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example of a dicobalt oxo species by Zhang et al. does not
include sufficient spectroscopic details to establish the oxida-
tion states of the metals.18 Thus, understanding the chemical
behavior of dicobalt(II) oxo complexes remains elusive.

Here, we describe a new oxodicobalt(II) complex that arises in
the context of CO2 reduction. Carbon dioxide is a persistent
environmental pollutant and a C1 feedstock for chemical
industries, which has inspired a large amount of research on
transition metal catalysts for CO2 reduction.19–21 The practical
motivations for CO2 transformation are accompanied by
fundamental interest in the detailed mechanisms and charge
localization in reduced CO2 intermediates.19,22 Here, we focus
on cobalt complexes, which are under active study because they
are adept at catalytic reductions of CO2 to CO.13,23–31

In the work described here, we use the reduced, unsaturated
cobalt site in LtBuCo (1), a “masked” two-coordinate complex
supported by the b-diketiminate ligand 2,2,6-6-tetramethyl-3,5-
bis[(2,6-diisopropylphenyl)imino]hept-4-yl (LtBu).32 Its reaction
with CO2 cleaves a C–O bond in CO2, and we use a combination
of experimental kinetics, density functional theory (DFT), and
highly correlated domain-based local pair natural orbital
coupled cluster theory with single, double, and perturbative
triple excitations (DLPNO-CCSD(T)) to show cooperation of two
Co ions for facilitating a bimetallic reaction pathway for CO2

reduction. We demonstrate that a likely intermediate is the
Co2+–O2�–Co2+ complex LtBuCoOCoLtBu, which can be inde-
pendently synthesized using N2O. We investigate the electronic
structure and reactivity of this new oxodicobalt(II) complex in
detail, including multi-reference complete active space self-
consistent eld (CASSCF) calculations.

Results and discussion
Activation of CO2 by L

tBuCo

The cobalt(I) source LtBuCo (1) was synthesized and character-
ized earlier,32 and features a supporting b-diketiminate ligand
that is bound in an unusual k1,h6 binding mode as shown at the
le of Scheme 1. The reactivity of 1 includes the binding of Lewis
bases like THF, CO, N2, pyridine and PPh3, and the cleavage of
C–F bonds in uoroarenes.32,33 We also reported the activation of
O2 at 1.34 Each of these reactions causes ligand rearrangement to
themore typical k2-bindingmode of the b-diketiminate ligand in
the three-coordinate or four-coordinate products. This led to
a description of 1 as a “masked” low-valent two-coordinate Co
complex. However, in these studies, a two-coordinate isomer of 1
with k2-binding of diketiminate was never formed; kinetic
studies of the reaction of 1 with pyridine showed a rst-order
dependence on pyridine coordination which, when combined

with supporting DFT investigations, indicated that the incoming
ligand coordinates prior to “slipping” of the arene.32 Computa-
tional studies on the reaction with CO indicated a similar
associative pathway, in which ligand binding precedes diketi-
minate rearrangement.35 The high reactivity of 1 toward small
molecules, in conjunction with our interest in understanding
the role of low-valent cobalt complexes in CO2 reduction,
prompted us to investigate its reaction with CO2. We were
limited to aliphatic hydrocarbon solvents, due to the reaction of
1 with arenes and ethers.32

The addition of 10 molar equivalents of CO2 gas to LtBuCo in
cyclohexane-d12 causes a slow color change from brown to red-
orange over several hours at 10 �C. 1H NMR spectroscopy shows
the appearance of new paramagnetically shied peaks
(Fig. S3‡). Comparison of the resultant spectra to those of
independently synthesized compounds shows that the products
are a 1 : 1 mixture of previously reported LtBuCo(CO) (2)35 and
the new carbonate-bridged compound LtBuCo(m-OCO2)CoL

tBu

(4) (Scheme 1). Comparison to an internal integration standard
indicates that 2 and 4 are each formed in >86% spectroscopic
yield. These two products can be separated and isolated as pure
solids in 66% and 40% yields, respectively, with the lower
isolated yields attributed to losses during crystallization.

