
Trinity University Trinity University 

Digital Commons @ Trinity Digital Commons @ Trinity 

Mathematics Faculty Research Mathematics Department 

10-25-2019 

Improving Foresight Predictions in the 2002-2018 NFL Regular-Improving Foresight Predictions in the 2002-2018 NFL Regular-

Seasons: A Classic Tale of Quantity vs. Quality Seasons: A Classic Tale of Quantity vs. Quality 

Eduardo C. Balreira 
Trinity University, ebalreir@trinity.edu 

Brian K. Miceli 
Trinity University, bmiceli@trinity.edu 

Follow this and additional works at: https://digitalcommons.trinity.edu/math_faculty 

 Part of the Mathematics Commons 

Repository Citation Repository Citation 
Balreira, E. C., & Miceli, B. K. (2019). Improving Foresight Predictions in the 2002-2018 NFL Regular-
Seasons: A Classic Tale of Quantity vs. Quality. Journal of Advances in Mathematics and Computer 
Science, 34(1), 1-14. https://doi.org/10.9734/jamcs/2019/v34i1-230203 

This Article is brought to you for free and open access by the Mathematics Department at Digital Commons @ 
Trinity. It has been accepted for inclusion in Mathematics Faculty Research by an authorized administrator of 
Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu. 

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/math_faculty
https://digitalcommons.trinity.edu/math
https://digitalcommons.trinity.edu/math_faculty?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.trinity.edu%2Fmath_faculty%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu


Journal of Advances in Mathematics and Computer Science

34(1): 1-14, 2019; Article no.JAMCS.52105

ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

Improving Foresight Predictions in the 2002–2018 NFL
Regular-Seasons: A Classic Tale of Quantity vs. Quality

E. Cabral Balreira1∗ and Brian K. Miceli1

1Department of Mathematics, Trinity University One Trinity Place San Antonio,

TX 78212-7200, United States.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved
the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v34i1-230203
Editor(s):

(1) Dr. Dragos-Patru Covei Professor, Department of Applied Mathematics, The Bucharest
University of Economic Studies, Romania.

Reviewers:
(1) Mudasir M Kirmani, Sher-e-Kashmir University of Agricultural Sciences and Technology,

India.
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Abstract

Utilizing a modified Bradley-Terry model, we develop a method of making foresight predictions
of 2002–2018 NFL games by incorporating a home-field parameter into previously established
ranking models. Knowing only the home team and score of each contest, and taking into account
previous predictions, we optimize this parameter considering one of two things: the quantity of
correct picks to date or the quality of predictions to date as measured by a quadratic scoring
function. Our main results establish that optimization of quality—rather than quantity—when
making a prediction has higher overall accuracy.
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1 Introduction

One of the great joys of NFL regular-season fandom is sitting down each week to predict the
outcomes of upcoming games. The major television networks have season-long competitions amongst
their broadcasters to see who is the best at correctly picking games, and of course, it makes colloquial
sense to equate accurately picking games with making quality picks. However, in a mathematical
sense, the assessment of the quality of picks is distinct from the quantity of correct picks. For
instance, suppose there are three games to be picked—A vs. B, C vs. D, E vs. F—where the
winners were A, C, and E. Now further suppose that before these games are played, two players—
Player 1 and Player 2—predict the outcomes of each game and also assign a confidence to each
prediction. Consider the example in Table 1 where Player 1 chooses all three outcomes correctly,
while Player 2 picks A and C to win, but also incorrectly chooses F to beat E. From a purely
quantitative standpoint, we can say Player 1 picks better than Player 2 in this example.

Table 1. Example of game predictions illustrating quantity vs. quality of correct
picks.

