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ABSTRACT
Alzheimer’s disease is a degenerative disorder characterized by the
loss of synapses and neurons from the brain, as well as the accumu-
lation of amyloid-based neuritic plaques. While it remains a matter
of contention whether β-amyloid causes the neurodegeneration,
β-amyloid aggregation is associated with the disease progression.
Therefore, gaining a clearer understanding of this aggregation may
help to better understand the disease. We develop a continuous-
time model for β-amyloid aggregation using concepts from chem-
ical kinetics and population dynamics. We show the model con-
serves mass and establish conditions for the existence and stability
of equilibria. We also develop two discrete-time approximations to
the model that are dynamically consistent. We show numerically
that the continuous-time model produces sigmoidal growth, while
the discrete-time approximations may exhibit oscillatory dynam-
ics. Finally, sensitivity analysis reveals that aggregate concentration
is most sensitive to parameters involved in monomer production
and nucleation, suggesting the need for good estimates of such
parameters.
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1. Introduction

Amyloid-β (Aβ) is a peptide generated by the proteolytic cleavage of the amyloid precursor
protein (APP) by the action of β- and γ -secretases [10,28]. Aβ deposits in senile and neu-
ritic plaques and hyperphosphorylated tau proteins in neurofibrillary tangles (NFT) are
extracellular and intracellular expressions, respectively, of the Alzheimer’s disease (AD)
neuropathological phenotype, together with selective neuronal loss in hippocampal and
neocortical regions. The accumulation of Aβ plaque in the brain is considered as one of the
primary (postmortem) diagnostic criterion ofAD [29,58,68]. Aβ is a 39- to 43- residue pro-
teolytic product of a parental amyloid precursor protein (APP) that localizes to the plasma
membrane, trans-Golgi network, endoplasmic reticulum (ER) and endosomal, lysosomal
andmitochondrial membranes [69]. It is produced in the brain throughout life and it accu-
mulates in the cerebral cortex in the elderly and to an excessive degree in AD, but its role
in the etiology of Alzheimer’s is unproven [60].
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When Aβ is initially cleaved, it forms single pieces or monomers. The monomers are
then thought to combine into clusters to formAβ oligomers, and finally the oligomers form
insoluble fibrils. This process is collectively known as aggregation. These fibrils further
accumulate and become deposited as plaques. It is not clear how long this entire process
takes, but some researchers hypothesize that it occurs overmany years. Aβ can be produced
bynumerous types of cells such as neurons, astrocytes, neuroblastoma cells, hepatoma cells,
fibroblasts and platelets, suggesting, along with its conserved sequence among different
species, that this peptide should have an important function in normal cell development
and maintenance [48].

One theory stipulates that the neurodegenerative effects of AD arise from Aβ . This
is commonly known as the amyloid hypothesis and is one of the main models of AD
pathogenesis [8,30,31,69,71,72]. For the case of Aβ linkage to AD, it has been found that
Aβ becomes toxic once aggregated [32,64,70,74,78]. Moreover, numerous studies show
a strong correlation between soluble Aβ oligomer levels and the extent of synaptic loss
[13,14,24,28,41,46], further suggesting that the soluble oligomers are the causative agents
of AD [47,49,76,77].

Despite mounting support from biochemical, genetic and transgenic animal stud-
ies in favour of the amyloid hypothesis, the hypothesis itself remains controversial
[27,35,36,54,79]. Counter arguments to the amyloid hypothesis have been presented by
many researchers. One of the central challenges is the fact that multiple clinical trials of
anti-Aβ drugs have failed to reduce the symptoms ofAD [40]. In fact, various immunother-
apies targeting Aβ in AD model mice were effective in decreasing Aβ deposition in the
brain, but it did not lead to the improvement of actual symptoms [57]. A more profound
challenge to the amyloid hypothesis was put forth byHyong-gon Lee et al. [38]. The authors
suggest that Aβ , far from being the harbinger of disease, actually occurs secondary tomore
fundamental pathological changes and may even play a protective role in the diseased
brain. Other researchers have put forward the hypothesis that the main factor underlying
the progression of AD is the aggregation of tau protein and not Aβ [39].

Whether Aβ is the causal factor of AD or a downstream response to some as yet uniden-
tified causative agent, the association ofAβ aggregationwithADmeans that understanding
this process is of considerable importance. Consequently, in this paper we focus on mod-
elling the process of Aβ aggregation. In its simplest forms, Aβ plaque formation can be
described by protein aggregation, involving the misfolding of Aβ into soluble and insol-
uble assemblies [43,80]. Kinetic studies have suggested that the misfolding of monomeric
Aβ has been shown to precede the formation of oligomers, which then serve as seeds for
accelerated fibril growth [61], as illustrated in Figure 1. The two phases of Aβ aggrega-
tion are: (i) the nucleation phase, in which monomers undergo misfolding and associate
to form oligomeric nuclei, and (ii) the elongation phase, in which the oligomeric nuclei
rapidly grow by further addition of monomers, resulting in the formation of larger fibrils.
The nucleation phase occurs gradually and at a slower rate than the elongation phase which
proceeds it since elongation ismore thermodynamically favourable [43]. A sigmoidal curve
can thus describe this process.

Mathematical models of Aβ kinetics provide a clearer mechanistic understanding of
amyloid fibril growth. A number of mathematical models, both purely theoretical and
experimentally driven, have been developed to describe the aggregation of Aβ . These
include kinetic (ODE) models that consider the concentration of monomers and fibrils
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Figure 1. The two phases of Aβ aggregation: from monomers to fibrils, adapted from [43]. We can
expect to see a lag phase during the nucleation process followed by a phase of rapid growth (green
curve). The addition of more oligomers (seeds) speeds up the process and induces faster aggregate
formation (blue curve). In contrast, the lack of oligomers introduces lag time and slows down the
aggregation process (red curve).

of length j [16,42], more complicated Smoluchowski-type (PDE) systems that incorpo-
rate the transportation and diffusion of fibrils [5,11,15,23,25,33,66], models that consider
the impact of (hypothetical) treatment strategies [18,19,53,65], systemsmodels to consider
the role of Aβ in inflammation and neuron death [67], as well more experimentally driven
models for AD including [52,59,63]. Previously, the authors [20] developed a discrete-time
model for the aggregation of Aβ frommonomers to diamers, . . . up to pre-oligomers. This
model was developed under the assumptions that aggregation occurs due to the addition
of monomers, the aggregation process is not reversible and oligomers are formed from
exactly six monomers. Hence they studied a discrete-time model with five states, i.e. a
five-dimensional nonlinear discrete dynamical system.

