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Research Article

Eddy Kwessi*, Geraldo de Souza, Ngalla Djitte, and Mariama Ndiaye

The special atom space and Haar wavelets
in higher dimensions

https://doi.org/10.1515/dema-2020-0011
received September 9, 2019; accepted May 22, 2020

Abstract: In this note, we will revisit the special atom space introduced in the early 1980s by Geraldo De Souza
and Richard O’Neil. In their introductory work and in later additions, the space was mostly studied on the real
line. Interesting properties and connections to spaces such as Orlicz, Lipschitz, Lebesgue, and Lorentz spaces
made these spaces ripe for exploration in higher dimensions. In this article, we extend this definition to the plane
and space and show that almost all the interesting properties such as their Banach structure, Hölder’s-type
inequalities, and duality are preserved. In particular, dual spaces of special atom spaces are natural extension of
Lipschitz and generalized Lipschitz spaces of functions in higher dimensions. We make the point that this
extension could allow for the study of a wide range of problems including a connection that leads to what seems
to be a new definition of Haar functions, Haar wavelets, and wavelets on the plane and on the space.

Keywords: analytic function, special atom, Haar wavelets, high dimension

MSC 2010: 42B05, 42B30, 30B50, 30E20

1 Introduction

In our case, we start by recalling the definition of the special atom space on the interval = [ ]J 0, 1 . The
definitions over general interval [ ]a b, and over � follow along similar lines. This is done for the sake of
understanding the transition from [ ]0, 1 to [ ] × [ ]0, 1 0, 1 and from � to � �× . First, let us recall the
definition of general atom proposed in [1].

Definition 1. Let < ≤p0 1 be a real number and J be an interval of �. An atom is a function b defined on
the interval J and satisfying

1. | ( )| ≤

| |

/

b ξ ;J
1

p1

2. ∫ ( ) =

−∞

∞

ξ b ξ ξd 0k , for ≤ ≤ −k0 1p
1




, where [ ]x is the integer part of x.

From this definition, special atoms for ≥p 1 were introduced as:

Definition 2. A special atom of type 1 is a function �→b J: such that

( ) = ( ) =

| |

{ ( ) − ( )}

/

b t J b t
I

χ t χ t1 on or 1 ,p L R1
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where I is an interval contained in J, L and R are the halves of I such that = ∪I L R, and | |I is the length of I
(Figure 1a).

Definition 3. A special atom of type 2 is a function �→a J: such that

( ) =

| |

{ ( )}

/

a t
I

χ t1 ,p I1

where I is an interval contained in J (Figure 1b).

Definition 4. For ≤ < ∞p1 , the special atom space is defined as:
Type 1:

� ∑ ∑= → ( ) = ( ) | | < ∞

=

∞

=

∞

B f J f t α b t α: ; ; ,p

n
n n

n
n

0 0

















where ( )b tn are special atoms of type 1. Bp is endowed with the norm

∑∥ ∥ = | |

=

∞

f αinf ,B
n

n
0

p

where the infimum is taken over all representations of f.
Type 2:

� ∑ ∑= → ( ) = ( ) | | < ∞

=

∞

=

∞

C f J f t β a t β: ; ; ,p

n
n n

n
n

0 0

















where ( )a tn are special atoms of type 2. Cp is endowed with the norm

∑∥ ∥ = | |

=

∞

f βinf ,C
n

n
0

p

where the infimum is taken over all representations of f.

Remark 1. For =p 1, it is worth noting that the space C1 contains all simple functions. That is, if f is a

simple function with ( ) = ∑ ( )

=

f x α χ xn
k

n I0 n
, then ∈f C1. Also, every element in C1 is the limit of a sequence

of simple functions. Indeed ≡C L1 1.

(a)

L

R

1

I

1

I

(b)

L

1

I

Figure 1: An illustration of the special atom of types 1 and 2 for =p 1. (a) Type 1, (b) Type 2.
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Theorem 1. ( ∥⋅∥ )B ,p
Bp and ( ∥⋅∥ )C ,p

C p are Banach spaces.

Proof. The proof can be found in [2]. □

2 Motivation for the need of high dimension special atom spaces

The special atom was introduced by Geraldo de Souza in PhD thesis (see [2]) partly to answer one main
criticism of atoms, in that, they are too general and so far their main application was to prove that the dual
of the Hardy space H 1, unknown at the time, was indeed the Space of Bounded Means Oscillations.
Unbeknownst to the community at the time was that special cases of the atomic decomposition of Hardy’s
space would prove very beneficial in addressing unsolved problems. For instance, the special atom space
as introduced by Geraldo de Souza has for dual space the space of derivatives (in the sense of
distributions) of functions belonging to the Zygmund space

∗
Λ defined on = [ − + ]J a h a h, as

�= → ∥ ∥ =

( + ) + ( − ) − ( )

< ∞

∈

>

f J f f ξ h f ξ h f ξ
h

Λ : : sup 2 .
ξ J
h

⁎ Λ

0

⁎

















This result led to a simple proof that the Hardy space H 1 indeed contains functions whose Fourier series
diverge almost everywhere by observing that the Hardy space H 1 is a superspace of the special atom space,
and such functions actually exist in the special atom spaces, see for instance [3]. Moreover, the special
atom space B1 is a Banach equivalent to the space of analytic functions F on the complex unit disc for

which ∫ ∫( ) = ( )

+

−

F z f ξ ξdπ

π e z
e z

1
2 0

1

0

2 iξ

iξ , where ∫ ∫ | ′( )| < ∞F z zd
π

0

1

0

2
. This analytic characterization also led to

the lacunary characterization of functions in Bp, with ≤ < ∞p1 . The question that was later raised by
Brett Wick (Washington University, St. Louis, USA) was whether such a characterization could be achieved
in the bidisk or even tridisk. To entertain such a question, a rigorous definition of special atom spaces in
higher dimension is needed that would also preserve the key properties of the underlying space. Another
important aspect of the special atom spaces that needs special care in high dimension is that of its
connections with the Lorentz spaces Lp q, . Indeed, one property of the special atom space (type 2) is that it
is the atomic decomposition of the Lorentz space Lp,1, which facilitates the study of operators such as the

composition and multiplication operators. It is still not clear how to deal with these operators in higher
dimensions but with a rigorous definition of special atoms, this could be possible. The extension of the
special atom space we propose in the sequel leads to a natural definition of Haar wavelets in higher
dimensions. Indeed, Haar wavelets are still preferred by certain practitioners for their simplicity and
relatively ease of use. They can prove very useful in physical problems like heat transfer where the
solution can be found relatively fast even at low resolution. The definition we propose allows us to easily

prove that the Haar system forms an orthonormal basis in �( )L2 2 , and generally in �( )   ≥L k, 2k2 . In the last
section, we provide some applications of these facts.

