Rapid Evolution of Testis Size Relative to Sperm Morphology Suggests that Post-Copulatory Selection Targets Sperm Number in *Anolis* Lizards

A. F. Kahrl

Michele A. Johnson
Trinity University, mjohnso9@trinity.edu

R. M. Cox

Follow this and additional works at: https://digitalcommons.trinity.edu/bio_faculty

Part of the Biology Commons

Repository Citation

This Post-Print is brought to you for free and open access by the Biology Department at Digital Commons @ Trinity. It has been accepted for inclusion in Biology Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.
Rapid evolution of testis size relative to sperm morphology suggests that postcopulatory selection targets sperm number in *Anolis* lizards

Running title: Rapid evolution of testis size in anoles

Ariel F. Kahrl\(^1,3,4\), Michele A. Johnson\(^2\) and Robert M. Cox\(^3\)

\(^1\)Zoologiska institutionen: Etologi, Stockholm University, Stockholm, Sweden SE-10691

\(^2\)Department of Biology, Trinity University, San Antonio, TX 78212

\(^3\)Department of Biology, University of Virginia, Charlottesville, VA 22904

\(^4\)Correspondence: ariel.kahrl@zoologi.su.se, phone:+46 08-16 40 46

Acknowledgments

We thank B. Kircher, M. Oberndorf, J. Stercula, J. Murray, B. Ivanov, M. Jaramillo, M. Webber, A. Zeb, F. Deckard, A. Hanninen, C. Gilman, and M. Landestoy for assistance with field collecting, and V. Motamedi, L. Zemanian, and E. Thompson for assistance measuring sperm cells. We also thank J. Fitzpatrick and D. Adams for assistance with data analysis and J. Fitzpatrick for helpful comments on this manuscript. This study was conducted under permits from the Departamento de Recursos Naturales y Ambientales de Puerto Rico, the Bahamas Ministry of Agriculture, the Bahamas Environment Science and Technology Commission, the Ministerio de Medio Ambiente y Recursos Naturales of the Dominican

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jeb.13414

This article is protected by copyright. All rights reserved.
Republic, the Miami-Dade County Parks and Recreation; and was approved under the University of Virginia Animal Care and Use Committee protocol 3896 and Trinity University’s Animal Research Committee protocol NSF_050213_MAJ. This work was supported by funding from the University of Virginia (to RMC), the National Science Foundation (IOS–1257021 to MAJ and DEB–1501680 to AFK and RMC), an E.E. Williams Research Grant from the Herpetologist’s League (to AFK), and a Theodore Roosevelt Memorial Grant from the American Museum of Natural History (to AFK). The authors have no conflict of interest to declare.

Abstract

Postcopulatory sexual selection is thought to be responsible for much of the extraordinary diversity in sperm morphology across metazoans. However, the extent to which postcopulatory selection targets sperm morphology versus sperm production is generally unknown. To address this issue, we simultaneously characterized the evolution of sperm morphology (length of the sperm head, midpiece, and flagellum) and testis size (a proxy for sperm production) across 26 species of Anolis lizards, a group in which sperm competition is likely. We found that the length of the sperm midpiece has evolved 2-3 times faster than that of the sperm head or flagellum, suggesting that midpiece size may be the most important aspect of sperm morphology with respect to postcopulatory sexual selection. However, testis size has evolved faster than any aspect of sperm morphology or body size, supporting the hypothesis that postcopulatory sexual selection acts more strongly upon sperm production than upon sperm morphology. Likewise, evolutionary increases in testis size, which typically indicate increased sperm competition, are not associated with predictable changes in sperm morphology, suggesting that any effects of postcopulatory selection on sperm morphology...
are either weak or variable in direction across anoles. Collectively, our results suggest that sperm production is the primary target of postcopulatory sexual selection in this lineage.