In this paper, we develop a more general model that extends the model developed in
[20] in several ways. First, we incorporate oligomer and fibril stages into the model. These
additional stages allow us to model the two phases in the aggregation process: the slow
nucleation stage that results in the formation of oligomers and the faster elongation stage
that converts oligomers into fibrils. We note that, unlike the traditional kinetic equations
(also called nucleation–polymerization models) that only model fibrils of length j, the
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stage-structured approach used here allows us to distinguish between the oligomer and
fibril stage. This approach was motivated by studies that have shown kinetic models may
not be best suited to reproduce the aggregation observed in laboratory studies. For instance,
it was demonstrated for tau aggregation that the kinetic equations underestimate average
fibril length and are inadequate at capturing oligomer concentrations over time. Mean-
while, a model that accounts for the conversion of oligomers to fibrils via a reaction of
first order in monomer concentration was shown to provide a better fit [73]. Relatively
fewmodels for Aβ aggregation include this distinction between the two stages. Exceptions
include [20, 39] which considered more complicated Smoluchowski-type (PDE) systems.
Second, since various estimates have been given for average oligomer size (such as 6 [26],
8 [34], 2 or more [51]), here we do not assume that oligomers are formed by exactly six
monomers. Instead, we leave the model flexible by assuming that oligomers are made of at
least n+ 1 monomers. This results in a system of differential equations with n+ 2 states.
All together, these assumptions mean that the model is adaptable and may be modified for
different types of experimental data.

The paper is organized as follows. In Section 2, we develop a continuous-timemodel for
Aβ aggregation. This model includes n equations for monomers and intermediate aggre-
gates up to size n (where we use size to mean the number of monomers contained in an
aggregate), as well as two equations for the oligomer and fibril stages. In Section 3, we
provide a detailed analysis of the existence and stability of the equilibria of this model.
Our main tool for locating the eigenvalues of the Jacobian matrix of the system is Ger-
shogrin’s Theorem [22,62]. Finally, in Section 4, we provide some numerical simulations
to further study the continuous-time model as well as two discrete-time approximations
which preserve the local dynamics. A summary of our results is provided in the Conclusion
section.

2. The construction of the continuous-timemodel

To model the aggregation process of Aβ , we choose to model the slower nucleation phase
as size structured, that is we consider the concentration of monomers M1, diamers (2
monomers) M2, triamers (3 monomers) M3, . . . , etc. Meanwhile, we model the oligomer
and fibril states as average stagesO and P, respectively.We assume that oligomers are made
of at least n+ 1 monomers, resulting in a system containing n+ 2 stages: the monomer
stageM1, the intermediate aggregate stagesM2, . . .Mn, the oligomer stageO, and the fibril
stage P.We assume that aggregation (both nucleation and elongation) occurs viamonomer
addition. For simplicity, we do not consider disassociation (i.e., monomer removal from
aggregates) or fibril fragmentation. We note that disassociation, which occurs at a slower
rate than aggregation mechanisms, is typically neglected in analysis of kinetic models
[9,16]. Meanwhile, fragmentation was shown not to be a dominant mechanism for aggre-
gate formation [17]. Given these assumptions, the possible types of reactions may be
illustrated as

M1 + M1 = 2M1 → M2

M1 + M2 → M3

M1 + M3 → M4



JOURNAL OF BIOLOGICAL DYNAMICS 113

...

M1 + Mn−1 → Mn

(Oa − n)M1 + Mn → O

(Pa − Oa)M1 + O → P

where Oa and Pa give the average oligomer and fibril size, respectively. The first equation
describes the primary nucleation process where we have assumed that the number of
monomers making up the smallest stable aggregate, typically denoted by nc, is 2. The last
two equations describe multi-step processes where we have assumed that there is a rate
determining step that is slower than the others. This is the same formulation that is used
in [73] to describe these reactions.

Since monomers are produced in the brain, we assume that its production process is
represented by a saturating function f (M1)M1. Here we take f (M1)M1 = δM1(1 − M1

γ
),

which is the logistic differential equation first introduced by Verhulst [75], where δ is
the growth rate of monomers and γ is the carrying capacity. This choice of function
was motivated by the assumption that monomer concentration cannot grow unbounded.
However, we note that the following results would also hold for a general nonlinearity
f (M1) satisfying the conditions f (0) = δ > 0 and f ′(M1) < 0.We also assume that there is
degradation/clearance of each stage, denoted by μi. While we do not distinguish between
degradation and clearance here, in general degradation occurs at a faster rate than clearance
[29]. All together, these assumptions result in the following model:

dM1(t)
dt

= δM1(t)
(
1 − M1(t)

γ

)
− 2K1M2

1(t)− M1(t)
n−1∑
i=2

KiMi(t),

− (Oa − n)KnM1(t)Mn(t)− (Pa − Oa)KOM1(t)O(t)− μ1M1(t),

dM2(t)
dt

= K1M2
1(t)− K2M1(t)M2(t)− μ2M2(t),

...

dMn(t)
dt

= Kn−1M1(t)Mn−1(t)− KnM1(t)Mn(t)− μnMn(t),

dO(t)
dt

= KnM1(t)Mn(t)− KOM1(t)O(t)− μOO(t),

dP(t)
dt

= KOM1(t)O(t)− μPP(t).

(1)

The factors (Oa − n) and (Pa − Oa) in the monomer equation represent the average num-
ber of monomers that need to be added to an Mn aggregate to form an oligomer and the
average number of monomers that need to be added to an oligomer to form a fibril, respec-
tively. These factors ensure that the law of conservation of mass of the system is satisfied.
The law states that the mass of the chemical components before the reaction is equal to the
mass of the components after the reaction, that is, nomonomers are lost or created through
the aggregation process, as demonstrated by Lemma 2.1.
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Lemma 2.1: The following equality holds:
n∑

i=1
i
dMi

dt
+ Oa

dO
dt

+ Pa
dP
dt

= δM1

(
1 − M1

γ

)
−

n∑
i=1

iμiMi − OaμOO − PaμPP. (2)

Proof: In model (1) multiply equation i by i for i = 1, . . . , n, equation O by Oa and
equation P by Pa and then add up all the equations to get (2). �

Note that the above lemma shows that if the source and sink terms are zero, that is δ = 0,
μi = 0, i = 1, . . . , n, μO = 0 and μP = 0, then Equation (2) reduces to:

n∑
i=1

i
dMi

dt
+ Oa

dO
dt

+ Pa
dP
dt

= 0, (3)

which implies that
∑n

i=1 iMi + OaO + PaP = C, i.e. the total number of monomers in all
the aggregates is constant in time.

3. Existence and stability of equilibria

Wenow study the existence and stability of the equilibria ofmodel (1). Thismodel contains
an extinction equilibrium and a unique positive equilibrium, as shown in Theorem 3.1.

Theorem 3.1: Consider model (1).

(i) If δ − μ1 ≤ 0, then this system has only the extinction equilibrium E∗ = (0, 0, . . . , 0).
(ii) If δ − μ1 > 0, thenmodel (1) has, in addition to the extinction equilibrium E∗, a unique

interior equilibrium M∗ = (M∗
1 , . . . ,M

∗
n ,O∗, P∗), with all coordinates being positive.

Proof: The fact that E∗ = (0, 0, . . . , 0) is always an equilibrium of the system is clear. To
prove (ii), we note first that any equilibrium must satisfy the following:

δM1

(
1 − M1

γ

)
− 2K1M2

1(t)− M1

n−1∑
i=2

KiMi

− (Oa − n)KnM1Mn − (Pa − Oa)KOM1O − μ1M1 = 0,

K1M2
1 − K2M1M2 − μ2M2 = 0,

...