3 Extension to high dimensions

Now consider the square = [ ] × [ ]J 0, 1 0, 1 . We extend the definition of the function ( )b tn to the plane as
follows: consider an integer n, and real numbers a b h, ,n n n, and kn such that >h k, 0n n and

�
>

∈

h klim inf 0
n

n n .

Consider a sub-rectangle Jn of J as

= [ − + ] × [ − + ]J a h a h b k b k, , .n n n n n n n n n
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Definition 5. Let ≤ < ∞p1 and consider

= [ − ] × [ − ] = [ − ] × [ + ]

= [ + ] × [ − ) = [ + ] × ( + ]

L a h a b k b L a h a b b k
R a a h b k b R a a h b b k

, , , , , ,
, , , , , .

n n n n n n n n n n n n n n

n n n n n n n n n n n n n n

,1 ,2

,1 ,2

Let

= ∪ = ∪L L R R L Rand .n n n n n n,1 ,2 ,2 ,1

We define the function ( )B x y,n in the plane as:

( ) =

| |

{ ( ) − ( )}

/

B x y
J

χ x y χ x y, 1 , , .n
n

p R L1 n n (3.1)

Remark 2.
1. Note that the subsets Ln and Rn of Jn are nonempty and disjoint so that ( )B x y,n can be written as:

( ) =

| |

{ ( ) + ( ) − ( ) − ( )}

/

B x y
J

χ x y χ x y χ x y χ x y, 1 , , , , ,n
n

p L R L R1 n n n n,2 ,1 ,1 ,2

where |⋅| represents the Lebesgue measure or the area to be more precise.
2. We also note that by restricting ( )B x y,n to the real line, we recover the definition (Definition 2) above,

using the fact that B1 is equivalent to the space of functions ( ) = ∑ ( )

=

∞f x α b xn n n0 , where bn's are special
atoms of type 1, see [4].

3. We observe that the role of /p1 and by extension that of p is to extend the definition above to L p spaces

and as such, | |

/J p1 is a normalizing constant so that ∥ ∥ =B 1n Lp .

Figure 2 is an illustration of Ln and Rn in the plane.

In the next definition, we will drop the index n in Ln i, and Rn i, , =i 1, 2 respectively, for the sake of
clarity. Consider ⊆U J , measurable such that = ∪U L R, with = ∪L L R1 2 and = ∪R L R2 1, for some sub-
rectangles L L R R, , ,1 2 1 2 of U similar to those in Figure 2. Now we can define the special atom space on the
plane. Let = [ ] × [ ]J 0, 1 0, 1 and let a real number ≤ < ∞p1 .

Definition 6. We define a special atom of Type 1 on J as:

( ) =

| |

{ ( ) − ( )}

/

B x y
J

χ x y χ x y, 1 , , ,n
n

p R L1 n n (3.2)

where | | =J h k4n n n. Note that the subsets Ln and Rn are nonempty and disjoints so that

( ) =

| |

{ ( ) + ( ) − ( ) − ( )}

/

B x y
J

χ x y χ x y χ x y χ x y, 1 , , , , .n
n

p L R L R1 n n n n,2 ,1 ,1 ,2

an − hn an an + hn

bn − kn

bn

bn + kn

Ln, 1

Ln, 2

Rn, 1

Rn, 2

y

x

Figure 2: An illustration of Ln and Rn in the plane.
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Definition 7. We define the special atom of Type 2 on J as

( ) =

| |

( )

/

A x y
J

χ x y, 1 , .n
n

p J1 n

Definition 8. The special atom space on J (or �2) is defined as:
Type 1:

� ∑ ∑= → ( ) = ( ) | | < ∞

=

∞

=

∞

B f J f x y α B x y α: ; , , ; ,p

n
n n

n
n

0 0

















where Jn’s are subsets in J, αn are real numbers, ( )B x y,n are special atoms of type 1. Bp is endowed with the norm:

∑∥ ∥ = | |

=

∞

f αinf ,B
n

n
0

p

where the infimum is taken over all representations of f.
Type 2:

� ∑ ∑= → ( ) = ( ) | | < ∞

=

∞

=

∞

C f J f x y β A x y β: ; , , ; ,p

n
n n

n
n

0 0

















where ( )A x y,n are special atoms of type 2 and βn are real numbers. Cp is endowed with the norm

∑∥ ∥ = | |

=

∞

f βinf ,C
n

n
0

p

where the infimum is taken over all representations of f.

In the next definition, U and V represent measurable subsets of J, where |⋅| is the Lebesgue measure.

Definition 9. Let ≤ < ∞p1 . We define the following auxiliary spaces.

� ∬= → ∈ ( ) ∥ ∥ =

| |

( ) < ∞

⊆

<| |<

/

D f J f L J f
U

f x y x y: ; , sup 1 , d d ,p
D

U J
U

p
U

1

0 1

1
p

















� ∬ ∬= → ∈ ( ) ∥ ∥ =

| |

( ) − ( ) < ∞

⊆

= ∪

<| |<

/

E f J f L J f
V

f x y x y f x y x y: ; , sup 1 , d d , d d .p
E

V J
V L R

V

p
R L

1

0 1

1
p

























These spaces will be shown later to have interesting connections to one another. We note that Bp and Cp

are special atomic decomposition spaces in the plane, whereas the auxiliary spaces Dp and Ep are their
dual counterparts. We have the following results.

Theorem 2. For ≤ < ∞p1 , ( ∥⋅∥ ) ( ∥⋅∥ ) ( ∥⋅∥ )C B D, , , , ,p
C

p
B

p
Dp p p , and ( ∥⋅∥ )E ,p

Ep are all Banach spaces.

