 is also a monotone region.
Then, in order to show it satisfies (H1), we need the analogue of [6, Theorem 4.7]. We
conjecture that the same characterization of the local structure of planar singularities as
it is done by Whitney [33] could be obtained in higher dimensions, but we are not aware
of such results. Nevertheless, we can still establish a condition on the parameters of the
Ricker competition model that will ensure that the image will be contained in R1 and
hence satisfy (H1).

Let us begin by computing the Jacobian matrix of F and its determinant to find the set
of singularities of the Ricker map. A computation establishes that

JF := JF(x1, x2, x3) =
⎛
⎝ (1 − x1)eK1 −a12x1eK1 −a13x1eK1

−a21x2eK2 (1 − x2)eK2 −a23x2eK2

−a31x3eK3 −a32x3eK3 (1 − x3)eK3

⎞
⎠ , (24)

where
K1 = r1 − x1 − a12x2 − a13x3,

K2 = r2 − a21x1 − x2 − a23x3,

and
K3 = r3 − a31x1 − a32x2 − x3.

Next, we can compute its determinant and obtain det JF = eK1+K2+K3�, where

� = 1 − (x1 + x2 + x3) + (1 − a12a21)x1x2 + (1 − a13a31)x1x3 + (1 − a23a32)x2x3
− (1 − a12a21 − a13a31 − a23a32 + a12a23a31 + a13a21a32)x1x2x3. (25)

We are interested in the set LC−1 = {
(x1, x2, x3) ∈ R

3+ : det JF = 0
}
. In particular, in

the component of LC−1, denoted by LC1−1 which bounds a regionR1 containing the origin
and where det JF > 0. Solving � = 0 for x3 using (25), we have that LC1−1 is the graph of a
function � : Rx1x2 → R where Rx1x2 is the region R1 restricted to the x1x2-plane.

Now, we can establish that R1 is a monotone region by simply computing the normal
vector at each point in ∂R1 = LC1−1. Since LC

1−1 is a graph of the function�, we have that
η = (−∂x1�,−∂x2�, 1

)
. Because this is a long computation, we have included the details

in Appendix 2. Indeed, (B4) shows that ∂x1� < 0 and ∂x2� < 0. Hence, we conclude that
η > 0 and R1 is a monotone region.
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In order to establish (H1) we need to show that the image of any point in R
3+ will

eventually be contained in R1. First, denote F = (f1, f2, f3), and for i = 1, 2, 3, we define
the isocline Si = {(x1, x2, x3) ∈ R

3+ : fi(x1, x2, x3) = xi}, i.e. we have the following sets

S1 = {(x, y, z) ∈ R
3+ : r1 − x − a12y − a13z = 0

}
,

S2 = {(x, y, z) ∈ R
3+ : r2 − a21x − y − a23z = 0

}
,

S3 = {(x, y, z) ∈ R
3+ : r3 − a31x − a32y − z = 0

}
.

Let us also define S+
i = {(x1, x2, x3) ∈ R

3+ : fi(x1, x2, x3) > xi} and S−
i = {(x1, x2, x3) ∈

R
3+ : fi(x1, x2, x3) < xi}. Consider the following conditions

(∗1) For each i = 1, 2, 3, suppose 0 ≤ ri ≤ aij, for i �= j.
(∗2) The intra-specific parameters satisfy a12a23a31 = a13a32a21.

We now prove the following result:
Lemma 5.1: Suppose for i = 1, 2, 3 that 0 ≤ ri ≤ 1 and conditions ( ∗1 ) and ( ∗2 ) holds.
Then, LC1−1 ⊆ S−

1 ∩ S−
2 ∩ S−

3 .