Kn−1M1Mn−1 − KnM1Mn − μnMn = 0,

KnM1Mn − KOM1(t)O − μOO = 0,

KOM1(t)O − μPP = 0.

(4)

From (4) we find that the coordinatesM2, . . . ,Mn,O and P for any equilibrium point must
satisfy:

Mi = Ki−1M1Mi−1

KiM1 + μi
= K1 . . .Ki−1Mi

1
�i

j=2(KjM1 + μj)
, i = 2, . . . , n, (5)
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O = K1 . . .KnMn+1
1

(KOM1 + μO)�
n
j=2(KjM1 + μj)

, (6)

P = KO

μP

K1 . . .KnMn+2
1

(KOM1 + μO)�
n
j=2(KjM1 + μj)

. (7)

From these equations it is easy to verify that dMi
dM1

> 0, for i = 2, . . . , n, dO
dM1

> 0 and dP
dM1

>

0. Now, to showM1 has a positive fixed point coordinate, we divide the first equation of (4)
byM1 to obtain

G(M1) := δ

(
1 − M1

γ

)
− 2K1M1 −

n−1∑
i=2

KiMi − (Oa − n)KnMn

− (Pa − Oa)KOO − μ1 = 0. (8)

Clearly, G(0) = δ − μ1 > 0. Furthermore,

dG
dM1

= − δ

γ
− 2K1 −

n−1∑
i=2

Ki
dMi

dM1
− (Oa − n)Kn

dMn

dM1
− (Pa − Oa)KO

dO
dM1

≤ − δ

γ
− 2K1 < 0.

Thus, G is a strictly decreasing function with G(M1) → −∞ as M1 → ∞. Hence, there
exists a uniqueM∗

1 suchG(M
∗
1 ) = 0. Plugging thisM∗

1 into Equations (5)–(7) results in the
unique positive equilibriumM∗ = (M∗

1 , . . . ,M
∗
n ,O∗, P∗). �

Next, we study the local stability of the two equilibria of the model, E∗ and M∗. The
Jacobian matrix of (1) evaluated at E∗ is given by

J(E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ − μ1 0 0 · · · 0 0 0
0 −μ2 0 · · · 0 0 0
0 0 −μ3 · · · 0 0 0

. . .
0 0 0 · · · −μn 0 0
0 0 0 0 0 −μO 0
0 0 0 0 0 0 −μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, the eigenvalues of J(E∗) are given by λ1 = δ − μ1, λi = −μi, i = 2, . . . , n, λn+1 =
−μO and λn+2 = −μP. Therefore, E∗ is locally asymptotically stable if δ − μ < 0 and
unstable if δ − μ > 0.
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Next we compute the Jacobian matrix at the interior equilibriumM∗, J(M∗), to obtain
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− δ
γ
M∗

1 − 2K1M∗
1 −K2M∗

1 −K3M∗
1 −K4M∗

1 · · ·
2K1M∗

1 − K2M∗
2 −K2M∗

1 − μ2 0 0 · · ·
K2M∗

2 − K3M∗
3 K2M∗

1 −K3M∗
1 − μ3 0 · · ·

K3M∗
3 − K4M∗

4 0 K3M∗
1 −K4M∗

1 − μ4 · · ·
. . . . . .

Kn−1M∗
n−1 − KnM∗

n 0 · · · 0 0
KnM∗

n − KOO∗ 0 · · · 0 0
KOO∗ 0 · · · 0 0

−Kn−1M∗
1 −(Oa − n)KnM∗

1 −(Pa − Oa)KOM∗
1 0

0 0 0 0
0 0 0
0 0 0

Kn−1M∗
1 −KnM∗

1 − μn 0 0
0 KnM∗

1 −KoM∗
1 − μO 0

0 0 KOM∗
1 −μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To determine the stability ofM∗, we use the following result due to Gershgorin [62].

Theorem 3.2: Let A = (aij) be a k × k matrix. Let Si be the disk in the complex plane with
centre at aii, and radius ri = ∑k

j �=i|aij|. Then all eigenvalues of A lie in S = ∪k
i=1Si.

To this end, we assume that

Ki−1 < Ki (9)

and
n−1∑
i=2

Ki + (Oa − n)Kn + (Pa − Oa)KO <
δ

γ
+ 2K1. (10)

Using (5)–(7) is easy to verify that

K1M∗
1 > K2M∗

2 > · · · > KnM∗
n > KOO∗. (11)

From this and assumption (9) if follows that

M∗
1 > M∗

2 > · · · > M∗
n > O∗. (12)

The following theorem summarizes the above stability analysis.

Theorem 3.3: Consider system (1).

(i) E∗ is locally asymptotically stable if δ − μ1 < 0 and unstable if δ − μ1 > 0.
(ii) If δ − μ1 > 0 and conditions (9)–(10) hold, then the unique positive equilibrium M∗ is

locally asymptotically stable.
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Proof: Applying Theorem 3.2 we will show that all the Gerschgorin disks lie on the left-
hand side of the complex plane, i.e., all eigenvalues have negative real part. To this end,
consider the first Gershgorin disk S1 centred at a11 = − δ

γ
M∗

1 − 2K1M∗
1 . Any eigenvalue

that resides in S1 must satisfy

|λ− a11| =
∣∣∣∣λ+ δ

γ
M∗

1 + 2K1M∗
1

∣∣∣∣ ≤
n−1∑
i=2

KiM∗
1 + (Oa − n)KnM∗

1 + (Pa − Oa)KOM∗
1 .

From this we have the following two-sided inequality for the real part of λ,

−
n−1∑
i=2

KiM∗
1 − (Oa − n)KnM∗

1 − (Pa − Oa)KOM∗
1 − δ

γ
M∗

1 − 2K1M∗
1 ≤ Re λ

≤
n−1∑
i=2

KiM∗
1 + (Oa − n)KnM∗

1 + (Pa − Oa)KOM∗
1 − δ

γ
M∗

1 − 2K1M∗
1 .

Simplifying we get:

− M∗
1

(n−1∑
i=2

Ki + (Oa − n)Kn + (Pa − Oa)KO + δ

γ
+ 2K1

)
≤ Re λ

≤ M∗
1

(n−1∑
i=2

KiM∗
1 + (Oa − n)Kn + (Pa − Oa)KO − 2K1 − δ

γ

)
< 0,

by assumption (10). Thus such an eigenvalue must have a strictly negative real part.
Next, note that for i = 2, . . . , n

Ki−1M∗
i−1 − KiM∗

i = Ki−1M∗
i−1 − Ki−1M∗

i−1
KiM∗

1
KiM∗

1 + μi
= Ki−1M∗

i−1
μi

KiM∗
1 + μi

> 0.

(13)
Consider the Gershgorin disk Si, i = 2, . . . , n centred at aii = −KiM∗

1 − μi. Then we have

|λ− aii| = |λ+ KiM∗
1 + μi| ≤ Ki−1M∗

1 + Ki−1M∗
i−1 − KiM∗

i .

Thus,

− Ki−1M∗
1 − (Ki−1M∗

i−1 − KiM∗
i )− KiM∗

1 − μi

≤ Re λ ≤ Ki−1M∗
1 + Ki−1M∗

i−1 − KiM∗
i − KiM∗

1 − μi.