Proof. The proof is similar to the one defined on the real line, see for instance [4], and will be omitted here
for the sake of brevity. □

Remark 3. Recall that the Lipchitz space of order < <α0 1 is defined as:
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�= → ∥ ∥ =

| ( + ) − ( )|

< ∞

>

∈

f J f f ξ h f ξ
h

Lip : : sup .α
h
ξ J

αLip
0

α

















Recall that the generalized Lipchitz space of order < ≤α0 2 is defined as:

�= → ∥ ∥ =

| ( + ) − ( + ) − ( )|

( )

< ∞

>

∈

f J f f ξ h f ξ h f ξ
h

Λ : : sup 2
2

.α
h
ξ J

αΛ
0

α

















Note that for < <α0 1, the spaces Lipα and Λα are the same and for =α 1, Λα is the Zygmund space Λ⁎.
Suppose = [ ] × [ ]J 0, 1 0, 1 and let ∈g Dp such that ( ) = ′( )g x y f x, for some differentiable function f defined
on [ ]0, 1 . Let = [ + ] × [ ] ⊆U ξ ξ h J, 0, 1 . Then, | | =U h and

∬ ∫∥ ∥ =

| |

( ) = ′( ) =

| ( + ) − ( )|

= ∥ ∥

⊆

<| |<

>

∈

/

+

>

∈

/

/g
U

g x y x y
h

f x x f ξ h f ξ
h

fsup 1 , d d sup 1 d sup .D
U J

U U
h
ξ J

p
ξ

ξ h

h
ξ J

p

0 1
0 1 0 1 Lipp

p
p1 1

Suppose = [ ] × [ ]J 0, 1 0, 1 and let ∈g Ep such that ( ) = ′( )g x y f x, for some differentiable function f defined
on [ ]0, 1 .

Let = [ − + ] × [ ] = [ − ) × [ ] ∪ [ + ] × [ ] ⊆V ξ h ξ h ξ h ξ ξ ξ h J, 0, 1 , 0, 1 , 0, 1 . Then, | | =V h2 . Let =R
[ + ] × [ ]ξ ξ h, 0, 1 and = [ − ) × [ ]L ξ h ξ, 0, 1 . Then,

∬ ∬ ∫ ∫∥ ∥ =

| |

( ) − ( ) = ′( ) − ′( )

=

| ( + ) + ( − ) − ( )|

( )

= ∥ ∥

⊆

= ∪

<| |<

>

∈

/

+

−

>

∈

/
/

g
V

g x y x y g x y x y
h

f x x f x x

f ξ h f ξ h f ξ
h

f

sup 1 , d d , d d sup 1 d d

sup 2
2

.

E
V J

V L R
V

R L
h
ξ J

p
ξ

ξ h

ξ h

ξ

h
ξ J

p

0 1

0 1

0 1 Λ

p
p

p

1

1

The above equalities show that the spaces Dp and Ep are, respectively, natural extensions of Lipschitz
spaces Lipα of order < <α0 1 and generalized Lipschitz spaces Λα of order < <α0 2 of functions in higher
dimensions.

In the sequel, we will show the consequence of this extension to higher dimensions. We will in
particular connect this extension to the proper definition of Haar systems and Haar wavelets.

4 Main results

4.1 Relationship between Bp and Cp

Theorem 3. For a real number ≤ < ∞p1 , the space Bp is continuously contained in Cp. Moreover, for ∈f Bp

∥ ∥ ≤ ∥ ∥f f4 .C Bp p

Proof. Let ∈f Bp. Then, f has the atomic decomposition ( ) = ∑ ( )

=

∞f x y β B x y, ,n n n0 with ∑ | | < ∞

=

∞ βn n0 . For a
given sub-rectangle Jn of J, we have that

136  Eddy Kwessi et al.



( ) =

| |

{ ( ) − ( )}

=

| |

{ ( ) + ( ) − ( ) − ( )}

= ⋅

∣ ∣

( ) + ⋅

∣ ∣

( )

− ⋅

∣ ∣

( ) − ⋅

∣ ∣

( )

/

/

/

/

/

/

/

/

/

/

B x y
J

χ x y χ x y

J
χ x y χ x y χ x y χ x y

L
J L

χ x y
R

J R
χ x y

L
J L

χ x y
R

J R
χ x y

, 1 , ,

1 , , , ,

1 , 1 ,

1 , 1 , .

n
n

p R L

n
p L R L R

n

n

p

n
p L

n

n

p

n
p R

n

n

p

n
p L

n

n

p

n
p R

1

1

,2
1

,2
1

,1
1

,1
1

,1
1

,1
1

,2
1

,2
1

n n

n n n n

n n

n n

,2 ,1 ,1 ,2

,2 ,1

,1 ,2

Put

( ) =

∣ ∣

( ) ( ) =

∣ ∣

( )

( ) =

∣ ∣

( ) ( ) =

∣ ∣

( )

/ /

/ /

A x y
L

χ x y A x y
R

χ x y

A x y
L

χ x y A x y
R

χ x y

, 1 , , , 1 , ,

, 1 , , , 1 , .

n
n

p L n
n

p R

n
n

p L n
n

p R

1,
,2

1 2,
,1

1

3,
,1

1 4,
,2

1

n n

n n

,2 ,1

,1 ,2

Likewise, put

= = = =

/ / / /

K
L

J
K

R
J

K
L
J

K
R

J
, , , .n

n

n

p

n
n

n

p

n
n

n

p

n
n

n

p

1,
,2

1

2,
,1

1

3,
,1

1

4,
,2

1

It follows that

∑( ) = ( ) + ( ) − ( ) − ( ) ( ) = ( )

=

∞

f x y f x y β f x y f x y f x y f x y β K A x y, , , , , , , where , , .i
n

n i n i n1 2 3 4
0

, ,

With this notation, and considering the fact that Cp is a linear space, we can conclude that ∈f Cp.
Moreover, since the sub-rectangles Ln i, and Rn i, for =i 1, 2 are contained in Jn, we have that ≤K 1i n, , which
implies that | | | | ≤ | |K β βi n n n, . Hence,

∑ ∑∥ ∥ = | || | ≤ | | = ∥ ∥

=

∞

=

∞

f β K β finf inf .i C
n

n i n
n

n B
0

,
0

p p

It follows that

∥ ∥ = ∥ + − − ∥ ≤ ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥ ≤ ∥ ∥f f f f f f f f f f4 . □C C C C C C B1 2 3 3 1 2 3 4p p p p p p p

Remark 4. It is important to note that the constant 4 in the theorem above is sharp which comes from the
proof. As for the inclusion of Cp into Bp, at this point, we can only conjecture that it may be true as well.