Proof: We will show that LC1−1 ⊆ S−
i for each i = 1, 2, 3. For instance, let us first consider

the isocline S1.
Observe that the point of intersection of S1 with each of the coordinate axes is

(
r1, 0, 0

)
,(

0, r1
a12 , 0

)
,
(
0, 0, r1

a13

)
. The intersection of LC1−1 to each coordinate plane is a curve with

negative second derivative as it was shown in (23). From condition ( ∗1 ), we have
r1, r1

a12 ,
r1
a13 ≤ 1 thus, for i �= j, each endpoints of S1 ∩ Hij is below S1 ∩ LC1−1 and by

convexity so is each segment S1 ∩ Hij as depicted in Figure 8.
Next, for each plane perpendicular to x1 or x2, the intersection of the plane and S1

will be a segment that will be below LC1−1. Indeed, without loss of generality, for a fixed
t ∈ [0, 1], let H1(t) denote the plane perpendicular to the coordinate axis x1 containing t
and H1(t) ∩ LC1−1 be a curve denoted by γ1. The concavity of γ1 is determined by ∂x2x2�

and by (B5) in Appendix 2, we have that ∂x2x2� < 0.
Therefore, as we restrict ourselves to the planeH1(t), the curve γ1 bounds the endpoints

ofH1(t)∩S1. By the concavity of γ1, we have that γ1 actually bounds the segmentH1(t)∩S1
and hence LC1−1 ⊆ S−

1 . The argument is analogous for each i, hence, LC1−1 ⊆ S−
1 ∩ S−

2 ∩
S−
3 .

The main consequence of Lemma 5.1 is that under condition ( ∗1 ), the image of any
point x > 0 outsideR1, will have all of the coordinates of F(x) smaller than the coordinates
x. This means that F is componentwise decreasing in S−

1 ∩ S−
2 ∩ S−

3 . Therefore, there must
bem ∈ N such that Fm(x) ∈ R1, that is, the orbit of x will eventually be inR1. This shows
that under conditions ( ∗1 ) and ( ∗2 ), the region R1 is a monotone region that satisfies
condition (H1). We remark that it is possible that after one iteration, the image of a point
may not be inside R1. However, what it is actually important in condition (H1) is that
eventually, the image of every point will be contained in R1.

Now, we shall determine conditions on the parameters that will ensure that the Ricker
competition map is monotone and hence satisfies (H2). Consider the following condition

(∗3) For each i = 1, 2, 3, suppose aij + 1 < e1−ri , for i �= j.
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Figure 8. The isocline S1, where f1(x1, x2, x3) = x1, is inside the positive cone and bounded by segments
that are inside R1. Each plane perpendicular to the coordinate axis intersects LC1−1 in a curve γi that
bounds the segments in S1.

Figure 9. The region S1, in the parameter space rOa, corresponds to set where conditions ( ∗1 ), ( ∗2 ),
and ( ∗3 ) are satisfied, i.e. 0 < r < a < 1 and a < e1−r − 1. If (r, a) ∈ S1 the positive fixed point E∗ is
globally asymptotically stable (GAS) with respect to the interior of the positive orthant.
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Lemma 5.2: Suppose for i = 1, 2, 3 that 0 ≤ ri ≤ 1 and condition ( ∗3 ) holds. Then, the
cofactors of JF are positive and F is monotone.

Proof: From the expression of JF in (24), we can write JF = eKM, whereM is the matrix
given below. Thus it suffices to show that the cofactors ofM are positive. Indeed,

M =
⎛
⎝ 1 − x1 −a12x1 −a13x1

−a21x2 1 − x2 −a23x2
−a31x3 −a32x3 1 − x3

⎞
⎠ , (26)

and the cofactors ofM are given by

Cjk = xk
(
akj
(
1 − xi

)+ akiaijxi
)
, (27)

Cii = (1 − xj
) (
1 − xk

)− ajkakjxjxk, (28)

where {i, j, k} = {1, 2, 3}. First, let us consider the nondiagonal cofactors Cjk given in (27).
Because we are considering F restricted to R1 and we are only interested in the points in
the interior of R1, we trivially have 0 < xi ≤ 1 and thus Cjk > 0.