Characterization of the dicobalt(II) carbonate product

X-ray quality crystals of 4 were grown from toluene, and analysis
of the diffraction data revealed two independent sites in the
asymmetric unit with different carbonate binding modes to the
Co centers: (site a) m-h1:h2 and (site b) m-h2:h2 (Fig. 1). Site a also
had disorders in the core, with two conformations of m-h1:h2

carbonate in a 77 : 23 ratio that differ by which Co atom is h1

and which is h2. The major component in site a is discussed
here for simplicity. Two binding modes of a bridging carbonate
were also observed in the crystal structure of an analogous Fe

Scheme 1 Reaction of LtBuCo (1) with CO2 to form 2 and 4.

Fig. 1 The two crystallographically independent molecules in the
crystal structure of 4: (a) m-h1:h2 form, with the major disorder
component shown; (b) m-h2:h2. H atoms and iPr groups are omitted
for clarity. Thermal ellipsoids are shown at 50% probability.
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complex.36 Most M–O distances are shorter in the Co
compound, which is attributable to its smaller ionic radius.
However, the Co(1)–O(1) bond in the h1:h2 molecule (1.921(4) Å)
(see Table 1) is longer than the analogous Fe–Obond (1.881(1) Å),36

suggesting that p-bonding in the h1–Fe–O interaction is greater
than that for the Co–O interaction. Complex 4 has averaged D2h

symmetry in solution, as ascertained by the presence of seven
signals in the 1H NMR spectrum, suggesting that the carbonate
interconverts rapidly between the h1:h2 and h2:h2 binding
modes in solution.

Experimental characterization of a cobalt(II) oxo complex

The formation of a carbonate bridge in 4 implicates an unob-
served oxocobalt species as an intermediate (see the following
sections for calculations). In fact, in an earlier study on CO2

reduction by LtBuFeNNFeLtBu, Sadique et al. proposed that the
formation of a carbonate bridge proceeds through an oxodiir-
on(II) intermediate.37 Despite a number of attempts made using
1H NMR and UV-vis spectroscopy at temperatures between
�80 �C and 25 �C, we observed no intermediates during the
formation of 4 from LtBuCo and CO2. Therefore, we chose to
experimentally test the accessibility of an oxodicobalt(II) species
by synthesizing it through a different route. We added 1 equiv. of
N2O to a solution of 1 in hexane at room temperature for 4 h, and
aer workup, red-orange 3 was isolated in 51% yield (Scheme 2).
The solid-state structure (Fig. 2 and Table 2) shows 3 to be

a dinuclear cobalt complex bridged by a single oxygen atom. The
Co–O distance of 1.704(4) Å is much shorter than that in the only
other fully characterized oxo-bridged dicobalt complex, which is
four coordinated at each cobalt atom and has a Co–O bond
distance of 1.995(11) Å.17 The Co–O bond in 3 is shorter than the
distance of 1.784(3) Å found in ([Me2NN]Co)2(m-O)2 ([Me2NN] ¼
2,4-bis[(2,6-dimethylphenyl)imino]pent-3-yl), a bis(m-oxo)dico-
balt(III) complex reported by Dai et al.38 The Co–O–Co in 3 is
slightly bent at 166.9(3)�. The Co–N bond distances are also
shorter (<1.96 Å) than those in four-coordinate diketiminatoco-
balt(II) complexes32 and agree well with those observed for other
three-coordinate cobalt(II) complexes.39 The C–C and C–N bond
distances within the b-diketiminate of 3 are within the error of
the analogous distances in the known three-coordinate cobalt(II)
compound LtBuCoCl,40 suggesting that there is no change in the
oxidation state of the supporting ligand (see ESI Section O‡). The
redox innocence importantly implies a physical oxidation state
of +2 for both metal centers.

In order to further test the metal oxidation state, we collected
cobalt K-edge X-ray absorption spectroscopy (XAS) data for 3
and several previously reported compounds: three-coordinate
cobalt(II) complex LtBuCoCl,39 four-coordinate oxygen-

Table 1 Selected interatomic distances (Å) and angles (�) in the h1:h2

and h2:h2 forms of 4 and comparison to the calculated structurea

h1:h2

h2:h2

Expt. Calc.