4.2 Relationship with the Lebesgue spaces L∞ and Lp

Theorem 4. Consider ≤ < ∞p1 .
• The Lebesgue space ∞L is continuously contained in Dp and Ep. That is,

1. ⊆

∞L Dp and ∥ ∥ ≤ ∥ ∥
∞g gD Lp .

2. ⊆

∞L Ep and ∥ ∥ ≤ ∥ ∥
∞g g2E Lp .

• The space Bp is continuously contained in the Lebesgue space ( )L Jp . That is, ⊆B Lp p and ∥ ∥ ≤ ∥ ∥g gL Bp p.

Proof. Let ∈

∞g L . Then, we know that | ( )| ≤ ∥ ∥ ≔ ∥ ∥
∞

∞g x y g g, L . Therefore, given ⊆U J
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∬ ∬( ) ≤ ∥ ∥ = | |∥ ∥
∞ ∞

g x y x y g x y U g, d d d d .
U U

Hence, multiplying both sides of the above inequality by /| |

/U1 p1 and taking the supremum over all ⊆U J
such that | | ≤U 1, we have:

∬

| |

( ) ≤ ∥ ∥

⊆

<| |<

/

∞U
g x y x y gsup 1 , d d .

U J
U

p
U0 1

1

In other words, ∈g Dp and ∥ ∥ ≤ ∥ ∥
∞g gD Lp . The proof that ⊆

∞L Ep follows along the same lines.
Now let ∈f Bp such that ( ) = ∑ ( )

=

∞f x y α B x y, ,n n n0 with ∑ | | < ∞

=

∞ αn n0 . Then, ∥ ∥ = ∑

=

∞f α BL n n n L0
p p. We

observe that by definition, ∥ ∥ =B 1n Lp . Hence, given an integer >N 0, we have

∑ ∑ ∑ ∑≤ | |∥ ∥ = | | ≤ | |

= = = =

∞

α B α B α α .
n

N

n n
L n

N

n n L
n

n

n
n

n
0 0 0 0p

p

Using the continuity of the norm in L p, it follows that:

∑ ∑ ∑ ∑∥ ∥ = ( ) = = ≤ | |

=

∞

→∞

=

→∞

= =

∞

f α B x y α B α B α, lim lim .L
n

n n
L

N n

N

n n
L

N n

N

n n
L n

n
0 0 0 0

p

p p p

Taking the infimum of ever all representations of f, we have:

∥ ∥ ≤ ∥ ∥f f . □L Bp p

We observe that from the same token that Cp is also a subspace of L p. The proof is similar to the one
above and will not be given for the sake of brevity.

4.3 Hölder’s-type inequalities

Theorem 5. Let < < ∞p1 be a real number.
1. If ∈g Dp and ∈f Cp, then

∬ ( ) ( ) ≤ ∥ ∥ ∥ ∥f x y g x y x y f g, , d d .
J

C Dp p

2. If ∈g Ep and ∈f Bp, then

∬ ( ) ( ) ≤ ∥ ∥ ∥ ∥f x y g x y x y f g, , d d .
J

B Ep p

Proof. Let < < ∞p1 be a real number, let ∈f Cp such that ( ) = ∑ ( )

=

∞f x y α A x y, ,n n n0 with ∑ | | < ∞

=

∞ αn n0 .
Consider ∈g Dp. We know from the above result that both ∈f g L, 1. Since ∑ | | < ∞

=

∞ αn n0 , �= | |
∈

α αsupn n

exists. Let
�

= | |

∈

l Jlim inf
n

n . Let ( ) = ( ) ( )F x y α A x y g x y, , ,n n n . Then, for all �∈n and ( ) ∈x y J, ,

| ( )| =

| |

( ) ( ) ≤ | ( )| ∈

/ /

F x y α
J

χ x y g x y α
l

g x y L, 1 , , , .n n
n

p J p1 1
1

n

By the Dominated Convergence Theorem, we have
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∬ ∬

∬

∬

∬

∑

∑

∑

∑

( ) ( ) = ( ) ( )

=

| |

( ) ( )

=

| |

( ) ( )

=

| |

( )

=

∞

=

∞

/

=

∞

/

=

∞

/

f x y g x y x y α A x y g x y x y

α
J

χ x y g x y x y

α
J

χ x y g x y x y

α
J

g x y x y

, , d d , , d d

1 , , d d

1 , , d d

1 , d d .

J J n
n n

J n
n

n
p J

n
n

n
p

J

J

n
n

n
p

J

0

0
1

0
1

0
1

n

n

n











Taking the absolute value on both sides of the above equality, we have

∬ ∬∑( ) ( ) ≤ | |

| |

( )

=

∞

/

f x y g x y x y α
J

g x y x y, , d d 1 , d d .
J n

n
n

p
J0

1

n

Taking the supremum over all subsets Jn of J such that < | | <J0 1n , we have

∬ ∬∑ ∑( ) ( ) ≤ | |

| |

( ) = ∣ ∣ ∥ ∥

=

∞

⊆

<| |<

/

=

∞

f x y g x y x y α
J

g x y x y α g, , d d sup 1 , d d .
J n

n
J J

J
n

p
J n

n D
0

0 1

1
0n

n n

p




































To conclude, we take the infimum over all representations of f and we obtain

∬ ( ) ( ) ≤ ∥ ∥ ∥ ∥f x y g x y x y f g, , d d .
J

C Dp p

The proof of the second part of the theorem is similar by noting that in this case for all �∈n and ( ) ∈x y J, ,
we have

| ( )| = ∣ ( ) ( )∣ ≤ | ( )| ∈

/

F x y β B x y g x y α
l

g x y L, , , 2 , ,n n n p1
1

so that the Dominated Convergence Theorem can still be used. □

Remark 5. This proof illustrates the importance of choosing sequences hn and kn for which

�
>

∈

h klim inf 0
n

n n . Indeed, suppose = =h kn n n
1

2 . Then, | | = =J h kn n n n
1
2 and

�
=

∈

h klim inf 0
n

n n . In this case,

∬ ∬ ∑( ) ( ) = ( )

=

∞

f x y g x y x y F x y x y, , d d , d d ,
J J n

n
0

with ( ) = ( ) ( )

/F x y α n χ x y g x y, , ,n n
p

J
2

n
. The sequence Fn is unbounded in general so that the Dominated

Convergence Theorem will fail and thus the inequality above cannot be obtained.