Next, for the diagonal cofactors Cii given in (28), we see that an algebraic manipulation
together with ( ∗3 ) shows that Cii > 0. Indeed, assume that 0 < xj, xk, then for each
j = 1, 2, 3, we have xj ≤ erj−1, that is, 1

xj ≥ e1−rj . Thus,

(
1
xj

− 1
)

≥ e1−rj − 1 and
(
1
xk

− 1
)

≥ e1−rk − 1.

From ( ∗2 ), e1−rj − 1 > ajk and e1−rk − 1 > akj, thus

(
1
xj

− 1
)(

1
xk

− 1
)

≥ (e1−rk − 1
) (
e1−rj − 1

)
> ajkakj. (29)

Multiplying (29) by xjxk and simplifying, we conclude that Cii > 0.

It is now clear from Lemma 5.2 that if the parameters of the Ricker competition model
satisfies Condition ( ∗3 ), then F satisfy (H2).

Now, it remains to determine under which conditions on the parameters, themap F will
satisfy (H3). In this direction, we see that there are eight fixed points of F as follows: the
origin, three fixed points on each axis, three fixed points on each plane, and a coexistence
fixed point E∗. Since the model has nine parameters, the computations and analysis of
local stability of each fixed point is very difficult. Since our goal is to highlight the process
one must undergo to verify our hypotheses, we will focus on the symmetric case, i.e. ri = r
and aij = a for all i and j.

Thefixedpoints on each axis are givenbyE1 = (r, 0, 0),E2 = (0, r, 0), andE3 = (0, 0, r).
Next, the three fixed points on each plane are

E12 =
(

r
1 + a

,
r

1 + a
, 0
)
, E13 =

(
r

1 + a
, 0,

r
1 + a

)
and E23 =

(
0,

r
1 + a

,
r

1 + a

)
.
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Similarly to the Leslie–Gower model, in each coordinate plane, the restriction of F behaves
as the planar model. Hence, we assume that the parameters for each restriction satisfies the
same conditions as the planar case, i.e. r < 1 and a < 1.

The coexistence fixed point E∗ is given by

E∗ =
(

r
1 + 2a

,
r

1 + 2a
,

r
1 + 2a

)
, (30)

which is clearly a positive fixed point.
Now, we turn our attention to the local stability of the fixed points in the coordinate

planes. For instance, the eigenvalues of E12 are

σ
(
JF
(
E12
)) =

{
er

1−a
1+a , 1 − r,

a + 1 + (a − 1)r
a + 1

}
.

Since 1−a
1+a > 0, it follows that er

1−a
1+a > 1. Trivially, we verify that 1 − r < 1. Next, from the

condition that a < 1, we have a + 1 + r(a − 1) < a + 1 and consequently a+1+(a−1)r
a+1 < 1.

This implies that E12 is a saddle fixed point, since 1− r < 1. Finally, similar conclusion can
be taken in the case of E13 and E23 which are also saddle fixed points.

From Section 5.2.1 it follows that the coexistence fixed point of the restriction of F to
each planar subspace is globally asymptotically stable. Consequently, hypothesis (H3) is
verified whenever r < 1 and a < 1.

This analyses shows that whenever ri = r, aij = a, for all i, j = 1, 2, 3 and 0 < r < a < 1
and a < e1−r − 1, there is a unique positive fixed point E∗ given by (30) and the three
dimensional Ricker competition model is globally asymptotically stable in the interior of
R
3+. In Figure 9 we depict the set of parameters r and a that satisfy the global stability

condition.
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Appendix 1. Computations related to the 3D Leslie–Gowermodel
The three dimensional Leslie–Gower model F : R

3+ → R
3+ is given by

F(x1, x2, x3) =
(

b1x1
1 +∑3

i=1 c1ixi
,

b2x2
1 +∑3

i=1 c2ixi
,

b3x3
1 +∑3

i=1 c3ixi

)
.