Co(1)–O(1)/Co(3)–O(4) 1.921(4) 1.970(3) 2.01
Co(1)–O(2)/Co(3)–O(5) 2.720(8) 2.218(3) 2.23
Co(2)–O(2)/Co(4)–O(5) 2.138(5) 2.211(3) 2.25
Co(2)–O(3)/Co(4)–O(6) 1.985(3) 1.979(2) 2.00
C(1)–O(1)/C(2)–O(4) 1.276(8) 1.321(4) 1.28
C(1)–O(2)/C(2)–O(5) 1.290(7) 1.266(4) 1.32
C(1)–O(3)/C(2)–O(6) 1.294(7) 1.263(4) 1.28
O(1)–C(1)–O(2)/O(4)–C(2)–O(5) 121.8(6) 117.4(3) 117.60
O(2)–C(1)–O(3)/O(5)–C(2)–O(6) 116.1(6) 117.4(3) 117.61
O(3)–C(1)–O(1)/O(4)–C(2)–O(6) 122.1(6) 125.1(3) 124.79

a The optimized geometry with S ¼ 3. The BP86/B1 (B1 ¼ TZVP basis set
on Co, O, N and carbonate C, and def2-SVP on the rest of the atoms)
level of theory was used to model the h2:h2 conformer. See the ESI for
computational details.

Scheme 2 Synthesis of 3 from LtBuCo and nitrous oxide.

Fig. 2 X-ray crystal structure of 3. Thermal ellipsoids are shown at 50%
probability. H atoms and isopropyl groups are omitted for clarity.

Table 2 Selected interatomic distances (Å) and angles (�) in 3 and
comparison to the calculated structurea

Expt. Calc.

Co1–O1 1.704(4) 1.72
Co1–N24 1.913(4) 1.89
Co1–N14 1.950(4) 1.91
Co2–O1 1.699(4) 1.72
Co2–N11 1.919(4) 1.89
Co2–N21 1.949(4) 1.91
Co1–O1–Co2 166.9(3) 165.5
O1–Co1–N24 136.7(2) 134.5
O1–Co1–N14 124.2(2) 123.8
N24–Co1–N14 98.7(2) 101.7
O1–Co2–N11 135.2(2) 135.5
O1–Co2–N21 125.3(2) 122.9
N11–Co2–N21 99.4(2) 101.6
N24–N14–N21–N11 85.8 82.3

a The optimized geometry of the S ¼ 0 ground state (from
antiferromagnetic coupling of cobalt site spins) using the BP86/B1
(B1 ¼ TZVP basis set on Co, O, and N; def2-SVP on the rest of the
atoms) level of theory. See the ESI for computational details.
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coordinated cobalt(II) complex LtBuCo(m-OH)2CoL
tBu, and four-

coordinate oxygen-coordinated cobalt(III) complex LtBuCo(m-O)2-
CoLtBu.34 The pre-edge and edge features overlapped in all of the
compounds, including the previously reported cobalt(II) and
cobalt(III) analogues (Fig. S10‡), indicating that XAS does not
unambiguously distinguish the oxidation level. This ambiguity
is unfortunate, but fairly common.41 Comparison of cobalt(II)
and cobalt(III) species using X-ray photoelectron spectroscopy
gave similarly ambiguous results.

The presence of an oxo in 3 is particularly notable, given the
paucity of cobalt(II) oxo complexes.17,18 CoIII2(m-O)2 complexes
have also been described.34,38 Another relevant comparison is to
the diiron(II) complex [LtBuFe]2O,42 which has the same sup-
porting ligand and connectivity as 3. The M–O bond length is
shorter for cobalt (Co–O ¼ 1.704(4) Å) than iron (Fe–O ¼
1.7503(4) Å), as expected from the smaller ionic radius of
cobalt(II) versus iron(II). The method of preparing 3 is also
interesting, because N2O is oen kinetically inert, particularly
in reactions with late transition metal complexes.43–45 This
serves as another demonstration of the high reactivity of the
masked two-coordinate complex LtBuCo toward cleaving strong
bonds.32,34