Keywords: midpiece, comparative method, rate of evolution, sexual selection, sperm competition

Introduction

Sexually selected traits are predicted to evolve quickly due to strong and diversifying selection arising from intrasexual competition and intersexual mate choice (West-Eberhard, 1983; Andersson, 1994; Gonzalez-Voyer and Kolm, 2011; Seddon et al., 2013). Consistent with this prediction, weapons and ornaments subject to precopulatory sexual selection have accelerated rates of evolution relative to other morphological traits (Fitzpatrick et al., 2012; Seddon et al., 2013; Klaczko et al., 2015; Friedman and Remeš, 2015; Simmons and Fitzpatrick, 2016). Sperm is the most morphologically diverse cell type across metazoans (Pitnick, 2009), and may therefore represent an analogous case of accelerated evolution in response to postcopulatory sexual selection, which occurs when sperm from different males compete for fertilization (Birkhead et al., 2009). However, postcopulatory sexual selection can target sperm number as well as sperm morphology (Radwan, 1996; García-González and Simmons, 2007; Laskemoen et al., 2010; Boschetto et al., 2011; Bennison et al., 2014). Indeed, sperm competition is consistently associated with increased testis size and sperm count across a variety of taxa (Møller, 1988; Møller, 1989; Gage, 1994; Stockley et al., 1997; Simmons et al., 2004), whereas evidence for its association with sperm morphology is generally more equivocal (Simmons and Fitzpatrick, 2012). However, no study has directly compared the rates of evolution for these putative targets of postcopulatory sexual selection within the same lineage.
To address this, we characterized sperm morphology and testis size across 26 species in the lizard genus *Anolis*. Several attributes of this genus suggest a high potential for postcopulatory sexual selection and the resulting diversification of reproductive traits, including the rapid evolution of male genitalia (Klaczko *et al*., 2015), extended sperm storage within the female reproductive tract (Birkhead, 1993; Kahr and Cox, 2015), and a high frequency of multiple paternity (Calsbeek *et al*., 2007). To characterize the evolution of sperm morphology, we examined three parts of the sperm cell: the head (which contains the nuclear material and the acrosome with proteolytic enzymes necessary for egg penetration), the midpiece (which contains the mitochondria), and the flagellum (which aids in propulsion and provides some glycolytic activity). We also measured testis size which, when expressed relative to body size, provides an index of the intensity of sperm competition (Birkhead and Møller, 1998; Simmons, 2001; Simmons and Fitzpatrick, 2012) and the capacity for sperm production (Møller, 1988; Møller, 1989).

Using these data, we first tested for differences in the rates of evolution of sperm size (the total length of the cell broken into the head, midpiece, and flagellum), testis length (an index of sperm production and an alternative target of postcopulatory selection), and snout-vent length (SVL, a standard measure of body size that has diverged during the adaptive radiation of this lineage). We predicted that the sperm midpiece would evolve more quickly than other parts of the cell because midpiece size is associated with reproductive success in anoles (Kahr and Cox, 2015) and because it evolves more quickly than other parts of the cell in birds (Rowe *et al*., 2015). Both sperm morphology and sperm count are associated with reproductive success in *A. sagrei* (Kahr and Cox, 2015), but it is unclear which is the primary target of postcopulatory sexual selection in anoles. If sperm morphology evolves more quickly than testis length, this would suggest that postcopulatory selection primarily
targets sperm morphology, whereas if testis length evolves more quickly than sperm morphology, this would suggest that postcopulatory selection primarily targets sperm count. Second, we tested the hypothesis that evolutionary increases in sperm competition, as inferred from increases in relative testis size, are associated with evolutionary changes in sperm morphology (Simmons and Fitzpatrick, 2012). We predicted that evolutionary changes in those components of the sperm cell with high rates of evolution would be most strongly correlated with evolutionary changes in relative testis size.

Methods

Specimens and sperm collection

We collected sperm samples and testis measurements from 419 males of 26 Anolis species (Fig. 1, Table S1) from the Bahamas, the Dominican Republic, Puerto Rico, and the United States during the middle of their reproductive seasons (May 15 – June 30 of 2013-2015). We included species representing all ecomorph groups except crown giants, the largest of the Anolis ecomorphs. Crown giants are an order of magnitude larger than other ecomorphs in both body size and testis size, but not in sperm morphology, and would therefore be statistical outliers. We included only adult males and conducted our sampling during the period in when testis size is expected to be near its seasonal maximum (Licht and Gorman, 1970). For each species, we collected 4–20 males (mean = 16.0 per species) and recorded SVL (to the nearest 1 mm) for each male (see Table S1 for phenotypic data and collection details). We then collected a sperm sample from each male by gently pressing on the pelvic girdle and collecting sperm from the cloaca using a glass capillary tube. We suspended this sample in 500 μl phosphate buffered saline with 4% paraformaldehyde as a fixative. We transferred the fixed cells to a microscope slide, allowed them to dry, and stained them with Sperm Blue™ (Microptic SL, Barcelona, Spain). We imaged the cells
using an Olympus Magnafire camera (Olympus America, Melville, NY) at ×100 magnification and measured the length of the sperm head, midpiece, and flagellum for 15 cells per male using ImageJ (NIH, Bethesda, MD). From these measurements, we calculated individual means, which we then used to calculate species-level means for each aspect of sperm morphology.