Applying assumption (9) and inequality (13), we obtain

−Ki−1M∗
i−1

μi

KiM∗
1 + μi

− μi ≤ Re λ ≤ Ki−1M∗
i−1

μi

KiM∗
1 + μi

− μi.

From (9) and (10) it follows that

Ki−1M∗
i−1

μi

KiM∗
1 + μi

− μi = μi

( Ki−1M∗
i−1

KiM∗
1 + μi

− 1
)
< μi

(
KiM∗

1
KiM∗

1 + μi
− 1

)
< 0.

Thus any eigenvalue in the disk Si must have a strictly negative real part. Similar arguments
can be applied to Sn+1 and to Sn+2 centred at an+1,n+1 = −KOM∗

1 − μO and at an+2,n+2 =
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−μP, respectively, to show that any eigenvalue in these two disks must have a negative real
part. From the above it follows that all eigenvalues of the matrix which are in S = ∪n+2

i=1 Si
have negative real parts. Hence,M∗ is locally asymptotically stable. �

Remark 3.4: One can also observe that J(M∗) is a block matrix with two blocks: the first
(n + 1)× (n + 1) elements and a 1 × 1 block formed by the element Jn+2,n+2. Thus one
of the eigenvalues is given by λn+1 = −μP < 0 and hence it is sufficient to apply the above
Gershgorin theorem to the block matrix obtained from the first (n + 1)× (n + 1) ele-
ments of J(M∗) and show that the (remaining) n+ 1 eigenvalues have negative real parts
to obtain the conclusion of Theorem 3.3. The argument for showing that these eigenvalues
have negative real parts is identical to that in the proof of Theorem 3.3.

Remark 3.5: The relation between the chemical reaction and the activation energy is
governed by the Arrhenius equation [45]. The activation energy is the minimum energy
needed for the reaction to occur, expressed in joules per mole. The Arrhenius equation
states that the rate constant K of a chemical reaction depends primarily on the activation
energy Ea and temperature T:

K = Ae−
Ea
kBT , (14)

where the pre-exponential term A is related to the geometric and other secondary factors
that may affect the frequency of collisions, and kB is the Boltzmann constant [45]. For near
isothermal reactions, the primary factor is given by the activation energy. The accumulated
electron cloud gets stronger as more monomers are added up. Therefore, the energy level
ofMi+1 is lower than that ofMi, for i = 1, . . . , n, that is,Mi+1 is more stable thanMi. For
this reason, the reverse reaction is ignored. We may conclude that Ea1 > Ea2 > · · · > Ean .
Given that the activation energy plays the primary role in determining the reaction rate
constant, we obtain from the Arrhenius equation the relation:

K1 < K2 < · · · < Kn. (15)

4. Numerical investigation

In this section, we use numerical simulations to further explore the dynamics of model (1)
for parameter values lying outside of the region of stability predicted by Theorem 3.3. In
addition, we also consider the dynamics of two discrete-time approximations of thismodel.
Deriving discrete-time approximations to continuous-time aggregation models that pre-
serve non-negativity, conservation of mass and the local dynamics of the continuous-time
model is a challenging problem. In the appendix, we derive the two discrete-time mod-
els considered here and show that they preserve non-negativity and the local stability
conditions for model (1). However, these models do not preserve the conservation of
mass property of the continuous-time model and, as a result, we observe that they may
produce cyclic dynamics when the continuous-time model produces stable equilibria.
Importantly, we note that the model obtained using non-standard finite difference dis-
cretization (NFSD) is equivalent to the model developed in [20] with the additional
modelling assumptions introduced in this paper. Therefore, the numerical simulations
demonstrate that the continuous-time model is better able to describe the dynamics of
Aβ aggregation than the previously developed model in [20].
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Table 1. Parameter estimates of model (1) based on the literature.

Parameter Meaning Estimate Reference

K1 Nucleation rate 10−6 − 10−4M−1s−1 [17,42]
KO Elongation rate 10−1 − 104M−1s−1 [17,19,42,52]
Oa Average oligomer size 2−10 [26,34,51]
Pa Average fibril size 10 − 103 [52]
μ1 Degradation/clearance rate of monomers 10−5 − 10−3s−1 [19,29]
μO Degradation/clearance rate of oligomers 10−6 − 10−4s−1 [29]
μP Degradation/clearance rate of fibrils 10−7 − 10−5s−1 Estimated

Here we use simulations to address two questions. First, since the stability conditions
obtained in Theorem 3.3(ii) are not sharp, what type of dynamics occur when these con-
ditions are not met? Do we still have stable equilibria or are more complicated dynamics
possible? Second, how do the solutions to the two discrete-time approximations compare
to the solution to the continuous-time model? We showed in Theorems A.3 and A.4 that
the discrete-time models preserve the local dynamics. This indicates that these solutions
should agree well when conditions (9)–(10) are met. However, these solutions are not
guaranteed to agree for parameter values falling outside of the region defined by these
conditions.

Biologically, the parameters involved in modelling the aggregation process of Aβ may
have very different order of magnitude ranges. For instance, the nucleation rate may be as
slow as 10−6M−1s−1 while the elongation rate may be as fast as 104M−1s−1 [17]. Given
this variability, where available we obtained parameter estimates, given in Table 1, from
which we based our numerical simulations. However, we caution that the values used in
the numerical simulations are solely for illustrative purposes andmay not accurately reflect
the rate constants for Aβ associated with AD as some estimates, such as those in [17,42],
apply to forms of Aβ with enhanced aggregation.

The estimates for the elongation rate given in Table 1 are based on the addition of a sin-
gle monomer. Since the elongation rate KO in this model involves the addition of Pa − Oa
monomers, we modified this estimate based on the relative sizes of the fibril and oligomer
stages. In [29], the authors estimated the degradation rate of oligomers as 1/10μ1. There-
fore, to estimate the degradation rate of fibrils, we assume, based on relative sizes, that
μP = 1/10μO = 1/100μ1. Since we may expect the degradation rates of aggregates to
decrease with aggregate size, while the nucleation rates increase with aggregate size (see
Remark 3.5), to pick values ofμi and Ki, for 2 ≤ i ≤ n, we choose relationships that satisfy
these. Specifically, we use the relations

μi = μ1/i, Ki = Ki−1 + ε, 1 ≤ i ≤ n, for some constant ε > 0. (16)

Notice that with this choice ofKi, condition (9) is always satisfied.Wewere unable to obtain
estimates for the production rate of monomers δ or the carrying capacity of monomers γ .
Therefore, in our simulations, we choose an arbitrary value of δ that makes the extinction
equilibrium unstable, δ − μ1 > 0, and vary the value of γ to change the value of

D :=
n−1∑
i=2

Ki + (Oa − n)Kn + (Pa − Oa)KO − δ

γ
− 2K1, (17)
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which gives a locally asymptotically stable positive equilibrium when this quantity is
negative (see condition (10)).