4.4 Duality

Theorem 6. Let < < ∞p1 be a real number.
1. The dual space ( )

∗Cp of Cp is equivalent to Dp with equivalent norms, that is, ∈ ( )

∗φ Bp if and only if there is
a unique ∈g Dp such that
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∬( ) = ( ) ( )φ f f x y g x y x y, , d d .g
J

Moreover,

∥ ∥ ≃ ∥ ∥
( )

∗φ g .g C Dp p

2. Likewise, the dual space ( )

∗Bp of Bp is equivalent to Ep with equivalent norms.

Proof. Fix ∈g Dp. Define a functional φg on Cp as: �↦φ C:g
p with

∬( ) = ( ) ( )φ f f x y g x y x y, , d d .g
J

The linearity of the integral makes φg a linear functional and using the Hölder’s-type inequalities above, we have

∬| ( )| = ( ) ( ) ≤ ∥ ∥ ∥ ∥φ f f x y g x y x y f g, , d d .g
J

C Dp p

It follows that

∥ ∥ = | ( )| ≤ ∥ ∥
( )

∥ ∥ =

∗φ φ f gsup .g C
f

g D
1

p

C p

p (4.1)

Now consider ∈ ( )

∗φ Cp . Then, there exists an absolute constant M such that

| ( )| ≤ ∥ ∥ ∀ ∈φ f M f f C, .C
pp

Since J is a rectangle, we can define a σ-finite measure μ as follows: let ⊆E J be a rectangle. Put ( ) = ( )μ E φ χE .
Since = | |

/

| |

/

χ E χE
p

E E
1 1

p1 , it follows that ∈χ CE
p with ∥ ∥ = | |

/χ EE C
p1p . Moreover, | ( )| = | ( )| ≤ | |

/μ E φ χ M EE
p1 . The

latter implies that the measure μ is absolute continuous with respect to the Lebesgue measure |⋅|, which is also
σ-finite. Therefore, by the Radon-Nykodym theorem, there exists a measurable function ∈g L1 such that

∬( ) = ( )μ E g x y x y, d d .
E

It remains to show that ∈g Dp and that there exists a constant >K 0 such that ∥ ∥ ≥ ∥ ∥
( )

∗φ K gC Dp p.
We note that

∬| ( )| = | ( )| = ( ) ≤ | |

/μ E φ χ g x y x y M E, d d .E

E

p1

That is,

∬

| |

( ) ≤

/E
g x y x y M1 , d d .p

E
1

Taking the supremum over all rectangles ⊆E J such that < | | <E0 1, we have

∬

| |

( ) ≤ < ∞

⊆

/

<| |<

E
g x y x y Msup 1 , d d .

E J
p

E
1

E0 1

This means simply by definition that ∈g Dp. Now let us note that

∬( ) = ( )φ χ g x y x y, d d .E

E
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By linearity of φ, we have that

∬

| |

=

| |

( ) ( )

/ /

φ
E

χ
E

χ x y g x y x y1 1 , , d d .p E

J
p E1 1











The continuity of φ allows us to write it in the form

∬( ) = ( ) = ( ) ( )φ f φ f f x y g x y x y, , d d .g
J

Now suppose that for all constants >K 0,∥ ∥ < ∥ ∥
( )

∗φ K gg C Dp p. In particular, for all �∈n , we would have∥ ∥ <
( )

∗φg C p

∥ ∥gn D
1 p. Now consider =

| |

/

f χE E0
1

p1 . We observe that ∈f Cp
0 with ∥ ∥ =f 1C0 p . So, in particular, we have that

| | | ( )| = | ( )| ≤ | ( )| = ∥ ∥ < ∥ ∥

/

∥ ∥ =

( )
E φ f φ χ φ f φ

n
gsup 1 .p

g g E
f

g g C D
1

0
1C p

p p⁎

In other words,

∬| ( )| = ( ) < ∥ ∥n φ χ n g x y x y g, d d .g E

E

D p

So dividing both sides by | |

/E p1 and taking the supremum over all ⊆E J such that < | | <E0 1, we have

∥ ∥ < | | ∥ ∥

/n g E g .D
p

D
1p p

The latter inequality fails to be true once we chose = [| | ] +

/n E 1p1 . Therefore, there must exist >K 0 such
that ∥ ∥ ≥ ∥ ∥

( )
φ K gg C Dp p⁎ . This and the inequality in (4.1) prove that ∥ ∥ ≃ ∥ ∥

( )
φ gg C Dp p⁎ . A similar approach will

yield the second part of the theorem. □

Remark 6. A more direct proof that ∥ ∥ ≥ ∥ ∥φ K g D p is as follows:

∬∥ ∥ = | ( )| ≥ | ( )| =

| |

( ) ≥ ∥ ∥
( )

∥ ∥ =

/

∗φ φ f φ f
E

g x y x y gsup 1 , d d .g C
f

g g p
E

D
1

0 1
p

C p

p

The result follows with =K 1.

5 Extension to the space

Consider the cube =J I3 and let a sub-cube Jn of J be defined, for a given integer n, real numbers a b c, , ,n n n
h k,n n, and mn with >h k m, , 0n n n as

= [ − + ] × [ − + ] × [ − + ]J a h a h b k b k c m c m, , , .n n n n n n n n n n n n n

Definition 10. Let

= [ − ] × [ − ] × [ − )

= [ − ] × [ − ] × [ + ]

= [ − ] × [ + ] × [ − )

= [ − ] × [ + ] × [ + ]

= [ + ] × [ − ) × [ − )

= [ + ] × [ − ) × [ + ]

= [ + ] × ( + ] × [ − )

= [ + ] × ( + ] × [ + ]

L a h a b k b c m c
L a h a b k b c c m
L a h a b b k c m c
L a h a b b k c c m
R a a h b k b c m c
R a a h b k b c c m
R a a h b b k c m c
R a a h b b k c c m

, , , ,
, , , ,
, , , ,
, , , ,

, , , ,
, , , ,
, , , ,
, , , .