We measured testis size for the same individuals via laparotomy or dissection. For laparotomy, we gave each lizard a 4-μl subcutaneous injection of 0.25% bupivicaine (Auromedics, Dayton, NJ) as a local anesthetic and analgesic. We then cold-immobilized each animal at -20°C and placed it on a slightly thawed ice pack. We made a 5 mm ventral incision in the abdomen lateral to the midline, located and exposed the right testis using forceps, and measured the length and width of the testis using calipers (nearest 0.1 mm). We closed the incision using Nexaband surgical glue (Veterinary Products Laboratories, Phoenix, AZ) and released each animal at its location of capture on the following day. We measured a subset of individuals in the same way immediately following euthanasia. We converted testis length and width into volume using the formula for an ellipsoid:

\[\text{Volume} = \frac{4}{3} \pi a^2 b, \]

where \(a \) is the radius of the width of the testis and \(b \) is the radius of its length.

Phylogenetic analyses

We conducted all statistical analyses in R (v.3.4.3, R Development Core Team 2017). For phylogenetic analyses, we used the ultrametric squamate phylogeny of Pyron and Burbrink (2014), which provides a fully resolved topology and branch lengths for all *Anolis* species in our dataset. We trimmed the original phylogeny to include only those species in our dataset using *ape* (Paradis et al. 2004) and used ln-transformed values of morphological...
traits in our analyses. For each trait, we estimated phylogenetic signal by calculating Pagel's λ in *phytools* (Pagel, 1999; Revell, 2011) and Blomberg's K in *picante* (Blomberg, 2003; Kembel *et al*., 2010). Testis size and all aspects of sperm morphology exhibited strong phylogenetic signal, although body size (SVL) did not exhibit significant phylogenetic signal in our dataset (Table 1). For each trait, we compared the fit of three different models of character evolution (Brownian motion, Ornstein-Uhlenbeck, and early burst) using the *fitContinuous* function in *geiger* (Harmon *et al*., 2008). The early burst model did not converge for any trait when using the default bounds, so we set the maximum bounds to 0 to allow model convergence. Based on AICc model comparison, Brownian motion was the preferred model of character evolution for all traits (Table S2), which fits the assumptions of the models used in subsequent analyses of evolutionary rates.

Rates of character evolution

To compare rates of evolution among traits, we used a likelihood-based approach developed by Adams (2013) that estimates a Brownian rate parameter (σ²) describing the speed at which traits have diversified across a phylogenetic tree. Adams’ (2013) method simultaneously estimates a separate σ² for each trait, then uses likelihood-ratio tests to compare this observed-rate model to a common-rate model in which all traits are constrained to have the same estimate of σ². This method also allows for the incorporation of within-species error and covariance for trait values (Adams, 2013). Since evolutionary rates cannot be compared between traits with dissimilar units of measurement, we chose to measure the rate of evolution for testis length rather than testis volume. Because dimensionality can impact trait variance, we used only ln-transformed length measurements for these analyses. We then estimated the rates of evolution of species means for testis length, male SVL, sperm head, midpiece, and flagellum length, including measurements of within-species errors and

This article is protected by copyright. All rights reserved.
covariances. All model comparisons that did not estimate evolutionary covariances between traits in the observed-rate model, but included measurements of within-species errors and covariances, converged under the L-BFGS-B optimization function (Adams, 2013). We then conducted post hoc tests in which we followed this same model-fitting procedure, using only two traits at a time, to fit all pairwise combinations of the traits.