In the simulations presented in Figures 2–5, we use the parameter values

δ = 50, K1 = 10−4, KO = 0.1, n = 6, Oa = 10, Pa = 100,

μ1 = 10−3, μO = 10−4, μP = 10−5, ε = 0.001,
(18)

together with the relationships given in (16) and the initial condition M1 = 10, M2 =
· · ·M6 = O = P = 0. In Figure 2(a), we show the time series dynamics formodels (1), (A1)
and (A2) when γ = 75 resulting inD = 8.3639>0. This first figure demonstrates that the
region of stability for the positive equilibrium extends beyond the stability region estab-
lished in Theorem 3.3, as determined by condition (10). The transience for all threemodels
follows a sigmoidal curve and, as is to be expected, the larger aggregates take longer to reach
equilibrium, with the fibril stage taking much longer than the others. In Figure 2(b), we
show the time-series dynamics when γ is increased to γ = 5000 resulting in D = 9.0206.
In this figure, we observe that all models still converge to a stable positive equilibrium.
However, both discrete-time models exhibit transient oscillations. Increasing γ even fur-
ther to γ = 8000, resulting in D = 9.0244, we observe in Figure 3 that the discrete-time
approximations no longer agree with the continuous-time model. Instead, model (1) equi-
librates while the two discrete-time models converge to stable cycles that oscillate around
this equilibrium value.

Though we were unable to find stable oscillations in the solution to the continuous-
time model for the parameter ranges given in Table 1, it is possible for this model to
exhibit stable cycles for parameters outside of these ranges. This is demonstrated in Figure
3(b) where γ = 30, 000 and all other parameters are the same as Figure 3(a) except we
have taken KO = 0.01 and μ1 = · · · = μn = μO = μP = 1. In Figure 4, we provide the
transient solution to M1 for the continuous-time model for each of the four scenarios
considered in Figures 2 and 3.We note that the continuous-timemodel exhibits some tran-
sient oscillations for the parameter values in Figures 2(b) and 3(a), but these oscillations
are less significant when compared to the oscillations observed in the discrete-time mod-
els. In Figure 4(c), we provide a clearer view of the cycles shown in Figure 3(b) for the
continuous-time model.

As discussed in the appendix, the two discrete-time approximations (A1) and (A2) do
not preserve the mass conservation property of the continuous model (see Lemma 2.1).
Specifically, for both discrete-time models, mass is lost in the aggregation process. We
suspect that this loss of mass is the cause of the instability observed in the numerical sim-
ulations. In Figure 5, we demonstrate how much mass is lost for the scenarios presented
in Figures 2 and 3. In Figure 5(a), we plot the absolute error between the total mass con-
centration over time, as given by the solution to (2), and the mass concentration over time
as predicted by models (A1) and (A2). As we can see from this figure, model (A2) does
a slightly better job than model (A1) at preserving mass. In Figure 5(b), we give the rela-
tive error for both models. Here we observe that, as we move further away from stability
condition (10) by increasing γ , the relative error in mass concentration increases.
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Figure 2. The time series dynamics of the continuous-time model (1) (dotted blue line), and the
discrete-timemodels (A1) (solid red line) and (A2) (dashed yellow line) for (a) γ = 75 and (b) γ = 5000,
and all other parameters given by (18) and (16).
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Figure 3. The time series dynamics of the continuous-time model (1) (dotted blue line), and the
discrete-time models (A1) (solid red line) and (A2) (dashed yellow line) for (a) γ = 8000 and all other
parameters given by (18) and (16) and (b) γ = 30, 000 and the other parameters the same as (a) except
for KO = 0.01 andμ1 = · · · = μn = μO = μP = 1.
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Figure 4. The transient dynamics for the continuous-time model for (a) the parameters in Figure 2(a)
(left) and Figure 2(b) (right), and (b) the parameters in Figure 3(a) (left) and Figure 3(b) (right). The cycles
obtained in Figure 3(b) for model (1) are shown in (c) for stageM1.

4.1. Sensitivity analysis

Sensitivity analysis plays an important role in parameter estimation and optimization [1–3]
and uncertainty [4,21]. Sensitivity analysis involves studying the effects of varying model
parameters on themodel output. For ourmodel, this involves understanding the (n + 2)×
(2n + 5) sensitivity coefficient matrix given by

CS = dM
dp

,

where for convenience we denote

M = (M1, . . . ,Mn,O, P) and p = (δ, γ ,K1, . . . ,Kn,KO,μ1, . . . ,μn,μO,μP).
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Figure 5. The absolute (a) and relative (b) errors in mass concentration over time for the NSFD
model (A1) and the NEDS model (A2) for the parameters values given in Figure 2(a) with γ = 75, Figure
2(b) with γ = 5000 and Figure 3(a) with γ = 8000.

Because our model parameters are measured in different units and differ by orders of mag-
nitude, this presents a challenge in interpreting sensitivity results and makes it difficult to
compare sensitivities between different parameters. Thus we focus on elasticity analysis as
it is a more appropriate measure in such a case [12]. Elasticity analysis looks at the propor-
tional response to a proportional (rather than additive) change in a model parameter. The
elasticity coefficient matrix is given by

CE = dM
dp

p
M

.

In particular, elasticities are proportional sensitivities that are scaled so that they are
dimensionless. Thus one can directly compare elasticities among all model parameters.

Here, we use a simple finite difference to approximate the derivative and numerically
solve for the elasticity coefficient matrix. Specifically, we use the following scheme to
numerically compute these elasticity coefficients

(CE)i,j(t; p) = ∂Mi(t; p)
∂pj

pj
Mi(t, p)

≈
(
Mi(t; p +	pj)− Mi(t; p)

	pj

)
pj

Mi(t, p)
,

for i = 1, . . . , n + 2, j = 1, . . . , 2n + 5 and small	pj > 0.
In Figure 6, we present the elasticity of the concentration of aggregates over time with

respect to three parameters:K1,K2 and γ . This graphwas generated using the same param-
eter values as Figure 2(a) and gives the absolute value of the elasticities in order to more
easily compare their relative magnitudes. From Figure 6, we can observe both the tran-
sient effects, which contribute to the time it takes different stages to equilibrate, as well
as the asymptotic effects, which describe how model parameters impact final equilibrium
concentrations. Similar qualitative behaviour is observed for other parameters but themag-
nitude (elasticity level) changes from one parameter to another. Thus in Table 2 we present
the transpose of the full elasticity coefficient matrix at the final time of the simulation
T = 800, i.e. the transpose of CE(T; p). Since n = 6 this matrix is of dimension 17 × 8.
This table clearly demonstrates that aggregate equilibrium concentrations are most sensi-
tive to γ , followed by K1. In general, we also observe that, when comparing the effects of
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Figure 6. The elasticity of the concentration of aggregates over time with respect to K1 (solid blue
line), K2 (red dashed line), and γ (yellow dotted line). Parameter values are the same as those used in
Figure 2(a).

Table 2. The transpose of the elasticity coefficient matrix at T = 800 for the model (1).