Player Game Pick Prediction Confidence

A vs. B A 60%
Player 1 C vs. D C 55%

E vs. F E 51%

A vs. B A 90%
Player 2 C vs. D C 80%

E vs. F F 55%

However, as we consider the probability assigned to their predictions, we see that while both players
choose correctly in the first two games, Player 2 is quite confident about the actual outcome of those
games; in the one game Player 2 got incorrect, they are not especially certain of the outcome. This
is in comparison with Player 1, who picks correctly all three games, yet is not especially confident
about the outcome of any particular game. What if now Players 1 and 2 are picking a fourth game,
say between teams G and H, where Player 1 chooses G with 60% confidence and Player 2 picks
H with 70% confidence? Who do we feel is more likely to have the pick correct? The purpose of
this paper is to look at whether or not the foresight pick accuracy of a model can be improved
by taking in consideration the quality of previously made predictions instead of just focusing on
the right-wrong accuracy of the previous predictions. We will show that by considering home field
advantage and focusing on quality of predictions rather than quantity we can actually improve the
overall accuracy of our predictions of regular-season NFL games.1

The outline of this paper is the following. In Section 2 we briefly describe various rating methods,
and we discuss how we use the given rating methods to assign a prediction probability to each game
played. We also describe the idea of pick quality as being something distinct from pick accuracy,
and we show how to incorporate the idea of quality of previous picks into making picks for an
upcoming game. In Section 3 we present the results of picking regular-season NFL games using
various methods, and in Section 4 we discuss the ramifications of using pick quality with respect to
improving pick accuracy.

1Since the last NFL expansion was in 2002, we limit the scope of the analysis to the 2002–2018
NFL seasons, although the methodology employed is certainly transferrable to other settings and
time frames.
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2 Rating Systems & Methodology

Suppose we have N teams, denoted as T1, T2, . . . , TN , competing in an m-round tournament, where
in any given round each team plays at most one other team. After the k-th round of the tournament

has been played, we assign to each Ti a rating r
(k)
i ∈ R, and we set r(k) =

(
r
(k)
1 , r

(k)
2 , . . . , r

(k)
N

)
∈ RN

to be the k-th rating vector—the idea here is that the value of r
(k)
i is some reflection of Ti’s quality

after the k-th round. We then use r(k) to formulate a prediction probability of the game outcomes for
the k+1-st round of the tournament. Specifically, we wish to assign a probability to the prediction
that Ti beats Tj in the k+1-st round of the tournament, and this probability should depend on r

(k)
i

and r
(k)
j . Accordingly, two implicit issues arise. First, we must determine the numerical values of

the rating vector r(k), that is, we must decide on a ranking method for the tournament. Second, we
must decide on a suitable function to assign a probability to the outcome of each game in round k+1,
including whether or not we consider a home field advantage.

The literature is full of ranking methods, and for detailed descriptions of the majority of the methods
discussed in subsequent sections, we refer the reader to [1]. For our purposes, we separate ranking
methods into four categories: probabilistic, win/loss (W/L), deterministic, and Markov. We will
denote by ω-type methods those that only take into consideration the outcome of the games and
σ-type methods those that take into account the scores of games played. The former case may be
considered as a special case of the latter by treating every game as if the final score is either 1-0, 0-1,
or 0.5-0.5, and we use this method to construct ω-type ratings for models that typically incorporate
game scores into their ratings.

2.1 Bradley-Terry

The Bradley-Terry model, developed in [2], is one of the more influential methods of producing
ratings, and indeed, the probabilistic method we employ as the basis for the rest of this paper
is a slightly modified version of Bradley-Terry. Generally speaking, Bradley-Terry estimates the
probability that Ti beats Tj to be

pij =
ri

ri + rj
, (2.1)

where ri and rj are ratings of Ti and Tj , respectively. The way in which Bradley-Terry assigns
these rating is by computing pij as the actual observed likelihood that Ti beats Tj , and then
finding the coordinates of the rating vector r using maximum likelihood estimates (MLE), see [3].
We implement this method here using a simple iterative algorithm from the work of [4], but to
implement Bradley-Terry for the NFL, two remarks are necessary. First, the existence of the MLE
is contingent on the strong connectivity of the associated network, as observed in [5]. Related
directly to the NFL, this may not always happen as there are seasons with undefeated or winless
teams until very late in, or even to the end of, a season. Second, since during an NFL regular season
two teams will only play twice, once, or zero times against one another, the observed likelihood of
a win can only be 1, 0.5, or 0. A solution introduced in [6] uses the scores of each game to provide
a different estimate of pij , namely,

pij ≈ sij
sij + sji

, (2.2)

where sij is the number of points scored by Ti against Tj . This is the approach we use in this paper,
and accordingly treat Bradley-Terry as a σ-type rating system only.