Tests for correlated evolution

To test whether evolutionary increases in the intensity of sperm competition are associated with predictable changes in sperm morphology, we used phylogenetic generalized least squares (PGLS) regression to test for associations between testis volume and sperm morphology, and between all pairs of sperm traits. We used a Brownian motion model of character evolution for all analyses, which we conducted using ape (Paradis et al., 2004). In these regressions, ln-transformed species means for the length of the sperm head, midpiece, and flagellum were treated as dependent variables in separate analyses for each trait. Species means for testis volume and body size (SVL, included as a covariate) were ln-transformed and included as independent variables in each analysis.

Results

Rates of evolution

The “observed” model estimating different rates of evolution for each aspect of sperm morphology, body size, and testis size was favored over the “common” model estimating a single rate for all traits (LRT = 24.3, P < 0.0001, AIC_{observed} = -125.2, AIC_{common} = -108.9, Fig. 2). Pairwise post-hoc comparisons revealed that rates of evolution for each trait are significantly different from rates of evolution for all other traits (Fig. 2, Table S3). This result
was robust across all models that we tested (i.e., with and without intraspecific error and covariance). Among sperm traits, the length of the sperm midpiece had the highest rate of evolution, followed by the length of the sperm flagellum and then that of the sperm head (Fig. 2, Table S3). However, testis length had the highest rate of evolution of any trait in our analyses, evolving significantly faster than body size and 3-8 times faster than any aspect of sperm morphology (Fig. 2).

Tests for correlated evolution

We found no significant relationships between testis size and any measure of sperm morphology (i.e., length of the head, midpiece, or flagellum) using PGLS with a Brownian motion model of character evolution (Fig. S1, Table 2). We found significant positive correlations between sperm head and flagellum length ($\lambda = 1.0051, r = 0.45, t_{24} = 2.67, P = 0.013$) and between sperm head and midpiece length ($\lambda = 0.863^{0.177}, 0.423, r = 0.64, t_{24} = 4.472, P = 0.0001$), but not between sperm flagellum and midpiece length ($\lambda = 1^{0.025}, 0.368, r = -0.02, t_{24} = -0.121, P = 0.905$).

Discussion

Theory suggests, and empirical data show, that sexually selected traits tend to have higher rates of evolution than other traits, likely due to strong diversifying selection (West-Eberhard, 1983; Arnqvist, 1998; Gonzalez-Voyer and Kolm, 2011; Seddon *et al*., 2013). Although sperm are the most morphologically diverse cells in metazoans, we found that testis size has evolved between 3-8 times more quickly than any aspect of sperm morphology in *Anolis* lizards. Previous work has demonstrated that both sperm count and sperm morphology are correlated with fertilization success in one *Anolis* species (Kahrl and Cox, 2015), but our analysis of broad phylogenetic patterns across this genus suggests that postcopulatory sexual
selection may generally target testis size (i.e., sperm production and sperm count) to a greater extent than sperm morphology. Despite extensive research characterizing phenotypic diversity and evolution in *Anolis* lizards (e.g., Mahler *et al*., 2010; Klaczko *et al*., 2015; Ingram *et al*., 2016), our study is the first to use a comparative framework to explore the evolution of sperm morphology and testis size in this group, and also the first in any lineage to test for differences in rates of evolution between these two putative targets of postcopulatory sexual selection. Our results also stand in contrast to the only other study to directly test for different rates of evolution between body size and testis size. In *Onthophagus* beetles, body size evolves significantly faster than testis size, suggesting that precopulatory selection on body size may be stronger than postcopulatory selection on testis size (Simmons and Fitzpatrick, 2016).