Electronic structure of the Co–O–Co core and its connection
to reactivity

Previous studies have highlighted the correlation between
reactivity and the electronic structure.46–49 We rst carried out
broken symmetry density functional theory (DFT) calculations
on 3 using the BP86 functional. Geometry optimization with
BP86 and a mixed basis set combination, B1 (triple-z quality
TZVP50 basis set on Co, O, N, and selected C atoms, and a double
z quality split-valence basis set, def2-SVP,51 on the rest of the
atoms, in a polarizable continuum solvent model, CPCM,52

using 3 ¼ 2.3 for benzene, and D3BJ empirical dispersion), gave
a core geometry that is in good agreement with the X-ray crystal
structure, including the slight Co–O–Co bending, as shown in
Table 2. Using this geometry, single-point calculations with
pure BP86, meta-GGA M06L, and hybrid B3LYP density func-
tionals all predicted a local high-spin d7 conguration for each
cobalt center. The two cobalt(II) centers are antiferromagneti-
cally coupled, which is achieved through three pathways as
indicated by three spin-coupled pairs with overlaps in the range
of 0.2 to 0.5. The metal–ligand interactions are largely ionic,
because doubly occupied metal d-centered orbitals and the spin
coupled orbital pairs have >90% Co d-parentage. A similar
electronic structure is observed for the hypothetical high spin
ferromagnetically coupled species. These analyses indicated the
electronic structure of 3 to be a dicobalt(II) oxo irrespective of
the density functional employed (see ESI Section U‡).

The unusual electronic structure of another dicobalt oxo
species17 encouraged us to examine the electronic structure of
intermediate 3 more carefully. Therefore, we pursued CASSCF
calculations (on the DFT-optimized geometry) using an active
space that distributes 20 electrons into 13 orbitals
(CASSCF(20,13)), the ten cobalt 3d-based orbitals and the three
2p orbitals of the oxo ligand. For the present purpose of

analyzing metal–ligand bonding, it is not necessary to employ
an enlarged active space including double d and/or p shells of
the metal center and the oxo ligand. As shown in Fig. 3, the
singlet wavefunction has strong multireference character, with
several competing conguration state functions having a weight
in the range of 0.2–6.2% (Table S5‡). Inspection of the natural
orbitals obtained from the CASSCF(20,13) calculations shows
that complex 3 is best described as having two high spin
cobalt(II) centers bridged by an oxo ligand, CoII–O2�–CoII.
Notably, the electronic structure of 3 differs from that proposed
for the previously reported Co–O–Co complex, which contains
two cobalt(II) ions, an oxyl ligand, and a “hole” in the supporting
ligand.17 Note that due to the substantial multireference char-
acter, one cannot apply the CCSD approach to the singlet state.
The septet CASSCF(20,13) solution is essentially single refer-
ence in nature, because the leading conguration accounts for
88% of the wavefunction. We further enlarged the active space
to include diketiminate p and p* orbitals (CASSCF(24,17)),
which accounts for the possibility of ligand-based radicals, as
discussed above for another dicobalt oxo complex found in the
literature.17 However, the larger CASSCF(24,17) active space
predicts an identical bonding picture to CASSCF(20,13)

Fig. 3 CASSCF(20,13) natural orbitals along with occupation numbers
in parentheses for the S ¼ 0 state of intermediate 3. Atomic contri-
butions to each orbital are also shown.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 918–929 | 921
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(for details, see ESI, Section P‡). Therefore, we discuss only the
CASSCF(20,13) solution.