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

,1,1

,1,2

,2,1

,2,2

,1,1

,1,2

,2,1

,2,2
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Let

= ∪ ∪ ∪ = ∪ ∪ ∪L L L R R R L L R Rand .n n n n n n n n n n,1,1 ,1,2 ,2,1 ,2,2 ,2,1 ,2,2 ,1,1 ,1,2

We define the function ( )B x y z, ,n in the space as (see Figure 3 for an illustration)

( ) =

| |

{ ( ) − ( )}

/

B x y z
J

χ x y z χ x y z, , 1 , , , , .n
n

p R L1 n n (5.1)

The eight cubes represent, respectively, Ln i j, , for =i j, 1, 2 defined above in the following way:

↦ - - -

↦ - - -

↦ - - -

↦ - - -

↦ - - -

↦ - - -

↦ - - -

↦ - - -

L xy xz yz
L xy xz yz
L xy xz yz
L xy xz yz
R xy xz yz
R xy xz yz
R xy xz yz
R xy xz yz

yellow, green, blue,
yellow, magenta, brown,
red, green, brown,
red, magenta, blue,
red, magenta, blue,
red, green, brown,
yellow, magenta, brown,
yellow, green, blue.

n

n

n

n

n

n

n

n

,1,1

,1,2

,2,1

,2,2

,1,1

,1,2

,2,1

,2,2

The goal of the colors in the picture is to illustrate the fact that by restricting the definition to either plane,
we will recover the definition of (⋅ ⋅)B ,n in the bisphere as above, or by restricting it to either coordinate line,
we will recover the original definition of the special atom. With this definition in hand, we see that the
results of the previous section naturally extend to the trisphere space (more generally to the space, see
Section 6). It can even be extended to the polysphere � k for ≥k 3 by observing that there will be −2k 1

intervals
⋅

Ln, and −2k 1 intervals
⋅

Rn, and by combining them adequately.

6 Discussion

The special atom space may have been understudied in the literature because of its relative simplicity.
That simplicity seemingly hides deep connections to well-known spaces.

6.1 Relationship with the weighted Bergman spaces

Let � �= { ∈ | | < }z z: 1 be the unit disk and � = { ∈ | | = }z C z: 1 be the unit circle. Given >k 1, the
polydisk is defined as � �= {( … ) ∈ | | < ∀ ≤ ≤ }z z z z i k, , , : 1, 1k

k
k

i1 2 and the polysphere is given as
� �= {( … ) ∈ | | = ∀ ≤ ≤ }z z z z i k, , , : 1, 1k

k
k

i1 2 . Also, in this section, = [ ]I 0, 1 .

x y

z

x

z

Figure 3: To understand the picture, there are six colors: red and yellow on the xy-plane, green and magenta on the xz-plane,
and brown and blue on the yz-plane. Each cube has two faces with the same color, by projection onto that plane.
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In their inception, functions in Bp are given in their atomic decomposition forms. The space Bp,
however, has an analytic form using the following result.

Theorem 7. [5] Let ∈f Bp and ( ) =

/w t t p1 . Define an analytic function ∫( ) = ( )

−

−

+

F z f t tdπ
e z
e z

1
2 π

π it

it . Let �( )A be
the space of analytic functions on � . Let

� ∫ ∫= ∈ ( ) ∥ ∥ = ∣ ′( )∣

( − )

−

< ∞S F A F F re w r
r

θ r: 1
2π

1
1

d d .w S
iθ

0

1

0

2π

w













Then, Bp is continuously contained in Sw with

∥ ∥ ≃ ∥ ∥f F .B Sp w (6.1)

This result means that Bp is the real characterization (or the boundary value space) of Sw in that

• If ∈F Sw, then ∈f Bp where ( ) = ( )

→

f θ F relim Re
r

iθ
1

.

• If ∈f Bp, then ∈F Sw where ∫( ) = ( )

−

−

+

F z f t tdπ π

π e z
e z

1
2

it

it .

Now considering a weight w satisfying certain conditions, we can replace | |Jn in the definition of Bp by
( )w Jn to obtain a weighted special atoms space Bw. It was shown in [5] that the aforementioned theorem

can be extended to the weighted case.
Now, recall that weighted Bergman-Besov-Lipschitz spaces BBLw are defined for a weight function w

(defined above) as:

� ∫ ∫= = [ ] →

| ( ) − ( )|

| − |

( − ) < ∞f I f x f y
x y

w x y x yBBL : 0, 1 : d d .w

π π

0

2

0

2











We note that this space is just the weighted version of the generalized Hölder spaces
( )

−Λ 1 , 1, 1p
1 with

weight ( ) =

/w t t p1 defined as:

� ∫ ∫− = →

| ( ) − ( )|

| − |

< ∞

− /p
f I f x f y

x y
x yΛ 1 1 , 1, 1 : : d d .

π π

p
0

2

0

2

2 1






















It was shown in [6] that ≃B BLLw w with equivalent norms, meaning that Bw is the atomic decomposition
of BLLw.

From now on, we will write ( )B Ip as Bp. Let q such that + = 1p q
1 1 . Let �= + = ∈z x iy reiθ . Then, =θ rd d

= | | = | | ( )r x y z x y π z A z2 d d 2 d d 2 d , where ( ) =A zd x y
π

d d . Now define the function ( ) =zΦ | |( − | |) = | |

( − | |)

− | |

−z z z1 w z
z

1
1

p
1

1

on � .
Then, (6.1) can be written as

�

∫∥ ∥ ≃ | ′( )| ( ) ( )
( )

f F z z A zΦ d .B Ip (6.2)

Noting that �∈ ( )LΦ 1 , the right-hand side of (6.2) means that � � ��′ ∈ ( ) = ( ) ∩ ( )F A LΦ
1

Φ
1 , the weighted

Bergman space with weight Φ, where ��( ) is the space of holomorphic functions on � . We note that the
standard Bergman weights are given as ( ) = ( + )( − | |)z α zΦ 1 1 α

0 for > −α 1. With the choice of ≥p 1, ( )zΦ can
be transformed into a standard weight since in that case = − > −α 1q

1 . When ≥k 2, we note that

= ( … )z z z z, , , k1 2 is a vector in �k, with =z r ej j
jiθj for ≤ ≤j k1 , which can also be written as = +z x iyj j j. Then,
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for a differentiable function F on �k, we put ′( ) = ( ( ) ( ) … ( ))F z f z f z f z, , , k1 2 , where ( ) = ≤ ≤

∂ ( )

∂

f z j k, 1j
F z

zj
. Note

that when =k 1, this becomes ( ) = ′( )f z F z1 . For ≥k 2, we have | ′( )| ≔ ∥ ∥ = ∑ | ( )|

=

F z F f zj
k

j2 1
2 .