Building on this model, [3] shows how home-field advantage can also be incorporated in Bradley-
Terry, a model which we refer to as Home-Bias Bradley-Terry. Assuming we have an away team,
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Ta, and a home team, Th, we define

pah =
ra

ra + θrh
and pha =

θrh
ra + θrh

, (2.3)

where θ > 0 is a parameter corresponding to home-field advantage across the entire NFL, but not
necessarily for every single team. When θ > 1 there is a home-field advantage while when θ < 1
corresponds to a general road-field advantage. When using Bradley-Terry methods to find such a θ
at the season’s end—and finding it as we simultaneously find the ratings of individual teams—we
compute that .9 ≤ θ ≤ 1.5 in every season from 2002–2018. These data are statistically significant
in showing that there is a general trend toward home-field advantage in the NFL, and we use this
fact in Section 2.5.

2.2 Other rating methods

In the W/L method, each team’s rating in round k+1 is its winning percentage over the first k
rounds of play, that is, the total number of wins divided by the total number of games played. For
bookkeeping purposes, we define a tie to count as one-half of a win. The impetus for using W/L as
one of our ranking methods comes from [7] in which he claims that any high-powered, computer-
aided technique for predicting games should at least do better than just looking at the team with
a better win percentage and picking that team. Note that Easterbrook adopts the convention of
choosing the home team to win if the win percentages are identical; accordingly, in the extremely
rare instance where our other numerical rating systems give exactly the same win probability to
both teams in a contest, we choose that the said method picks the home team. Note that the W/L
method is only an ω-type rating.

For our deterministic models we use the methods of [8] and [9].2 The Massey method estimates
that the difference in ratings is the expected point differential between two teams. For example, if
after k rounds of play Ti and Tj have Massey ratings of r

(k)
i = −12 and r

(k)
j = 15, respectively, then

we would expect Tj to beat Ti by 15 − (−12) = 27 points if they were to play in round k+1. The

Colley method finds rating for teams based on their strength of schedule: to compute r
(k)
i , Colley

takes into account the number of wins of Ti and also looks at the teams defeated by Ti, taking
into account how many wins they have. With this in mind, Massey is a σ-type model by design,
although we modify it to also make a corresponding ω-type, whereas Colley is strictly an ω-type
model.

For our Markov, or network, methods we use the model in [6], the Biased Voter model developed
in [10], the PageRank model in [11], and the Oracle model developed in [12]. All of these methods
may be derived from a directed network associated to the game outcomes where

i. each of our N teams is represented by a node,

ii. a directed edge exists from node i to node j if Ti has lost to Tj , and

iii. each of these directed edges has some transitional probability assigned to it.

One fundamental difference between each of our four chosen methods is the way in which the
transitional probabilities are assigned, but note that for each of these methods we can make both
σ-type and ω-type ratings. Second, the Biased Voter, PageRank, and Oracle methods allow for
transitions between nodes besides just those that have played each other: Biased Voter allows for

2Before the NCAA switched to a committee to select its four playoff teams, they used the BCS
to select teams to certain postseason games, including the national championship game. Both the
Massey and Colley methods were included in the BCS’s formulation; however, Massey’s method is
proprietary, while Colley’s is publicly available. Accordingly, the Massey method we use here is the
one that he uses in his undergraduate thesis.
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an edge from a node to itself; PageRank allows transitioning from any node to another node via a
teleportation matrix ; the Oracle model introduces an N+1-st node, called the Oracle node, which
can be thought of as an N+1-st team that has both lost to and beaten every team.