In line with the DFT results, the Co–O interaction computed
by CASSCF for 3 is very polar, with only �20% cobalt 3d char-
acter in the oxygen-based orbitals and predominant cobalt
d-parentage (>90%) in the metal-based orbitals. This is quite
different from high-valent mononuclear metal–oxo species like
ferryls, which feature more covalent metal–ligand interac-
tions.53–56 For example, in [Fe(O)(TMC)(NCCH3)]

2+ (TMC ¼
tetramethylcyclam), there is 56% Fe(d) and 32% O(p) character
in the Fe–O s-bond and 54% Fe(d) and 36% O(p) in the Fe–O
p-bond.53 The different bonding picture in 3 can be attributed
to the lower oxidation state of cobalt and the competitive
bonding of the two metal centers with the oxo ligand. Further-
more, the calculated high electron density on the oxygen atom,
as found from the population analysis (Mulliken gross atomic
charges on O ¼ �0.6195 a.u. and on Co centers ¼ 0.6036 and
0.5989 a.u. at the BP86/def2-TZVPP level of theory; see ESI,
Section U‡), is consistent with facile nucleophilic attack on CO2.
The bonding picture in 3 contrasts with high-valent metal–oxo
intermediates, in which covalent metal–oxo interactions govern
the electrophilic reactivity.46,57,58

Kinetic studies on the CO2 reduction pathway

Initial insight into the mechanism of CO2 reduction by LtBuCo
was gained through kinetic studies using 1H NMR spectroscopy.
Aer injection of a solution of excess CO2 into a solution of 1 in
C6D12 at 10 �C, the reaction was monitored by NMR spectros-
copy (see ESI Section C for details‡). The concentrations of 1, 2
and 4 t to exponential decays over more than six half-lives. The
rst-order rate constant of 3.7 � 0.5 � 10�4 s�1 was indepen-
dent of the ooding concentration of CO2, indicating that the
rate law has the form rate ¼ k[1]. The zero-order dependence of
the rate on [CO2] indicates that the rate-limiting step occurs
prior to CO2 binding and prevents the use of kinetic measure-
ments to elucidate steps aer CO2 binding. Hence, we use
computations to evaluate these steps below.

We considered that 3 could be formed as an intermediate
that could react with CO2 rapidly to give 4; if its consumption
were more rapid than its formation, it might not be observed
during the reaction. With pure samples of 3 in hand, we tested
this hypothesis. Treating a solution of 3 in C6D12 with 1.5
equivalents of CO2 for 2 min at 10 �C resulted in a high
conversion (75%) of 3 to 4 (Scheme 3 and Fig. S5‡). The much
more rapid reaction of CO2 with 3 compared to 1, furnishing the
same product, indicates that the reaction of the oxo species with
CO2 is kinetically competent to be a step in the formation of 2
and 4 from 1 and CO2.

Computational investigations on the mechanism of CO2

reduction

To gain additional insight into the reaction mechanism, we
pursued computations using a model in which the bulky
b-diketiminate ligand (LtBu) was slightly truncated to L0 (2,4-bis
[(2,6-diisopropylphenyl)imino]pent-3-yl, Chart 1, right) where
tBu substituents are replaced by methyl groups. The overlay of
the crystal structure of 1 and the optimized geometry with the
truncated ligand (Fig. S11 and Table S2‡) shows that truncation
leads to negligible differences in key metrical parameters. As
above, the BP86(CPCM,D3BJ)/B1 level of theory was employed to
optimize geometries and compute frequencies. We chose the
local coupled-cluster approach with the DLPNO-CCSD(T)
method to verify the reliability of crucial stationary points ob-
tained with themeta-GGAM06L and hybrid B3LYPmethods. We
note that the CCSD(T) approach cannot be applied to complexes
involving two antiferromagnetically coupled metal centers,
such as the open-shell singlet state of complex 3. Therefore, we
performed the DLPNO-CCSD(T) calculations on the spin-
aligned state of the bimetallic complexes. Although the
CASSCF approach accounts for static correlation of electrons
correctly (i.e. near-degeneracy effects), to produce reliable
energies, it has to be followed by CASPT2 or NEVPT2 corrections
to capture the dynamic correlation for instantaneous electron
motions. Because of the exorbitant computational cost, this
combined approach was not used to evaluate the energies of all
intermediates and transition states. Instead, we employed
open-shell DLPNO-CCSD(T), a straightforward approach, to
construct reliable potential energy surfaces. For more details
about the computational methods and basis sets used, see ESI,
Section A.‡