We interpret the rapid evolution of testis size, relative to sperm morphology, as consistent with the idea that postcopulatory selection may primarily target sperm number, but several other explanations merit consideration. First, differences in the heritability of sperm morphology and testis size could lead to differences in their evolutionary rates even if selection acts similarly on each (Reznick, 1997). Although there are no estimates available for reptiles, most estimates for the heritability of sperm length and testis size in other taxa are fairly high (sperm length mean $h^2 = 0.72$, range = 0.43-1.14; testis size mean $h^2 = 0.53$, range = 0.04-0.97; values from Table 10.1 in Simmons and Moore 2008), suggesting a high potential for evolution in response to selection. Second, the form of selection acting on each trait could differ. Whereas testis size should generally experience positive directional selection in species with high sperm competition, the expectation is less clear for sperm morphology. For example, the female reproductive tract may create stabilizing selection for an intermediate sperm size, as inferred in birds and insects, where species subject to strong
postcopulatory selection have reduced variation in sperm morphology (Calhim et al., 2007; Immler et al., 2008; Fitzpatrick and Baer, 2011). Moreover, because sperm morphology often coevolves with female reproductive anatomy (Presgraves et al., 1999; Miller et al., 2002; Higginson et al., 2012), the idiosyncrasies of this coevolutionary dynamic could lead to patterns of selection on sperm morphology that are unique to particular species despite similar opportunities for postcopulatory selection. This could explain why we did not find any consistent evolutionary shifts in sperm morphology as testis size (and the inferred strength of sperm competition) increased (Table 2). Finally, because testis size is only a proxy for sperm count, the rate of evolution for testis size may not perfectly correspond to the evolution of sperm count. For example, testis size may also reflect selection for production of androgens, and sperm production can also be influenced by properties other than the size of the testis, such as the density of spermatogenic tissue (Lüpold et al., 2009) and the spermatogenic efficiency of the testes (Peirce and Breed, 2001; Wistuba et al., 2003; Ramm and Stockley, 2010).

Comparative analyses testing for an evolutionary association between sperm morphology and testis size have spanned most major orders of animals, but their results are fairly equivocal. Whereas some lineages show a strong positive correlation between relative testis size and sperm length, others show a strong negative correlation, and in some, there is no relationship at all (Simmons and Fitzpatrick, 2012). In fact, differences in the evolutionary relationship between sperm morphology and testis size occur even between closely related lineages (Immler and Birkhead, 2007; Simmons and Fitzpatrick, 2012). For example, snakes are the only other reptile lineage in which the evolution of sperm morphology has been examined, and they provide an interesting contrast to anoles. Among species of snakes, the length of the sperm head, midpiece, and flagellum are all positively correlated with relative
testis size (Tourmente et al., 2009), suggesting that postcopulatory selection favors large sperm in this lineage. Several species of snakes can store sperm for over five years (Birkhead, 1993), potentially creating selection for sperm cells that can survive extended storage in the female reproductive tract (Friesen et al., 2014a,b), which significantly exceeds the longest storage times reported for anoles (7 months, Fox, 1963; Licht, 1973). In some species, mitochondria are slowly lost during storage (Vila et al., 2007), potentially necessitating increases in midpiece size in species with extended sperm storage. This putative need for greater numbers of mitochondria to offset loss during extended storage may explain why midpiece length averages 60% of total sperm length in snakes, but only 3% of total sperm length in anoles. However, very little is known about the physiological mechanisms of sperm storage, especially in reptiles, so this hypothesis remains speculative.

Our analyses also revealed that the size of the midpiece has a faster rate of evolution than that of the sperm head or flagellum. The midpiece contains mitochondria and its size is often associated with body condition (Bonanno and Schulte-Hostedde, 2009; Kahrli and Cox, 2015), sperm velocity (Firman and Simmons, 2010; Blengini et al., 2014), and sperm motility (Ruiz-Pesini et al., 1998; Anderson and Dixson, 2002), which are frequently associated with male reproductive success (Simmons and Fitzpatrick, 2012). In passerine birds, the evolutionary trajectory of the midpiece and flagellum differs from that of the sperm head (Immler et al., 2012), and evolutionary increases in postcopulatory selection are associated with accelerated phenotypic divergence in midpiece size (Rowe et al., 2015). For these reasons, it is perhaps not surprising that the midpiece has the highest rate of evolution among sperm morphological traits. In contrast, the sperm head, which contains both the acrosome and the nuclear material, exhibited the lowest rate of evolution, which may be due to functional constraints. For example, longer filiform heads increase drag on the sperm cell,
which would then require a larger flagellum to propel them at an equal speed (Humphries et al., 2008). Moreover, genome size may prevent the sperm head from attaining a smaller size, though few studies have tested this hypothesis and results are somewhat mixed (Alvarez-Fuster et al., 1991; Gage, 1998; Gallardo et al., 2002). Irrespective of why these three parts of the sperm cell evolve at different rates, our analyses clearly show that testis size evolves several times faster than each, and also significantly faster than body size, which is a key aspect of ecomorphological diversification in the adaptive radiation of this lineage (Losos, 2009). Collectively, our results suggest that postcopulatory sexual selection due to sperm competition acts more strongly upon sperm production than upon sperm morphology, a hypothesis that could be tested further with direct measures of sperm count and/or studies of sexual selection on ejaculate phenotypes.