Elasticity
w.r.t. M1 M2 M3 M4 M5 M6 O P

δ 1.46×10−2 1.47×10−2 1.48×10−2 1.48×10−2 1.48×10−2 1.48×10−2 1.48×10−2 2.90×10−2

γ 9.85×10−1 9.91×10−1 9.93×10−1 9.94×10−1 9.95×10−1 9.96×10−1 9.96×10−1 2.02×100

K1 −1.27×10−2 8.59×10−1 8.59×10−1 8.58×10−1 8.58×10−1 8.58×10−1 8.58×10−1 7.40×10−1

K2 −4.60×10−5 −5.22×10−1 3.17×10−3 3.16×10−3 3.16×10−3 3.16×10−3 3.16×10−3 1.11×10−2

K3 −2.06×10−5 −2.07×10−5 −6.76×10−1 1.43×10−3 1.43×10−3 1.43×10−3 1.43×10−3 6.87×10−3

K4 −1.16×10−5 −1.16×10−5 −1.17×10−5 −7.55×10−1 8.13×10−4 8.13×10−4 8.13×10−4 4.94×10−3

K5 −7.37×10−6 −7.41×10−6 −7.43×10−6 −7.44×10−6 −8.04×10−1 5.23×10−4 5.23×10−4 3.84×10−3

K6 −5.08×10−6 −5.11×10−6 −5.12×10−6 −5.13×10−6 −5.13×10−6 −8.36×10−1 3.64×10−4 3.14×10−3

KO −1.76×10−7 −1.77×10−7 −1.78×10−7 −1.78×10−7 −1.78×10−7 −1.78×10−7 −9.90×10−1 1.81×10−4

μ1 −2.00×10−5 −2.01×10−5 −2.02×10−5 −2.02×10−5 −2.02×10−5 −2.02×10−5 −2.02×10−5 −4.09×10−5

μ2 8.66×10−5 −5.95×10−3 −5.95×10−3 −5.95×10−3 −5.95×10−3 −5.95×10−3 −5.95×10−3 −5.78×10−3

μ3 3.02×10−5 3.04×10−5 −2.10×10−3 −2.10×10−3 −2.10×10−3 −2.10×10−3 −2.10×10−3 −2.05×10−3

μ4 1.52×10−5 1.53×10−5 1.54×10−5 −1.07×10−3 −1.07×10−3 −1.07×10−3 −1.07×10−3 −1.05×10−3

μ5 9.13×10−6 9.19×10−6 9.21×10−6 9.22×10−6 −6.48×10−4 −6.48×10−4 −6.48×10−4 −6.37×10−4

μ6 6.06×10−6 6.10×10−6 6.11×10−6 6.12×10−6 6.12×10−6 −4.35×10−4 −4.35×10−4 −4.27×10−4

μO 1.78×10−7 1.79×10−7 1.80×10−7 1.80×10−7 1.80×10−7 1.80×10−7 −1.33×10−5 −1.32×10−5

μP 8.85×10−17 −8.55×10−16−2.06×10−15−3.34×10−15−4.50×10−15−5.95×10−15−6.02×10−15−3.03×10−3

different elongation or degradation rates, the model outputs are more sensitive to the rate
with a lower index. Exceptions occur for the stage that rate directly impacts, for instance
changes in K4 have a greater impact onM4 than changes in K2 or K3. For comparison pur-
poses, we also computed the elasticities when γ is increased to γ = 5000 as in Figure 2(b)
(not shown). These elasticities show the same general pattern as is given in Table 2 except
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that the impact of δ is increased, with the elasticities with respect to δ and γ having the
same order of magnitude.

5. Conclusion

In this paper, we developed a continuous-timemodel for the aggregation ofAβ . Thismodel
uses size (in term of the number of monomers) to model the slow nucleation phase and
stage to model the faster elongation phase. Motivated by previous studies [73], the model
also explicitly distinguishes between oligomer and fibril stages, and their elongation rates.
The main limitation of this new model is that we assume oligomers and fibrils can be well
characterized by average sizes for each of these stages. While describing a group according
average characteristics is a common approach in stage-structured population modelling,
such an approachmay not be appropriate when there is a large amount of variability within
a group. For instance, model (1) may be more appropriate for describing the early stages
of AD progression, while, for later stages of AD, an extension of this model in which we
include multiple oligomer and fibril stages may work better.

We showed that the continuous-time model (1) has an extinction equilibrium and a
unique positive equilibrium, and applied Gershgorin’s Theorem to establish local stability.
Numerical simulations show that, for parameter values falling within biologically reason-
able ranges, this model exhibits the sigmoidal growth, Figure 2(a), that is predicted by
theory [37]. These simulations also show that the stability region for the positive equi-
librium extends beyond the stability region, determined by condition (10), established in
Theorem 3.3. We conjecture that the positive equilibrium may, in fact, be globally asymp-
totically stable and we aim to establish conditions on the model parameters for global
stability in future work. However, we point out that the stability of the positive equi-
librium is not always guaranteed, as is demonstrated by the numerical results in Figure
3(b) and Figure 4(c) which show that the model may exhibit more complicated dynam-
ics including periodicity of solutions. It is worth noting, however, that these oscillations
were obtained using parameter values outside of the ranges given in Table 1. Meanwhile,
numerical simulations suggest that the continuous-time model does not appear to exhibit
oscillations when parameter values are chosen from the biological ranges provided in
Table 1.

Other approaches, including discrete-time models [20], have been used to model Aβ
aggregation. In order to compare how model predictions may vary based on the approach
used, here we also developed two discrete-time approximations to the model (1) using
non-standard schemes. We showed that these models preserve the local dynamics of the
continuous-time model. Numerical simulations verify that, even outside of the stability
region determined by (10), these difference schemes may provide good approximations to
model (1). However, as we move away from this condition, the discrete-time models start
to exhibit oscillatory transience and eventually stable cycles. This loss of stability appears
to coincide with a loss of conservation of mass, as shown in Figure 5. This suggest that
one should use caution when using discrete-time approximations to model aggregation
processes.

The onset and progression of Alzheimer’s disease can vary greatly between individuals
due to factors that are not well understood [6]. In Section 4.1, we performed sensitivity
analysis of the model outputs to understand how variability in the parameters describing
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the aggregation process of Aβ may influence the time series dynamics. When comparing
the various elongation rates, we observe that, even after accounting for differences in order
of magnitude of parameter values by using elasticity measurements, the impact of these
rates on the final equilibrium values may vary by orders of magnitude with the elongation
rates of smaller aggregate sizes having a larger impact on equilibrium values. In particu-
lar, this suggests that it may be important to have distinct elongation rates for the smaller
versus larger aggregates. This was observed experimentally for tau aggregation [73], where
the traditional kinetic equations were found to underestimated average fibril length and
be inadequate at capturing oligomer concentrations over time. Meanwhile, a model that
accounts for the conversion of oligomers to fibrils via a reaction of first order in monomer
concentration, as we have in model (1), was shown to provide a better fit despite catego-
rizing aggregates into only one of three stages: monomer, oligomer or fibril. We observe
a similar pattern was comparing the degradation rates of the different aggregate sizes. All
together, we observe that the parameters related to the production δ and prevalence γ of
(abnormal) monomers as well as the nucleation rate K1, which leads to the creation of new
aggregates, have the greatest effect on both the transient concentrations of aggregates and
the final equilibrium concentrations. The sensitivity analysis presented here, together with
knowledge on which model parameters are more likely to vary between individuals, may
further help identify causes of individual variation in AD progression.