A computation of the Jacobian matrix shows that the matrix JF := JF(x1, x2, x3) in this case is
given by

JF =

⎛
⎜⎜⎜⎝

b1
(
c12x2+c13x3+1

)(
c11x1+c12x2+c13x3+1

)
2 − b1c12x1(

c11x1+c12x2+c13x3+1
)
2 − b1c13x1(

c11x1+c12x2+c13x3+1
)
2

− b2c21x2(
c21x1+c22x2+c23x3+1

)
2

b2
(
c21x1+c23x3+1

)(
c21x1+c22x2+c23x3+1

)
2 − b2c23x2(

c21x1+c22x2+c23x3+1
)
2

− b3c31x3(
c31x1+c32x2+c33x3+1

)
2 − b3c32x3(

c31x1+c32x2+c33x3+1
)
2

b3
(
c31x1+c32x2+1

)(
c31x1+c32x2+c33x3+1

)
2

⎞
⎟⎟⎟⎠ .

Next, we compute the determinant of JF and find that it is given by

b1b2b3
(
c21x1

(
c31x1 + c32x2 + c13x3 + 1

)+ c31x1
(
c12x2 + c23x3 + 1

))
∏3

i=1

(
1 +∑3

j=1 cijxj
)2

+
(
c12x2 + c13x3 + 1

) (
c32x2 + c23x3 + 1

)
∏3

i=1

(
1 +∑3

j=1 cijxj
)2 > 0

Since det JF > 0, we can check that JF−1 > 0 because all the cofactors of JF are positive. Indeed,
a computation shows that the cofactors are, for {i, j, k} = {1, 2, 3},

Cii(JF) = bjbk
(
cjkxk(ckixi + 1) + ckjxj(cjixi + 1) + (ckixi + 1)(cjixi + 1)

)
(
cj1x1 + cj2x2 + cj3x3 + 1

)2 (ck1x1 + ck2x2 + ck3x3 + 1
)2

Cjk(JF) = bkbixk
(
ckj(cijxj + 1) + ckicijxi + cikckjxk

)
(
cj1x1 + cj2x2 + cj3x3 + 1

)2 (ck1x1 + ck2x2 + ck3x3 + 1
)2

Next, a computation of the fixed points of F shows that the origin is an extinction fixed point, and
E1 =

(
b1−1
c11 , 0, 0

)
, E2 =

(
0, b2−1

c22 , 0
)
, and E3 =

(
0, 0, b3−1

c33

)
are exclusion fixed points. In addition,

the map F has the following fixed points in the coordinate planes

E12 =
((

b1 − 1
)
c22 − (b2 − 1

)
c12

c11c22 − c12c21
,
(
b2 − 1

)
c11 − (b1 − 1

)
c21

c11c22 − c12c21
, 0

)
,

E13 =
((

b1 − 1
)
c33 − (b3 − 1

)
c13

c11c33 − c13c31
, 0,
(
b3 − 1

)
c11 − (b1 − 1

)
c31

c11c33 − c13c31

)
,

and

E23 =
(
0,
(
b2 − 1

)
c33 − (b3 − 1

)
c23

c22c33 − c23c32
,
(
b3 − 1

)
c22 − (b2 − 1

)
c32

c22c33 − c23c32

)
.

Recall that, in order to have the right dynamics, we have to assume conditions similar to Condition
(15) for each one of these fixed points.
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The coordinates of the coexistence fixed point E∗ are given by(
(b1 − 1)(c23c32 − c22c33) + (b2 − 1)(c12c33 − c13c32) + (b3 − 1)(c13c22 − c12c23)

c13
(
c22c31 − c21c32

)+ c12
(
c21c33 − c23c31

)+ c11
(
c23c32 − c22c33

) ,

(b1 − 1)(c21c33 − c23c31) + (b2 − 1)(c13c31 − c11c33) + (b3 − 1)(c11c23 − c13c21)
c13
(
c22c31 − c21c32

)+ c12
(
c21c33 − c23c31

)+ c11
(
c23c32 − c22c33

) ,

(b1 − 1)(c22c31 − c21c32) + (b2 − 1)(c11c32 − c12c31) + (b3 − 1)(c12c21 − c11c22)
c13
(
c22c31 − c21c32

)+ c12
(
c21c33 − c23c31

)+ c11
(
c23c32 − c22c33

)
)

.