Ligand isomerization and CO2 binding. We rst focused on
the ligand framework rearrangement and CO2 binding, for
which different CO2 binding modes were considered as shown
in Chart 1 (le). Our earlier kinetic studies demonstrated
that coordination of pyridine to 1 induces isomerization of the
b-diketiminate ligand from the kN,h6-arene isomer to the
traditional k2N,N0 form in less than 1 s at �40 �C, with a barrier
of DG‡ ¼ 10.1 kcal mol�1.32 The associative nature of this
isomerization was supported by computational studies, which
indicated that pyridine and CO each induce arene slipping.35 On
the other hand, we nd here that CO2 does not provide analo-
gous assistance in arene slipping. Therefore, in contrast to the

Scheme 3 Reaction of CO2 with 3 to form 4.
Chart 1 (Left) Different binding modes of CO2 to mononuclear and
dinuclear metal sites. (Right) Actual and truncated ligand frameworks.
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binding of pyridine and CO, the arene slip/imine ip isomeri-
zation must occur prior to CO2 coordination, and this explains
the slow rate of the reaction.

Compound 1 was previously termed a “masked two-coordi-
nate” complex, and two-coordinate isomer 10 with k2N,N0

bonding (Fig. 4) is never observed experimentally. Our high-level
computations with DLPNO-CCSD(T)/def2-TZVPP andM06L/def2-
TZVPP show that two-coordinate isomer 10 with a k2N,N0 bonding
mode lies at a higher energy than 1 (8.9 kcal mol�1 at DLPNO-
CCSD(T)/def2-TZVPP and 3.3 kcal mol�1 at M06L/def2-TZVPP),
consistent with the experimental results.

Furthermore, diketiminate isomerization without assistance
is experimentally known to have a barrier of >15 kcal mol�1

because no isomerization between bindingmodes was observed
in variable-temperature 1H NMR studies of LtBuCo.32 Consistent
with these experiments, our DLPNO-CCSD(T)/def2-TZVPP
calculations predict a barrier of DG‡ ¼ 24.5 kcal mol�1 for TS1
(Fig. 4), which agrees well with the experimental rate that gives
DG‡ ¼ 21.0 kcal mol�1 using the Eyring equation (see Section C
in the ESI‡). The M06L functional with the def2-TZVPP basis set
also delivers a similar value of 23.1 kcal mol�1, whereas B3LYP-
D3BJ considerably underestimates the barrier with DG‡ ¼
13.6 kcal mol�1 (Table 3). It is notable that the B3LYP-D3BJ/
def2-TZVPP calculations also erroneously predicted triplet
k2N,N0 isomer 10 to be much lower in energy than kN,h6-arene
isomer 1 by 10 kcal mol�1, in disagreement with the experi-
mental data. Hence, for this specic case, the B3LYP-D3BJ
method does not give results consistent with those of the
experiment. Please note that our earlier calculations on CO2

hydrogenation59,60 demonstrate that even with the D3BJ
corrections, the B3LYP functional sometimes cannot appropri-
ately describe non-covalent interactions (in the present case, the
metal aryl p-bonding), whereas M06L is designed to account for
such weak interactions (see Section H in the ESI‡).61 Hence, in

the following sections we discuss the more reliable M06L
energies and verify them on-the-y by the DLPNO-CCSD(T)
method and summarize the results obtained with other func-
tionals in the ESI (Sections K and L‡).

To summarize, the N1/CAr movement of the metal center
(1 / 10) represents the rate-limiting transition state of the
reaction with CO2 (TS1, Fig. 4), with a calculated barrier of about
24 kcal mol�1. The magnitude of this barrier is in good agree-
ment with the experimentally determined barrier of
21.0 kcal mol�1 that is calculated from the rst-order rate
constant in the kinetic studies presented above (see ESI part
C‡), and the identication of the rate-determining transition
state prior to CO2 binding is also consistent with the indepen-
dence of the rate on [CO2].