Finally, we note that the model presented in this paper is a first step toward providing
a more detailed description of Aβ aggregation that will serve as a basis for more realistic
models that account for additional aggregationmechanisms such as dissociation, fragmen-
tation and secondary nucleation. Unlike the traditional kinetic equations that are often
used to model Aβ , here we do not assume that the elongation rates for aggregates of dif-
ferent sizes are the same [42]. Without this assumption, the model in this paper has the
disadvantage of being less readily analysable. However, the distinction between these rates
may prove important for reproducing the results of kinetic studies [73]. In addition, the
model is formulated to be flexible enough to allow very detailed information on smaller
aggregates which can be experimentally measured. The results of the sensitivity analysis
presented in this paper demonstrate the need for having good estimates for some of the
model parameters that are highly elastic including parameters that affect the monomer
production and monomer nucleation phase. In future work, we plan to estimate model
parameters using dynamic light scattering (DLS) data which allows the approximation of
aggregate size and molecular weight distribution as a function of time.
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Appendix. Discrete-Time approximations to the continuous-timemodel

Various types of mathematical models have been used to describe the aggregation of Aβ or of
other proteins. Here we contrast two modelling strategies, specifically continuous versus discrete
time, by constructing two discrete-time approximations to the continuous-time model (1) using
non-standard discretization methods.

The first method is based on a nonstandard finite difference discretization (NSFD) (see, e.g.[55])
which preserves the non-negativity of all variables, while the second approximation follows from an
exact discretization scheme (NEDS) [44]. Though this latter method is not guaranteed to preserve
non-negativity, solutions will remain non-negative provided that the removal terms μi are not too
large, as is the case here. Themain advantage of the discrete-time approximations presented below in
comparison with those available in the literature (including Runge–Kutta methods with and without
adaptive time step size) is that these approximations are guaranteed to preserve the local dynamics of
the continuous system even when the time-step size is large. Specifically, both discrete-time models
have the same equilibria and local stability results as the continuous-time model (1). This is impor-
tant from a practical point of view as often the step-size represents a generation time or the period
of some empirical measurements and hence is fixed.

In our first approach, we approximate the derivatives by

dMi(t)
dt

≈ Mi(t + h)− Mi(t)
h

, i = 1, . . . , n,

dO(t)
dt

≈ O(t + h)− O(t)
h

,

dP(t)
dt

≈ P(t + h)− P(t)
h

,

with h = 1. We then apply a non-standard discretization method on the continuous model (1) as
follows.We approximate the quadratic term− δ

γ
M(t)2 in the first equation of (1) and all the removal
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terms implicitly by

− δ

γ
M(t)M(t + 1), −μiMi(t + 1), i = 1, . . . , n, −μOMO(t + 1), −μPP(t + 1).

Finally, we approximate all remaining terms on the right-hand side of (1) explicitly (i.e. we evaluate
all the remaining terms at the time point t). We obtain the following system of difference equations:

M1(t + 1) = (1 + δ)M1(t)

[
1 + μ1 + δ

γ
M1(t)+ 2K1M1(t)+

n−1∑
i=2

KiMi(t) (A1)

+(Oa − n)KnMn(t)+ (Pa − Oa)KOO(t)
]−1

,

M2(t + 1) = M2(t)+ K1M2
1(t)

1 + μ2 + K2M1(t)
,

M3(t + 1) = M3(t)+ K2M1(t)M2(t)
1 + μ3 + K3M1(t)

,

...

Mn(t + 1) = Mn(t)+ Kn−1M1(t)Mn−1(t)
1 + μn + KnM1(t)

,

O(t + 1) = O(t)+ KnM1(t)Mn(t)
1 + μO + KOM1(t)

,

P(t + 1) = P(t)+ KOM1(t)O(t)
1 + μP

. (A1)

Remark A.1: Note that if there are no aggregation and degradation processes going on, then the
equation ofM1 becomes

M1(t + 1) = (1 + δ)γM1(t)
γ + δM1(t)

.

This equation is the Beverton–Holt discrete model [7], which is the discrete analogue of the logistic
differential equation that was used in (1). Here the growth rate is δ + 1 and the carrying capacity
is γ .

In our second discrete-time model, we approximate the derivatives by

dMi(t)
dt

≈ Mi(t + h)− Mi(t)
φi(h)

, i = 1, . . . , n,

dO(t)
dt

≈ O(t + h)− O(t)
φO(h)

,

dP(t)
dt

≈ P(t + h)− P(t)
φP(h)

,

where φ(h) is given by φ(h) = h + O(h2) and h represents the step size of the approximation. An
effective approximation method is to let

φ1(h) = eh(δ−μ1) − 1
δ − μ1

, φi(h) = 1 − e−hμi

μi
, i = 2, 3, . . . n,

φO(h) = 1 − e−hμO

μO
, φP(h) = 1 − e−hμP

μP
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[44,50,56]. Setting the step size to h = 1, this yields the following system of difference equations:

M1(t + 1) = e(δ−μ1)M1(t)

[
1 + φ1(1)

(
δ

γ
M1(t)+ 2K1M1(t)+

n−1∑
i=2

KiMi(t) (A2)

+(Oa − n)KnMn(t)+ (Pa − Oa)KOO(t)
)]−1

,

M2(t + 1) = e−μ2M2(t)+ φ2(1)K1M2
1(t)

1 + φ2(1)K2M1(t))
,

M3(t + 1) = e−μ3M3(t)+ φ3(1)K2M1(t)M2(t)
1 + φ3(1)K3M1(t))

,

...

Mn(t + 1) = e−μnMn(t)+ φn(1)Kn−1M1(t)Mn−1(t)
1 + φn(1)KnM1(t))

,

O(t + 1) = e−μOO(t)+ φO(1)KnM1(t)Mn(t)
1 + φO(1)KOM1(t)

,

P(t + 1) = e−μPP(t)+ φP(1)KOM1(t)O(t). (A2)

Remark A.2: Note that if there are no aggregation and degradation processes going on, then the
equation ofM1 becomes

M1(t + 1) = eδγM1(t)
γ + (eδ − 1)M1(t)

.

This equation is the Beverton–Holt discrete model [7], which is the discrete analogue of the logistic
differential equation that we used in (1). Here the growth rate is eδ and the carrying capacity is γ .

In TheoremsA.3 andA.4, we study the existence and stability of the equilibria of the two discrete-
time models to show that these models preserve the local dynamics of model (1).

Theorem A.3: The following holds for both model (A1) and model (A2).

(a) If δ − μ1 ≤ 0, then the system has only the extinction equilibrium E∗ = (0, 0, . . . , 0).
(b) If δ − μ1 > 0, then the system has, in addition to the extinction equilibrium E∗, a unique interior

equilibrium M∗ = (M∗
1 , . . . ,M

∗
n ,O∗,P∗), with all coordinates being positive.

