Scaffold-Based [Fe]-Hydrogenase Model: H₂ Activation Initiates Fe(0)-Hydride Extrusion and Non-Biomimetic Hydride Transfer

S. A. Kerns
J. Seo
V. M. Lynch
Jason M. Shearer

Trinity University, jshearer@trinity.edu

S. T. Goralski

See next page for additional authors

Follow this and additional works at: https://digitalcommons.trinity.edu/chem_faculty

Part of the Chemistry Commons

Repository Citation

This Article is brought to you for free and open access by the Chemistry Department at Digital Commons @ Trinity. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.
Scaffold-based [Fe]-hydrogenase model: H₂ activation initiates Fe(0)-hydride extrusion and non-biomimetic hydride transfer†

Spencer A. Kerns,‡a Junhyeok Seo,‡b Vincent M. Lynch,a Jason Shearer,c Sean T. Goralski,a Eileen R. Sullivana and Michael J. Rose* a

We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C–H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe–C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H₂ activation across the Fe(II) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe–carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H₂/hydride-induced loss of the organometallic acyl unit (i.e., pyCH₂–CO/ pyCH₃+CΟ). The known reduced hydride species [HFe(CO)₄]²⁻ and [HFe₃(CO)₁₁]²⁻ have been observed as products by ¹H/²H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO)₄]. The former species (i.e., [HFe(CO)₄]²⁻) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([TolIm](BArF)¼ fluoride imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase.

Introduction

The search for earth abundant substitutes for precious metal catalysts in energy-related chemical transformations has led researchers to investigate biological precedents that utilize first-row transition metals.¹–⁶ Of these enzymes, the [FeFe] and [NiFe] H₂ases have been studied in detail for their redox active sites for the generation and metabolism of dihydrogen (H₂).⁷–⁹ Less studied is the ‘third hydrogenase’ — namely the redox inactive [Fe]-hydrogenase (Hmd). The single iron site in this enzyme heterolytically activates H₂ and catalyzes hydride transfer to the C₁ carrier substrate methenyl-tetrahydromethanopterin (H₄MPT+, Scheme 1), thus generating methylene-tetrahydromethanopterin ([H₄MPT⁺, Scheme 1], thus generating methylene-tetrahydromethanopterin (H₄MPT⁺). The refined crystal structure reported by Shima in 2009 identified the active site environment,¹¹,¹² and a 2019 report¹³ described the crystallized enzyme in both the open (inactive) and closed (active, substrate-bound) conformations. The latter report precisely defined the proximity of the H₄MPT⁺ hydride transfer substrate to the iron center, and proposed detailed a mechanism of H₂ activation and hydride transfer using QM/MM calculations¹⁴ based on the new protein crystal structures.

Scheme 1 H₂ activation and hydride transfer reaction catalyzed by Hmd (left) and active site’s putative key intermediate in H₂ activation and hydride transfer (right).
Since 2009, researchers have significantly advanced structural models of Hmd. However, the scope of functional mimics of Hmd remains limited. Hu and coworkers developed functional systems derived from hybrid molecule/protein systems$^\text{15}$ and a small molecule system that incorporates an abiotic diphosphine ligand with a pendant amine base.$^\text{16}$ Our group has reported model systems capable of hydride abstraction$^\text{17}$ (the enzymatic ‘reverse’ reaction) and hydride transfer$^\text{18}$ (enzymatic ‘forward’ reaction) with biomimetic substrates. However, both of our reported systems replicated the strong trans influence of the Fe–C$_{\text{acyl}}$ σ bond in the form of carbamoyl ligation (i.e. –N$^\text{Me}(\text{C}==\text{O})$) as a synthetically more accessible proxy for the endogenous methylene-containing acyl unit (i.e. –C$^\text{H2}$(C==O)); synthesis of the former was originally demonstrated by Pick-ett.$^\text{19,20}$ Indeed, the preparation of acyl-containing synthetic systems that rigorously replicate the primary coordination sphere of Hmd and exhibit biomimetic reactivity has proven to be a particular challenge due the inherent instability of such compounds and their apparent — and as yet unexplained — sensitivity to base.

In this report, we have more faithfully replicated the Hmd active site in comparison to our previous work by installing the biomimetic methylene linkage. Our synthetic approach uniquely uses an ‘anthracene scaffold’ that provides an accurate and stable means of emulating the biomimetic fac-CNS ligation motif. We first describe the synthesis of the model complex and its well-described reactivity in the presence of base. We then demonstrate functional H$_2$ activation by a deprotonated iron-acyl model complex that results in liberation of ligand and reduction of the Fe center instead of hydride transfer to a model substrate. Additional base in solution did, in fact, result in successful hydride transfer to the model substrate. However, through a series of control experiments we identify the active hydride transfer agent as the tetracarbonylhydridoferrate species, [HFe(CO)$_4$]. Lastly, we describe a mechanistic pathway for reductive conversion of the Fe-acyl unit based on our observations from the structural (XRD, XAS, EXAFS) and spectroscopic (H/H NMR, IR) data collected. These observations provide clear benchmarks and ‘warning signs’ of false positives for other researchers working in the area of biomimetic [Fe]-hydrogenase systems.