The closed-shell singlet kN,h6-arene isomer of L0Co (1) lies
10 kcal mol�1 higher in energy than the triplet congener at
the DLPNO-CCSD(T)/def2-TZVPP level of theory (DG� 12 kcalmol�1

predicted with M06L/def2-TZVPP). Again, the M06L functional
provides similar results to the DLPNO-CCSD(T) method and
our calculations show that ligand isomerization on the
closed shell singlet surface has a signicantly high barrier
(DG‡ ¼ 49.6 kcal mol�1 using DLPNO-CCSD(T)/def2-TZVPP;
DG‡ ¼ 46.7 kcal mol�1 using M06L/def2-TZVPP). Therefore,
the singlet surface is excluded from further consideration.

The slippage of the b-diketiminate ligand furnishes an open
site for CO2 binding. In contrast to the high endergonicity found
for the direct CO2 coordination to 1, k1O-bound CO2-adduct 1a0

is only 2 kcal mol�1 higher in energy than 10. The k1-O binding
mode in 1a0 has been observed in the uranium complex
((AdArO)3tacn)U(CO2) where the CO2 ligand accepts an electron
from the uranium center to produce a UIV–OCO� complex.62 As
depicted in Fig. 4, conversion of 1a0 to a more stable h2-CO2

isomer (5) can easily occur by traversing a moderate barrier of
15 kcal mol�1. The two C–O bonds in 5 lengthen relative to those
in 1a0, and the CO2moiety becomes bent with an O–C–O angle of
142.5� (Fig. 5), indicating a substantial shi of electron density
from Co to the CO2 p* orbital.59 Intermediate 5 is related to
PPMePNi(h2-CO2) (PPMeP ¼ PMe[2-PiPr2-C6H4]2) and (dtbpe)
Ni(h2-CO2) (dtpbe ¼ 1,2-bis(di-tert-butylphosphino)ethane),
which also feature h2(C,O) coordination.63,64 Earlier computa-
tional investigations have suggested that CO2 coordination to
metal b-diketiminate fragments (M ¼ Cr, Ni) favors the h2(C,O)
binding mode, similar to intermediate 5.65

Mononuclear dissociative pathway. Two possible pathways
may be envisioned for CO2 reduction by 1: associative and
dissociative. The associative mechanism involves formation of

Fig. 4 Computed DLPNO-CCSD(T)/def2-TZVPP Gibbs free energy
(DG) profile for isomerization of 1 (L0Co) to 10 followed by CO2 acti-
vation. Relative free energy values (in kcal mol�1) computed with
M06L/def2-TZVPP are given in parentheses. The isolated species is
shown in the yellow box, with L0 depicted instead of LtBu.

Table 3 Selected barriers at different levels of theory, employing the
def2-TZVPP basis set and CPCM(benzene) solvent model

B3LYP M06L DLPNO-CCSD(T)

TS1a 13.6 23.1 24.5
TS2b 30.4 27.2 26.7
TS4c 21.6 20.5 20.3
TS7c 16.0 15.7 19.4

a Relative to 1. b Relative to 5. c Relative to 10.
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a CO2 adduct followed by association of a second molecule of
CO2 prior to C–O bond cleavage/rearrangement to generate CO
and carbonate. In contrast, adduct formation in the dissociative
mechanism is followed by breaking a C–O bond to form CO and
oxo, both of which are easily converted to products. We start by
considering the mononuclear dissociative pathway (Fig. 6).

Due to the abundance of CO2 in solution, an additional CO2

molecule can be envisioned to add to intermediate 5 to produce
a metal-bound carboxylate dimer. However, our repeated
attempts to locate an intermediate resulting from association of
a second CO2 molecule to 5 failed (see ESI, Section S‡). The lack
of a mononuclear associative pathway emphasizes the need for
bi-functional activation to engender sufficient nucleophilicity to
bound CO2.48 The rather low nucleophilicity of the bound CO2

in 5 is not conducive to electron transfer to another incoming
CO2. Moreover, the lack of a neighboring Lewis acid, which
might help in bending of the incoming CO2 prior to activation,

also inhibits facile association of a second CO2 molecule to the
mononuclear adduct 5, and hence a mononuclear associative
pathway is not possible (see ESI, Section S‡).