Proof: The fact that E∗ is an equilibrium of the system is clear. The existence of a unique interior
equilibrium follows from an argument similar to the continuous-time case. In fact, note that any
equilibrium must satisfy the same equations (5)–(7) as the continuous case. Hence, as in the con-
tinuous model, dMi

dM1
> 0, for i = 2, . . . , n, dO

dM1
> 0 and dP

dM1
> 0. Thus, for M1 to have a positive

fixed point coordinate, from the first equation of (A1) or (A2), we see that the M1 coordinate of
such an equilibrium must satisfy Equation (8). Now G(0) = δ − μ1 > 0 if δ > μ1. Furthermore,
dG
dM1

= − δ
γ

− 2K1 < 0. Thus the same argument as in the continuous case results in the discrete
models (A1) and (A2) each having a unique positive equilibriumM∗ = (M∗

1 , . . . ,M
∗
n ,O∗, P∗). �

Theorem A.4: The following holds for both model (A1) and model (A2).

(i) E∗ is locally asymptotically stable if δ − μ1 < 0 and unstable if δ − μ1 > 0.
(ii) If δ − μ1 > 0 and conditions (9)–(10) hold, then the unique positive equilibrium M∗ is locally

asymptotically stable.
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Proof: (i) The Jacobian matrix of system (A1) evaluated at E∗ is given by

J(E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + δ

1 + μ1
0 0 · · · 0 0

0
1

1 + μ2
0 · · · 0 0

. . .

0 0 0
1

1 + μn
0 0

0 0 0 0
1

1 + μO
0

0 0 0 0 0
1

1 + μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus E∗ is asymptotically stable if 1+δ
1+μ1

< 1, which is equivalent to δ − μ1 < 0, and unstable
if 1+δ

1+μ1
> 1, which is equivalent to δ − μ1 > 0. Meanwhile, the Jacobian matrix of system (A2)

evaluated at E∗ is given by

J(E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eδ−μ1 0 0 · · · 0 0 0
0 e−μ2 0 · · · 0 0 0
0 0 e−μ3 · · · 0 0 0

. . .
0 0 0 · · · e−μn 0 0
0 0 0 0 0 e−μO 0
0 0 0 0 0 0 e−μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus E∗ is asymptotically stable if δ − μ1 < 0 and unstable if δ − μ1 > 0.
(ii)Nextwe compute the Jacobianmatrix at the interior fixedpointM∗. Formodels (A1) and (A2),

this Jacobian has the form

J(M∗) =
(

u ψ

ρ T

)
.

For model (A1), u is the scalar quantity

u = 1 − (δ/γ + 2K1)M∗
1

1 + δ
,

ψ and ρ are 1 × (n + 1) and (n + 1)× 1 vectors, respectively, given by

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−K2M∗
1

1 + δ

−K3M∗
1

1 + δ
...

−Kn−1M∗
1

1 + δ

− (Oa − n)KnM∗
1

1 + δ

− (Pa − Oa)KOM∗
1

1 + δ
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ᵀ

, ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(1 + μ2)K1M∗
1 − K2M∗

2 + K2K1M∗
1
2

(1 + μ2 + K2M∗
1 )

2

(1 + μ3)K2M∗
2 − K3M∗

3
(1 + μ3 + K3M∗

1 )
2

...
(1 + μn)Kn−1M∗

n−1 − KnM∗
n

(1 + μn + KnM∗
1 )

2

(1 + μO)KnM∗
n − KOO∗

(1 + μO + KOM∗
1 )

2

KOO∗

1 + μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and T is the (n + 1)× (n + 1)matrix with diagonal and subdiagonal entries given by

T(i, i) = 1
1 + μi+1 + Ki+1M∗

1
, i = 1, . . . n − 1,
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T(n, n) = 1
1 + μO + KOM∗

1
, T(n + 1, n + 1) = 1

1 + μP

T(i, i − 1) = KiM∗
1

1 + μi+1 + Ki+1M∗
1
, i = 2, . . . n − 1,

T(n, n − 1) = KnM∗
1

1 + μO + KOM∗
1
, T(n + 1, n) = KOM∗

1
1 + μP

,

and zeros elsewhere. Meanwhile, for model (A2), u is the scalar quantity

u = 1 − eδ−μ1 − 1
(δ − μ1)eδ−μ1

(
δ

γ
+ 2K1

)
M∗

1 ,

ψ and ρ are 1 × (n + 1) and (n + 1)× 1 vectors, respectively, given by

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−K2M∗
1

eδ−μ1 − 1
(δ − μ1)eδ−μ1

−K3M∗
1

eδ−μ1 − 1
(δ − μ1)eδ−μ1

...

−Kn−1M∗
1

eδ−μ1 − 1
(δ − μ1)eδ−μ1

−(Oa − n)KnM∗
1

eδ−μ1 − 1
(δ − μ1)eδ−μ1

−(Pa − Oa)KOM∗
1

eδ−μ1 − 1
(δ − μ1)eδ−μ1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ᵀ

,

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(1 − e−μ2)K1M∗
1 − (1 − e−μ2)K2M∗

2
μ2 + (1 − e−μ2)K2M1

(1 − e−μ3)K2M∗
2 − (1 − e−μ3)K3M∗

3
μ3 + (1 − e−μ3)K3M1

...
(1 − e−μn)Kn−1M∗

n−1 − (1 − e−μn)KnM∗
n

μn + (1 − e−μn)KnM1
(1 − e−μO)KnM∗

n − (1 − e−μO)KOO∗

μO + (1 − e−μO)KOM1
(1 − e−μP )KOO∗

μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and T is the (n + 1)× (n + 1)matrix with diagonal and subdiagonal entries given by

T(i, i) = μi+1e−μi+1

μi+1 + (1 − e−μi+1)Ki+1M1
, i = 1, . . . n − 1,

T(n, n) = μOe−μO

μO + (1 − e−μO)KOM1
, T(n + 1, n + 1) = e−μP

T(i, i − 1) = (1 − e−μi+1)KiM∗
1

μi+1 + (1 − e−μi+1)Ki+1M1
, i = 2, . . . n − 1,

T(n, n − 1) = (1 − e−μO)KnM∗
1

μO + (1 − e−μO)KnM1
, T(n + 1, n) = (1 − e−μP )KOM∗

1
1 + μP

,

and zeros elsewhere. Note that both Jacobian matrices have non-zero entries in the same positions
as the Jacobian for the continuous-time model.
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As with the continuous-time model, we assume that (9) and (10) are satisfied. Then, it is clear
that (12) is satisfied for the discrete model as well. Applying Theorem 3.2, the fact that Ki−1M∗

i −
KiM∗

i > 0, i = 2, . . . , n and KnM∗
n − KOM∗

O > 0 and using similar arguments as in the continuous
case, we can show that all the eigenvalues of the Jacobian matrix lie in the interior of the unit circle.

Note that, as in the continuous case, the matrix J(M∗) is composed of two blocks with one of
the eigenvalues given by λn+2,n+2 = 1

1+μP
< 1. Thus it would have been sufficient to apply Gersh-

gorin theorem to the matrix obtained from the first (n + 1)× (n + 1) elements and show that the
eigenvalues of this block lie in the unit circle. �

RemarkA.5: Wehave established above that the discrete-timemodels (A1) and (A2) attain the same
equilibria as the continuous-timemodel and preserve the same local dynamics. However, because of
approximation error involved in discretizing some terms, the discrete-time models do not preserve
the mass conservation, given in Lemma 2, that the continuous-time model obeys.
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