2.3 Prediction probabilities

We have discussed how to assign ratings to the teams of our league, and in this section, we define
how to use those ratings to assign probabilities to individual matches. Given a match between
teams Ti and Tj , we let p

(k+1)
ij denote the probability that Ti beats Tj in the k+1-st round of the

tournament. Since we would like to include home-field advantage in our predictions, suppose we
have an away team, Ta, and a home team, Th.

2.3.1 Bradley-terry-type probabilities

Using a modified Home-Bias Bradley-Terry-type estimate for the observed probability, we define

p
(k+1)
ah =

r
(k)
a

r
(k)
a + θkr

(k)
h

and p
(k+1)
ha =

θkr
(k)
h

r
(k)
a + θkr

(k)
h

, (2.4)

where r
(k)
a and r

(k)
h are computed based on a given rating model, and θk > 0 is the home-field

factor computed after week k. In Section 2.5 we discuss both the computation of this parameter
and the method of choosing θk, which is crucial to the point of the paper. We note here that
defining our probability in this way requires all ratings to be nonnegative (and at least one of the
ratings to be positive); however, Massey’s ratings do not satisfy this criterion. Accordingly, we use

a modified Massey rating, where we normalize the ratings so that r
(k)
i ∈ [0, 1] by considering that

each computed rating, r̂
(k)
i , is an observation based on a normal distribution, XMa, with mean zero

and standard deviation to be the sample standard deviation. Thus, the Massey rating we use in

our analysis is defined to be r
(k)
i = P

(
XMa ≤ r̂

(k)
i

)
, and we discuss this choice of normalization in

Section 4.

2.3.2 Logistic regression

One of the standard machine learning models is the logistic regression. Here we simply consider
the win/loss outcome of each game as a binary variable where 1 is given for a win and 0 for a loss.

Next, we estimate p
(k+1)
ah using the logit function as a linear regression on the ratings of the teams

at round k as follows:

logit(p
(k+1)
ah ) = log

(
p
(k+1)
ah

1− p
(k+1)
ah

)
= β0,k + β1,kr

(k)
a + β2,kr

(k)
h .

Solving for p
(k+1)
ah gives that

p
(k+1)
ah =

1

1 + e
−
(
β0,k+β1,kr

(k)
a +β2,kr

(k)
h

) . (2.5)

Now that we have various methods of assigning probabilities to each of our predictions, we move to
a discussion of how we make, and subsequently assess, those predictions.

2.4 Quantity vs. Quality

To begin, using any of the given methods to assign the value p
(k+1)
ah , we make a prediction that Th will

beat Ta in week k+1 whenever p
(k+1)
ha ≥ 0.5, and this prediction will be correct if Th actually wins the
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game. Thus, when we speak of “quantity,” we are simply referring to prediction accuracy. Formally,
suppose we are given a collection of predictions for some m events, Π = (π1, π2, . . . , πm). Then the
accuracy of Π, Acc(Π), is the number of correct predictions divided by the total predictions. Now
suppose T = (τ1, τ2, . . . , τm) is a collection of predictions for the same m events as Π. We say that
Π has greater accuracy than T whenever Acc(Π) > Acc(T ). We want to hold this up against the
notion of quality, and while accuracy and quality are certainly not mutually exclusive ideas, there
are indeed different.