Data accessibility

All data are included in supplemental materials.

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Perspective. (Birkhead, T.R., D.J. Hosken, and S.S. Pitnick, eds.) pp. 69-149.

Academic Press, San Diego, CA.

This article is protected by copyright. All rights reserved.

Table 1. Phylogenetic signal (Blomberg's K and Pagel's λ) for each trait examined (all ln-transformed). Significance testing for K indicates $K > 0$, which indicates significant phylogenetic signal. For λ, the maximum-likelihood estimate of λ was tested against models where $\lambda = 0$ using log likelihood ratio tests.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Blomberg's K</th>
<th>Pagel's λ</th>
<th>P</th>
<th>lnL $\lambda = 0$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testis length</td>
<td>0.923</td>
<td>0.029</td>
<td>0.858</td>
<td>0.79</td>
<td>0.076</td>
</tr>
<tr>
<td>Body length (SVL)</td>
<td>0.876</td>
<td>0.055</td>
<td>0.668</td>
<td>7.95</td>
<td>0.195</td>
</tr>
<tr>
<td>Sperm head length</td>
<td>1.142</td>
<td>0.003</td>
<td>0.999</td>
<td>25.10</td>
<td>0.002</td>
</tr>
<tr>
<td>Sperm midpiece length</td>
<td>1.033</td>
<td>0.001</td>
<td>0.999</td>
<td>14.68</td>
<td>0.006</td>
</tr>
<tr>
<td>Sperm flagellum length</td>
<td>0.868</td>
<td>0.061</td>
<td>0.771</td>
<td>21.11</td>
<td>0.059</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Table 2. Summary of results from phylogenetic generalized least squares (PGLS) regressions of sperm morphological traits on testis size with male body size (SVL) as a covariate. All traits were ln-transformed prior to analyses using a Brownian motion model of character evolution. λ (phylogenetic scaling parameter) is listed for each model, followed by superscripts indicating P-values of likelihood-ratio tests against models where $\lambda = 0$ and $\lambda = 1$, respectively.

<table>
<thead>
<tr>
<th>Sperm Morphology</th>
<th>Predictor</th>
<th>Partial r (95% CI)</th>
<th>t, $df=23$</th>
<th>P</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Length</td>
<td>Testis Size</td>
<td>0.24 (-0.18 – 0.59)</td>
<td>1.28</td>
<td>0.213</td>
<td>0.0045, 1</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>-0.07 (-0.46 – 0.34)</td>
<td>-0.36</td>
<td>0.718</td>
<td></td>
</tr>
<tr>
<td>Midpiece Length</td>
<td>Testis Size</td>
<td>0.14 (-0.28 – 0.51)</td>
<td>0.72</td>
<td>0.474</td>
<td>0.005, 1</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>-0.16 (-0.53 – 0.26)</td>
<td>-0.83</td>
<td>0.412</td>
<td></td>
</tr>
<tr>
<td>Flagellum Length</td>
<td>Testis Size</td>
<td>0.13 (-0.29 – 0.51)</td>
<td>0.68</td>
<td>0.502</td>
<td>0.674, 0.283</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.03 (-0.38 – 0.43)</td>
<td>0.15</td>
<td>0.885</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
Figure 1. Trimmed phylogeny from Pyron and Burbrink (2014) that includes the 26 species used in this study (A) alongside the mean and standard deviation of sperm head (B), midpiece (C), flagellum (D), testis (E), and snout-vent lengths (F) for each species, beside an image of an anole sperm (G).

Figure 2. Brownian rates of evolution (± 95% confidence intervals) for testis length, male snout-vent length (SVL), and the length of the sperm head, midpiece, and flagellum across 26 species of *Anolis* lizards. Rates were calculated using ln-transformed means for each species.