By assumption, each of the coordinates of the positive coexistence fixed point E∗ are positive,
hence it belongs to R

3+.

Appendix 2. Computations related to the 3D Ricker model
Let us consider F : R

3+ → R
3+ to be the three dimensional Ricker competition model given by the

following map

F(x1, x2, x3) = (x1er1−x1−a12x2−a13x3 , x2er2−a21x1−x2−a23x3 , x3er3−a31x1−a32x2−x3).

We restrict ourselves to the case 0 < ri < 1, for i = 1, 2, 3. We shall also assume that F has a positive
fixed point and an interior fixed point in each coordinate plane. This automatically imposes certain
conditions on the parameters of the model. In fact, a computation shows that F has the origin,
E1 = (r1, 0, 0), E2 = (0, r2, 0), and E3 = (0, 0, r3) as fixed points. In addition, the following fixed
points in the coordinate planes

E12 =
(
r1 − a12r2
1 − a12a21

,
r2 − a21r1
1 − a12a21

, 0
)
,

E13 =
(
r1 − a13r3
1 − a13a31

, 0,
r3 − a31r1
1 − a13a31

)
,

E23 =
(
0,

r2 − a23r3
1 − a23a32

,
r3 − a32r2
1 − a23a32

)
,

and the interior fixed point E∗ has coordinates given by

E∗ =
(

a12(r2 − a23r3) + a13(r3 − a32r2) + r1(a23a32 − 1)
a12a21 + a13a31 + a23a32 − a12a23a31 − a13a21a32 − 1

,

a21(r1 − a13r3) + a23(r3 − a31r1) + r2(a13a31 − 1)
a12a21 + a13a31 + a23a32 − a12a23a31 − a13a21a32 − 1

,

a31(r1 − a12r2) + a32(r2 − a21r1) + r3(a12a21 − 1)
a12a21 + a13a31 + a23a32 − a12a23a31 − a13a21a32 − 1

)
. (B1)

For simplicity, let pi be the numerator of the ith coordinate of E∗ and q the common denominator
in each coordinate. Thus, we are assuming that our parameters satisfy for i, j = 1, 2, 3 and i �= j

ri − aijrj > 0, 1 − aijaji > 0, and pi · q > 0. (B2)

In the analysis that follows, we can also assume without loss of generality that xi < 1 as the max
value of xi is eri−1 < 1. Next, a computation shows that

JF := JF(x1, x2, x3) =
⎛
⎝ (1 − x1)eK1 −a12x1eK1 −a13x1eK1

−a21x2eK2 (1 − x2)eK2 −a23x2eK2

−a31x3eK3 −a32x3eK3 (1 − x3)eK3

⎞
⎠ ,
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where
K1 = r1 − x1 − a12x2 − a13x3,

K2 = r2 − a21x1 − x2 − a23x3,

and
K3 = r3 − a31x1 − a32x2 − x3.

Computing its determinant we obtain det JF = eK1+K2+K3�, where

� = 1 − (x1 + x2 + x3) + (1 − a12a21)x2x1 + (1 − a13a31)x3x1 + (1 − a23a32)x2x3
− (1 − a12a21 − a13a31 − a23a32 + a12a23a31 + a13a21a32)x1x2x3.