There are a variety of statistical metrics, called scoring rules, that are used to assess the quality of a
prediction, and [13] provides an extensive discussion on how to select such metrics. In fact, starting
with [14], one can argue that a forecaster can improve a score by modifying the predictions in light
of the metric. Therefore, one must find a proper scoring function to ensure the highest quality of
prediction is attained. More precisely, proper scoring functions are metrics whose expected values
are optimized if the forecasted probability is the true event probability. Although there exist many
proper scoring functions, only a small number of them are employed in practice, and for a formal
discussion about a multitude of scoring functions we refer the reader to the work in [15] and [16].
For our purposes, we only consider the Quadratic Score function (QS). Formally, the QS of a given
event is a numerical value given by 2pobs − ∥p∥2 where pobs is the probability of the observed
outcome and p is the vector containing the probabilities for all of the possible outcomes. When
applied to an event that has only two predicted outcomes, such as an NFL contest, [17] normalize
the QS of an individual prediction, π, as QS(π) = 1 − 4(1 − pwin)

2, where pwin is the probability
assigned to the winning team in the prediction π, and we adopt this as our method of assigning a
QS value to any individual prediction. Then, given a collection of predictions for some m events,
Π = (π1, π2, . . . , πm), the overall QS of Π is

QS(Π) :=

m∑
i=1

QS(πi).

For instance, in our motivating example from Section 1, Player 1 attains a QS of

[1− 4(1− 0.6)2] + [1− 4(1− 0.55)2] + [1− 4(1− 0.51)2] = 0.5896,

while Player 2 attains a QS of

[1− 4(1− 0.9)2] + [1− 4(1− 0.8)2] + [1− 4(1− 0.45)2] = 1.59.

To be clear, when Player 2 picks F to beat E with a confidence of 55%, the QS computes this as
Player 2 picking the winner, i.e., E, with a confidence of pwin = 0.45.

Given this normalization of QS, we see that an individual prediction with higher QS is better, and
thus a higher total QS score across a set of predictions is desirable. Therefore, given two individual
predictions, π and τ , we say that π is a higher quality prediction than τ if QS(π) > QS(τ). Suppose
further that we are given two collections of predictions for the same m events, Π = (π1, π2, . . . , πm)
and T = (τ1, τ2, . . . , τm). We say that Π has greater quality than T whenever QS(Π) > QS(T ).
With these definitions in hand, our reason for choosing QS as our one scoring rule is forthright: in
hindsight, Home-Bias Bradley-Terry—i.e., the model from which we base our method of determining
outcome probabilities—maximizes the QS. It is important to be explicit here in also saying that
we are assessing foresight prediction quality, and so there is no a priori reason to assume that any
version of Bradley-Terry should attain the highest foresight prediction QS score when compared to
other models.

2.5 Choosing θ

We introduced a home-field parameter, θk, into the mix in Section 2.3.1, and we now discuss two
ways in which we compute this value: optimizing for accuracy and optimizing for quality. In both

6



Balreira and Miceli; JAMCS, 34(1): 1-14, 2019; Article no.JAMCS.52105

ways, suppose we have a fixed ratings model M , and after round k we compute the ratings vector
for M in the usual way described in Section 2. We then pick a value 0.5 ≤ θ ≤ 2.0 to create a new
set of predictions Πθ

M,k for every contest that has already been predicted from rounds 1 though k,
where all of these predictions are of the form

p̂
(k)
ah =

r
(k)
a

r
(k)
a + θr

(k)
h

and p̂
(k)
ha =

θr
(k)
h

r
(k)
a + θr

(k)
h

,

for some home team, Th, and away team, Ta. We define

Accθk = min
θ∈[0.5,2.0]

{θ maximizes Acc(Πθ
M,k)},

and then we set our k+1-st week’s prediction probabilities to be

Accp
(k+1)
ah =

r
(k)
a

r
(k)
a +Acc θkr

(k)
h

and Accp
(k+1)
ha =

Accθkr
(k)
h

r
(k)
a +Acc θkr

(k)
h

. (2.6)

Similarly, we define

QSθk = min
θ∈[0.5,2.0]

{θ maximizes QS(Πθ
M,k)},

and then we set our k+1-st week’s prediction probabilities to be

QSp
(k+1)
ah =

r
(k)
a

r
(k)
a +QS θkr

(k)
h

and QSp
(k+1)
ha =

QSθkr
(k)
h

r
(k)
a +QS θkr

(k)
h

. (2.7)