As depicted in Fig. 6, our DLPNO-CCSD(T) calculations
predict that the conversion of 5 to L0Co(CO)(O) (6, see ESI
Section M for geometry‡) involves a high free-energy barrier in
the mononuclear dissociative pathway (TS2, Table 3). Similar
barriers were obtained using DLPNO-CCSD(T) (26.7 kcal mol�1),
M06L (27.2 kcal mol�1) and B3LYP (30.4 kcal mol�1) calcula-
tions, and the latter value is in reasonable agreement with that
(35.1 kcal mol�1) calculated in earlier work on a truncated
cobalt(I) complex with no substituents on the b-diketiminate
(1,3-bis-imino-prop-2-yl).66 Once formed, complex 6 easily
transfers CO to 10, leading to the mononuclear carbonyl
complex (2) and a terminal oxo-cobalt species (7, Fig. 6).
Complex 7 may initiate nucleophilic attack of the metal-
coordinated oxo on incoming CO2 to form a mono-cobalt
carbonate species (9) via a four-membered transition state
(TS3, DG‡ ¼ 9.4 kcal mol�1, Fig. 6). One may envision formation
of the bridging oxo 3 from 6 or 7 in the presence of 1. The
transformations were computed to have favorable driving
forces; however, in the mononuclear dissociative pathway, the
generation of 6 entails a high barrier for the C–O bond cleavage.
Hence, these two pathways were not considered further (for
details, see Section S in the ESI‡). Additionally, in the mono-
nuclear pathway, the high barrier found for the C–O bond
cleavage would lead to a buildup of 5, in contrast to the
observed reaction course in which no intermediates are evident.
This inconsistency with experimental evidence thus indicates
that the mononuclear pathway is not feasible. We therefore
explored the feasibility of the dinuclear dissociative and asso-
ciative pathways, which are discussed in the following section.

Dinuclear pathways. We considered a carboxylate bridged
bimetallic species that could lead to reductive disproportion-
ation. As shown in Fig. 6, reaction of L0CoCO2 (5) and L0Co (1) to
form the dinuclear complex L0Co(CO2)CoL0 (10) is strongly
exergonic by 21.8 kcal mol�1 and has a relatively low activation
barrier of 10.3 kcal mol�1 (TS20, Fig. 6) on the quintet surface.
Isomerization of the diketiminate ligand in the incoming L0Co
is assisted by coordination of the bound CO2 to the incoming
metal, as described previously for pyridine or CO coordination;
thus, the partially reduced CO2 moiety in 5 is a stronger Lewis
base than free CO2. In line with this reasoning, the entire
process of CO2 association with 1 to give 5 is energetically
uphill, whereas the addition of 5 to the second molecule of 1 is
downhill by more than 20 kcal mol�1. This is a key aspect of
bimetallic cooperation that facilitates CO2 activation in this
system. For complex 10, we found eight possible isomers, each
containing a k1C:k2-O,O carboxylate bridge (CO2

2�) (Chart 1,
le), but differing in the local spin states of the two cobalt(II)
centers and exchange coupling (for details see Section J in the
ESI‡). The two magneto-structural isomers that are lowest in
energy have high spin cobalt(II) centers with ferromagnetic
(Stotal ¼ 3) or antiferromagnetic (Stotal ¼ 0) coupling, and these
are nearly isoenergetic because of weak exchange coupling. The
Stotal ¼ 2 species (derived from ferromagnetically coupled high
spin and low spin cobalt(II) centers) is only 3 kcal mol�1 higher

Fig. 5 Optimized structures of 1, TS1, TS1a0 and 5 at the BP86/B1 level
of theory. Important interatomic distances (Å) and angles (�) are shown.
Isopropyl groups are omitted for clarity.

Fig. 6 M06L/def2-TZVPP Gibbs free energy (DG) profile for the
mononuclear dissociative pathway. Isolated species are shown in
yellow boxes, with L0 depicted instead of LtBu. *Marked species has
lower relative free energy on the S¼ 3 surface which has been taken to
complete the profile.
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