With the definition of ( )B Ip k at hand and for an integer ≥k 2, we have the following.

Conjecture 1. There exist weights ( )zΦ and an holomorphic function F on � k such that

�

∫∥ ∥ ≃ | ′( )| ( ) ( )
( )

f F z z A zΦ d ,B Ip k

k
(6.3)

for �= ( … ) ∈z z z z, , , k
k

1 2 with = +z x iyj j j and ( ) = ∏

( )
=

A z x yd d dj
k

j j
1

π 1k .

6.2 Lacunary functions

In Section 6.1, we saw that the weighted special atom space has an analytic characterization as the
weighted Bergman-Besov-Lipschitz space. Above, we also mentioned that Bp can be extended to the
bisphere or polysphere. However, to be able to define analytic functions on the bidisk and polydisk, we
need to make sure that lacunary functions are properly characterized and removed. First, recall that

Definition 11. A lacunary function F is an analytic function possessing the so-called Hadamard gaps, that is,

∑( ) = = >

=

+F z a z λ n
n

such that inf 1.
k

n

k
n

k
k

k1

1
k

k

Let us mention the Ostrowski-Hadamard gap theorem, see for example [7].

Theorem 8. (Ostrowski-Hadamard) Suppose F is a lacunary function with radius of convergence 1. Then, f
cannot be analytically continued from the open disc � to any larger open set, including even a single point of
the boundary � of � .

This result essentially says that if we hope to extend the result of [5] to the space or to a higher dimension
space, we need to discard lacunary functions. Better, we need to characterize the sub-space of lacunary functions.
On the unit sphere, this was done in [8], where the space ( )b Ip of lacunary functions on I was characterized as:

� � � ∑ ∑ ∑( ) = → ( ) = ( ) | | < ∞ ( ) >

=

∞

=

∞

∈

b f f z a z K n p a K n p: : , 2 , , , 0 ,p

n
n

n

n

n

k I
k

0 0

2

n

1
2






















where ( )K n p, is a positive weight function satisfying certain conditions. Basically, it was proved that if F is
lacunary on � , then

�∥ ∥ ≃ ∥ ∥
( ) ( )

F F .B I bp p (6.4)

The result in (6.4) relies heavily on the following theorem by A. Zygmund.

Theorem 9. [9] Let ( ) = ∑

=

∞f z a zk k
n

1
k be a lacunary function defined on the unit disk � . Then, there is an

absolute constant c independent of f such that

�∑ | | ≤ ∥ ∥

=

∞

( )

a c f .
k

k L
1

2

1
2

1










Paley extended the result of A. Zygmund in [9] to the polydisk of �( )H m1 .
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Definition 12. A function
�

( ) = ∑ ⋯ ⋯

∈

f z a a z zk k k
n

m
n

1m m
k km

1
1 defined on the polydisk � m will be called

lacunary if

= { … } > = >   ≤ ≤

+λ λ λ λ λ
n
n

j mmin , , , 1, where inf 1, 1 .m j
k

k

k
1 2

1

j

j

j

Theorem 10. (Paley 1960) Let
�

( ) = ∑ ⋯ ⋯

∈

f z a a z zk k k
n

m
n

1m m
k km

1
1 be a lacunary function defined on the

polydisk � m. Then, there is an absolute constant c independent of f such that

�

�∑ | ⋯ | ≤ ∥ ∥

∈

( )

a a c f .
k

k k H
2

m
m

m
1

1
2

1










Now, with the definition of the special atom space in high dimension, we claim the following.

Conjecture 2. There exists a weight function ( )K n p, characterizing �( )bp k such that if F is lacunary on the
polydisk � k,

�∥ ∥ ≃ ∥ ∥
( ) ( )

F F .B I bp k p k

The result in (6.4) also means that if ( )B Ip is the space of functions defined on � having an analytic
continuation on � , then � �( ) = ( ) ( )B I H b\p p1 , where �( )H 1 is the Hardy’s space consisting of functions
such that

�

�

∫∥ ∥ = | ( )| < ∞
( )

< <

f f re θsup d .H
r

iθ

0 1
1

Now that we have an extension of the special atom space to higher dimensions, then the same
endeavor could be carried out in higher dimensions:

Conjecture 3. If ( )B Ip k is the space of functions defined on � k having an analytic continuation on � k,
then � �( ) ∪ ( ) = ( )B I b Hp k p k k1 .

6.3 Relationship with Haar wavelets

We will define a Haar wavelet based on the special atom space in high dimensions given above and we
show that it is an extension of the classical Haar wavelet in ( )L I2 .

Definition 13. Let

( ) = ( ) − ( ) ( ) = ( )ψ x y χ x y χ x y ϕ x y χ x y, , , , and , , ,R L J (6.5)

where

= × ∪ ×

= × ∪ ×

= [ ] × [ ]

R

L

J

0, 1
2

0, 1
2

1
2

, 1 1
2

, 1 ,

1
2

, 1 0, 1
2

0, 1
2

1
2

, 1 ,

0, 1 0, 1 .

 

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
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
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









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
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














In Figure 4, we show a representation of ( )ψ x y, and ( )ϕ x y, in the space.
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6.3.1 Haar functions and Haar systems

For = … −k 0, 1, , 2 1n and �∈n and for = … −j 0, 1, , 2 1m and �∈m , let

=

+

×

+J k k j j
2

, 1
2 2

, 1
2

,n k
m j

n n m m,
, 
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








(6.6)
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2
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.
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n n n k
h

n n
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m m m j
v
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, 1 , 1

, 1 , 1
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


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
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




(6.7)

Now define

= ( × ) ∪ ( × )

= ( × ) ∪ ( × )

L L R L R

R L L R R

,

.
n m j k n k
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v
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(6.8)
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Now put

( ) = ( ) + ( ) − ( ) − ( )
× × × ×

h x y χ x y χ x y χ x y χ x y, , , , , .n k
m j

L R R L L L R R,
,

n k
h

m j
v

n k
h

m j
v

n k
h
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v

n k
h

m j
v

, , , , , , , ,

We normalize the later function on ( )L J2 to obtain the Haar System

( ) = ( )

+

H x y h x y, 2 , .n k
m j n m

n k
m j

,
, 2 ,

, (6.9)

This system is illustrated in three dimension in Figure 5.
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Figure 4: An illustration of ( )ψ x y, and ( )ϕ x y, .
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Theorem 11. The Haar system defined in (6.9) can be generated by a single function ψ defined in (6.5) as

( ) = ( − − )

+

H x y ψ x k y j, 2 2 , 2 .n k
m j n m n m
,
, 2

Moreover, the family { }Hn k
m j
,
, is an orthonormal system in ( )L J2 .