3 Results

As mentioned at the end of Section 1, the main goal of this paper is to see how adjusting for
accuracy or quality affects overall pick accuracy. To that end, we offer four sets of results, broken
up by whether or not we are using a ω- or σ-type model, and whether or not we are making foresight
predictions for Weeks 4–17 of the NFL season or Weeks 11–17 of the NFL season. We must wait
until Week 4 so that the underlying network is strongly connected and all models are capable of
making predictions. We also consider predictions starting at Week 11, as this corresponds to the
time when about 70% of the games have been played and all models have significant training data.
Again, we reiterate here that we are less interested in the actual prediction percentages and more
interested in whether or not there is a positive change in the prediction percentages.

Figures 3, 3, 3, and 3 each contain four types of prediction percentages: Usual, Logistic, Quantity,
Quality. The Usual prediction method uses probabilities defined by Equation (2.4) with θk = 1
for all k; the Logistic prediction method uses probabilities defined by Equation (2.5); the Quantity
prediction method uses probabilities defined by Equation (2.6); the Quality prediction method uses
probabilities defined by Equation (2.7). All of these figures include the W/L model, denoted as
WinP, because as referenced earlier, computer models should be able to do better than this method
of prediction by [7], and we do not adjust for scores in this model, so the W/L percentages shown
in Figures 3 and 3 are indeed the same as in Figures 3 and 3, respectively. Of course, we see from
Figure 3 that under the Usual probabilities and not accounting for game scores, the W/L method
performs better than our computer-based models.

In addition, when we incorporate home-field advantage via Equation (2.3), we do so for Bradley-
Terry by implementing Keener’s scoring approximation from Equation (2.2). Accordingly, we
evaluate Bradley-Terry as a σ-type model only. Further, implementing Home-Bias Bradley-Terry,
described in Section 2.1, at the end of each week produces the value of θk which maximizes in
hindsight the QS, but this method is different from our own for other models. Specifically, when
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we compute QSθk, we do so after first producing a ranking of our teams, but in the Home-Bias
model, the team ratings and the θ are found simultaneously using MLE. For this reason, the final
bar corresponding to Bradley-Terry in each of Figures 3, 3, 3, and 3 corresponds to this Home-Bias
model.

Finally, for each of the overall percentage figures we provide the accompanying Figures 3, 3, 3, and
3, which show the percentage change versus the Usual method when using the Logistic, Quantity,
Quality, or Home-Bias method. For example, the ω-type Massey prediction percentage for Weeks
4–17 is 61.6% using the Usual method and 62.8% using the Logistic method (both seen in Figure 3),
so the corresponding Logistic value in Figure 3 represents the difference: 62.8− 61.6 = 1.2%.

58 59 60 61 62 63 64 65

WinP

Massey

Colley

BiasedVoter

PageRank

Oracle

-Type Fan Foresight Predictions: Weeks 4-17

Usual
Logistic
Quantity
Quality

Fig. 1. ω-Type Fan Foresight, Weeks 4–17

-1 0 1 2 3 4

WinP

Massey

Colley

BiasedVoter

PageRank

Oracle

Prediction change from Usual
-Type Fan Foresight Predictions: Weeks 4-17

Logistic
Quantity
Quality

Fig. 2. ω-Type Fan Foresight, Weeks 4–17
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60 61 62 63 64 65 66 67 68

WinP

Massey

Colley

BiasedVoter

PageRank

Oracle

-Type Fan Foresight Predictions: Weeks 11-17

Usual
Logistic
Quantity
Quality

Fig. 3. ω-Type Fan Foresight, Weeks 11–17

-1 0 1 2 3 4

WinP

Massey

Colley

BiasedVoter

PageRank

Oracle

Prediction change from Usual
-Type Fan Foresight Predictions: Weeks 11-17

Logistic
Quantity
Quality

Fig. 4. ω-Type Fan Foresight, Weeks 11–17

9



Balreira and Miceli; JAMCS, 34(1): 1-14, 2019; Article no.JAMCS.52105

Fig. 5. σ-Type Fan Foresight, Weeks 4–17

Fig. 6. σ-Type Fan Foresight, Weeks 4–17
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Fig. 7. σ-Type Fan Foresight, Weeks 11–17