The set LC−1 = {(x1, x2, x3) ∈ R
3+ : det JF = 0

}
can be found by setting� = 0 and isolating the

expression for x3. Formally, this yields

x3 = �(x, y) = P(x1, x2)
Q(x1, x2)

, (B3)

where P(x1, x2) = 1− x1 − x2 + x1x2 − a12a21x1x2 andQ(x1, x2) = P(x1, x2) + a13a31x1(1− x2) +
a23a32x2(1 − x1) + a12a23a31x1x2 + a13a32a21x1x2. We are looking for the region bounded by the
component of LC−1 closest to the origin, denoted by R1. We have that have (0, 0, 0) ∈ R1 and

∂R1 := LC1−1 =
{
(x1, x2, x3) : x3 = P(x1, x2)

Q(x1, x2)
, P(x1, x2) > 0

}
.

Observe that P(x1, x2) > 0 whenever x2 < 1−x1
1−(1−a12a21)x1 . Also, from the definition of Q(x1, x2),

we see that if P(x1, x2) > 0, then Q(x1, x2) > 0, so it suffices to require that P(x1, x2) > 0 in the
definition of LC1−1.

To find the normal at each point in LC1−1, we compute

∂�

∂x1
= −

(
a13
(
1 − x2

)+ a12a23x2
) (
a31
(
1 − x2

)+ a21a32x2
)

Q(x1, x2)2
< 0

∂�

∂x2
= −

(
a23
(
1 − x1

)+ a13a21x1
) (
a32
(
1 − x1

)+ a12a31x1
)

Q(x1, x2)2
< 0 (B4)

Since η = (−∂x1�,−∂x2�, 1
)
, we see that η > 0 at LC1−1.

Next, we check the concavity of LC1−1 at the restriction of LC1−1 to each plane perpendicular to
the x1 and x2 axes. This requires computation of ∂x1x1� and ∂x2x2�. Before we begin, we observe
that as we fixed one of the variables x1 or x2, we can view Q(x1, x2) as a linear function in x2 or x1,
respectively. Indeed, we can verify that

Q(x1, x2) = α1(x1) − x2β1(x1) = α2(x2) − x1β2(x2),

where for {i, j} = {1, 2} we have
αi(t) = 1 − (1 + ai3a3i)t

and
βi(t) = 1 − aj3a3j − (1 + a12a23a31 + a13a21a32 − a12a21 − a13a31 − a23a32)t.

Thus, computing the second derivatives of �, we obtain

∂2�

∂2x1
= −2β2(x2)

(
a13
(
1 − x2

)+ a12a23x2
) (
a31
(
1 − x2

)+ a32a21x2
)

Q(x, y)3
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and
∂2�

∂2x2
= −2β1(x1)

(
a23
(
1 − x1

)+ a21a13x1
) (
a32
(
1 − x1

)+ a31a12x1
)

Q(x, y)3
.

We claim that there are some conditions under which βi(t) > 0 for t ∈ [0, 1]. Indeed, but
modifying the notation, we can obtain a convenient simplification. Let us denote aijaji = A2

k , for{
i, j, k

} = {1, 2, 3}. Notice that the relation 0 < aijaji < 1 implies 0 < Ak < 1. Then for {i, j} = {1, 2},
we have

βi(t) = −ta12a23a31 − ta13a21a32 + ta12a21 + ta13a31 + ta23a32 − aj3a3j − t + 1

= −ta12a23a31 − t
A2
3A

2
2A

2
1

a12a23a31
+ tA2

3 + tA2
2 + tA2

1 − A2
i − t + 1

= (1 − Ai
) (
2AjA3t + (1 − t

) (
Ai + 1

))+ t
(
A3 − Ai

)2 − t
(
A3A2A1 − a12a23a31

)2
a12a23a31

.

Under condition ( ∗2 ), that is, whenever a12a23a31 = a13a32a21, we have A3A2A1 = a12a23a31.
This implies that βi(t) > 0 and hence for {i, j} = {1, 2}, we have

∂2�

∂2xi
= −2βj(xj)

(
ai3
(
1 − xj

)+ aijaj3xj
) (
a3i
(
1 − xj

)+ a3jajixj
)

Q(x1, x2)3
< 0. (B5)
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