Proof. The proof can easily be obtained by noticing that by construction, if we project Hn k
m j
,
, to the x-axis or

to the y-axis, we obtain an orthonormal basis of [ ]L 0, 1 .2 □

Definition 14. Let = [ ] × [ ]J 0, 1 0, 1 . A wavelet on J is a function ∈ ( )ψ L J2 such that for integers m n k j, , , ,
the family

{ }
{ } = ( − − )

+

H ψ x k y j2 2 , 2n k
m j n m n m
,
, 2

is an orthonormal basis in ( )L J2 . A similar definition applies to ( )L J2 .

Remark 7.
• We observe that by restricting (or projecting) ( )H x y,n k

m j
,
, to the real line, we will obtain the Haar function

or the special atom.
• For = × ×J I I I or �3, we have the Haar system defined similarly and generated by a single function

ψ as

( ) = ( − − − )

+ +

H x y z ψ x k y j z q, , 2 2 , 2 , 2 .n k
m j l q n m l n m l
,
, , , 2

• In general, we can extend it to �d for ≥d 2.
• The relationship between the Haar functions and the special atoms in higher dimension is very similar to
the one in one-dimension.

Indeed, the special atom defined on the dyadic interval can be written in terms of the Haar function
using Definition 5.1 with the notation

Figure 5: Representation of Hn k
m j
,

, for = =n m 1 and = =k j 0 generated using a grid of 300 × 300 points over the rectangle
×− , − ,1

2
4
5

1
2

4
5











. We observe that by projecting onto the xy-space, we obtain the sets Ln and Rn in Definition 5.
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( ) =

∣ ∣

[ ( ) − ( )]B x y
J

χ x y χ x y, 1 , , ,n k
m j

n k
m j R L,

,

,
, n m k j n m k j, , , , , ,

where Jn k
m j
,
, is the dyadic interval defined in (6.6) and L R,n m k j n m k j, , , , , , are defined in (6.8). Then,

∣ ∣ = ⋅ =

∣ ∣

=

+

+J
J

1
2

1
2

1
2

so that 1 2 .n k
m j

n m n m
n k
m j

n m
,
,

,
,

Therefore,

( ) = ⋅ [ ( ) − ( )] = ( )

+ + +

B x y χ x y χ x y h x y, 2 2 , , 2 , .n k
m j n m n m

R L
n m

n k
m j

,
, 2 2 2 ,

,
n m k j n m k j, , , , , ,

Ultimately, the point of this discussion is to show what could be investigated using the extension of
the special atom space proposed in this article.

7 Applications

In this section, we show how to use the special atom above to estimate functions in the plane and space
(Figures 6–9).

7.1 Applications in the plane

Let ∈ ( )f L J2 . Then,

∑ ∑( ) = ( )

=

∞

=

−

f x α h x2 .
n k

n k n k
0 0

2 1

, ,

n
n
2

We know that ∫= 〈 〉 = ( ) ( )α f h f x h x x, d .n k n k J n k, , , Therefore, a consistent estimator of αn k, , for a fixed
integer P is given as:

∑( ) = ( ) ( )

=

α P
P

f x h x1 .n k
i

P

i m k i,
1

,

This also means that ( )α Pn k, is a Riemann sum of αn k, . In addition, fix an integer N (resolution level). An
estimator of f is the sequence of functions

∑ ∑( ) = ( ) ( )

= =

−

f x α P h x2 .N
P

n

N

k
n k n k

0 0

2 1

, ,

n
n
2

By construction, we have → → ∞f f N Puniformly as , .N
P

7.2 Applications in the space

Let ∈ ( )f L J2 . Then, since { }hn k
m j
,
, is an orthonormal basis in ( )L J2 , we have

∑ ∑ ∑ ∑( ) = ( )

=

∞

=

−

=

∞

=

−

+f x y α h x y, 2 , .
n k m j

n k
m j

n k
m j

0 0

2 1

0 0

2 1

,
,

,
,

n m
n m

2

We know that
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∬= 〈 〉 = ( ) ( )α f h f x y h x y x y, , , d d .n k
m j

n k
m j

J

n k
m j

,
,

,
,

,
,

Therefore, a consistent estimator of αn k
m j
,
, , for fixed integers P and Q is given as:

∑ ∑( ) = ( ) ( )

= =

α P Q
PQ

f x y h x y, 1 , , .n k
m j

i
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l

Q

i l n k
m j

i l,
,

1 1
,
,

In addition, fix two integers N M, (resolution levels). An estimator of f is the sequence of functions

∑ ∑ ∑ ∑( ) = ( ) ( )
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−
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+f x y α P Q h x y, 2 , , .NM
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2 1

,
,

,
,

n m
n m

2

By construction, we have

→ → ∞f f N M Q Puniformly as , , , .NM
PQ

In the example below, we show that even for small values of N M P Q, , , the estimation of f using fNM
PQ is

quite good.
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Figure 6: In the figures, we used = =N P17; 90 to construct fN
P . We observe that even for low resolution level and relatively

small number of points, we obtain a good approximation.
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x y

z

(a)

x y

z
(b)

Figure 8: (a) is a representation of ( ) = ( ) ( )f x y πx πy, sin sin2 2 2 2, using a ×12 12 grid of points.
(b) is an estimate of f, using fNM

PQ, for = = =N M P Q, 4; 12.

x y

z

(a)

x y

z

(b)

Figure 9: (a) is a representation of ( ) = ( ) ( )f x y πx πy, sin sinπ
−1
2

2 2, using a ×12 12 grid of points.
(b) is an estimate of f, using fNM

PQ, for = = =N M P Q, 4; 12.

x y

z

(a)

x y

z

(b)

Figure 7: (a) is a representation of ( ) = ( ) ( )f x y πx πy, sin sin2 2 , using a ×12 12 grid of points.
(b) is an estimate of f, using fNM

PQ, for = = =N M P Q, 4; 12.
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