Fig. 8. σ-Type Fan Foresight, Weeks 11–17

4 Discussion

The choice of the home-field factor θ is done in two ways: optimize the quantity of correct games or
optimize the quality of the probabilities associated to the winner of the games. In both cases, the
overall results show that introducing a home-field factor to make a prediction for games outcomes
consistently improves accuracy, and for comparison, we also analyzed how a standard method like
the logistic regression would improve accuracy.

The overall results show that introducing a home-field factor to make a prediction for games
outcomes consistently improves accuracy. The choice of the home-field factor θ is done to optimize
the quantity of correct games or the quality of the probabilities associated to the winner of the
games. For comparison, we also analyzed how a standard method like the logistic regression would
improve accuracy.
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With the exception of the ω-type Keener and Oracle models, all methods improved by using either
logistic regression or a θ-optimization. Also, using logistic regression is best only in the Weeks 4–17
ω-type Massey and Biased Voter predictions, and in the former case, this is the type of prediction
where we most drastically alter the original Massey method. In particular, we see that all of the
Massey percentages are much better in Figures 3, 3, and 3 than they are in Figure 3. Looking to the
σ-type models, Massey is improved by all parameterizations, whereas Keener, PageRank (Score),
and the Oracle are not. In the case of Keener, optimizing θ for accuracy performs best, whereas
optimizing for quality performs best in both the Oracle and PageRank cases.

4.1 Other notes

When thinking about the normalization of the Massey rating vector, we observe that this does not
change the relative ranking order, that is, if Ti would be favored against Tj it will continue to be the
favorite after the normalization. Of course, this does lose information that the original Massey rating
contains. Still, we are only interested in whether or not we can somehow improve our predictions by
picking an appropriate θ. This method of normalization is not meant to diminish the pick accuracy
of the original Massey method, but any method of making the Massey ratings nonnegative has some
aspects which are not desirable with regard to making, and assigning probabilities to, predictions.

Numerically speaking, we also notice variations week-to-week in the values of Accθk and QSθk, so
that knowing a θ value from week k does not help in predicting what the subsequent θ value will
be in week k+1, making it necessary to recompute a new θ value in each week of predictions.
To better illustrate this, Figures 4.1 and 4.1 show the 2018 weekly computed Accθk and QSθk
values, respectively, for 4 ≤ k ≤ 17 (note that the vertical axes are scaled are differently for easier
visualization). We only provide this data for the 2018 NFL season as this is the typical behavior of
these parameters across all seasons.

Our analysis can be further improved by considering a θ value for each team. This would be
computationally more demanding, but it is certainly reasonable to expect home-field advantage has
different effects for different teams.
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Fig. 9. Accθk for Weeks 4–17 of the 2018 NFL Season
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Fig. 10. QSθk for Weeks 4–17 of the 2018 NFL Season

5 Conclusion

We showed that choosing a home-field factor to optimize for accuracy or quality affects overall
pick accuracy of a ranking method. The increase from a usual prediction method is at times over
2%. As we observe that there were 3548 games predicted between Weeks 4 and Week 17 and 1883
games between Week 11 and 17. The increase in accuracy translates to correctly picking two extra
games each season and is done without any added information besides knowing the scores and which
team played at home. Moreover, the fact that some methods are significantly more improved by
parameterizing with an eye toward optimizing the quality rather than quantity shows that the focus
when making a prediction should be on quality alone, and that quantity will naturally follow.

In the future, we expect to analyze other sports leagues to see if the focus on quality over quantity
is robust across different leagues. We also hope to find a way to utilize the previous season’s θ in
order to make predictions for the early games in the next season.
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