Results and discussion

Ligand and metal complex syntheses

The desired methylpyridine/thioether ligand Anth·C$^\text{H2}$(NSMe) (Scheme 2) was synthesized via selective mono-coupling of the 2-methylpyridine unit to 1,8-dichloroanthracene, followed by introduction of the ary-thioether moiety. Briefly, 5-bromo-2-methylpyridine undergoes tandem borylation/Suzuki coupling using B$_2$Pin$_2$, Pd$_2$(dba)$_3$/SPhos (~2 mol%), and weak base (KOAc). The 1,8-dichloroanthracene unit then coupled with the in situ prepared boronic acid, affording the asymmetric synthon Anth·C$^\text{H2}$NSMe·Cl (58% yield, 2.07 g). Subsequent coupling of Anth·C$^\text{H2}$NSMe·Cl to 3-(methylthio)phenylboronic acid catalyzed by Pd$_2$(dba)$_3$/XPhos (4 mol%) afforded the target ligand Anth·C$^\text{H2}$(NSMe) (Fig. S1†) in good yield (70%, 1.58 g). Similar to reported procedures,$^\text{21}$ the methylpyridine moiety of the Anth·C$^\text{H2}$(NSMe) was lithiated with nBuLi in THF at 0 °C, followed by addition of Fe(CO)$_5$ (–80$,\uparrow$ –20 °C) and Br$_2$ (–70 °C) to generate the target complex [[Anth·C$^\text{H2}$(NSMe)Fe(CO)$_3$[Br]] (1) in 77% yield.

The 1H NMR spectrum of 1 in 4H$_2$-THF solution (Fig. S2†) exhibits diamagnetic proton resonances with the characteristic methylene proton resonances observed as diastereotropic doublets at 3.97 and 4.52 ppm consistent with the ligation of the anionic acyl (–C$^\text{H2}$(C==O)) group to the iron center. The 13C NMR under 1 atm 13CO (Fig. S3†) revealed the iron-bound carbon of the acyl moiety (δ 254 ppm) to be exchangeable ($\text{t}_{1/2} \approx 3$ d), while the 13C≡O ligands exchange slightly faster ($\text{t}_{1/2} \approx 2$ d). Facile CO exchange of the acyl moiety was also reported in a complex reported by Hu.$^\text{22}$

Attempts at isolation of single crystals of 1 were unsuccessful. Structural evidence supporting the core motif of 1 was obtained from the derivative complex bound with AsPh$_3$. Addition of one equiv. of AsPh$_3$ to 1 enabled the isolation of single crystals of the closely related complex [[Anth·C$^\text{H2}$(NSOTf)Fe(CO)$_3$[Br][AsPh$_3$]] (Fig. 1). The AsPh$_3$ adduct exhibits fac-arrangement of the C, N, As donor atoms, with the AsPh$_3$ ligand displacing the thioether-S ligand. The orthogonal face is

![Scheme 2 Ligand and metal complex syntheses.](image-url)
occupied by cis carbonyl ligands and the bromide is located trans to the acyl-C ligand as proposed in the structure of 1. Upon coordination of AsPh₃, a small red-shift is observed in the ν(C=O) stretches to 2024 and 1971 cm⁻¹ and a notable blue-shift (~13 cm⁻¹) to 1642 cm⁻¹ is observed in ν(C=O) stretch of the acyl unit (Fig. S22†). Notably, the bound state of the original thioether-S in 1 was supported by XPS analysis (Fig. S36†).

Methylene-acyl deprotonation by exogenous base

It is proposed that Hmd utilizes the pendant pyridonate-O as a proton acceptor to facilitate heterolytic cleavage of H₂. Due to the absence of this basic functionality in the present ligand design, we previously reported a system in which a bulky phenolate base, NEt₄[MeOtBu₂ArO], participated in H₂ activation to ultimately drive hydride transfer. We thus attempted the analogous H₂ activation in the presence of this base. However, in a synthetic scale reaction, treatment of 1 in THF with one equiv. NEt₄[MeOtBu₂ArO] immediately generated a red-orange solution, accompanied by a precipitate (NEt₄Br). This contrasts carbamoyl-based systems (NH linkage, not CH₂), wherein no direct reaction with the same bulky phenolate is observed. Concentration of the filtered solution and successive washes with pentane and Et₂O removed the protonated phenol byproduct (MeOtBu₂ArOH), which was identified by ¹H NMR.

Extraction of the resulting powder into MeCN produced X-ray quality crystals at -20 °C. The resulting structure (Fig. 2) revealed a remarkable result: a small red-shift in the ν(C=O) stretch to the acyl-C ligand as proposed (but not unambiguously).

Scheme 3 Reversible deprotonation of 1 to form 2, and proposed bridging coordination of base. Note that the sequence to isolate 2 was performed in MeCN, while the sequence to examine the base-bridged dimer (far right) by EXAFS was performed in THF.

![ORTEP diagram](image)

Fig. 2 ORTEP diagram (30% thermal ellipsoids) of one of two molecules of 2 in the asymmetric part of the unit cell; hydrogen atoms and solvent molecules are omitted for clarity. Selected bond distances (Å): Fe₁–C₁ = 1.943(7), Fe₁–C₃₀ = 2.186(6), Fe₂–C₂₉ = 1.973(7), Fe₂–C₂ = 2.194(6).

with de-aromatization observed in other methylene-bridged pincer systems upon deprotonation.²²-²⁵

Deprotonation of a methylene proton was also evident through shifts in the IR spectrum and changes in the ¹H NMR spectrum resulting from base addition. The solution ν(C=O) features in the IR spectrum of 1 (2021, 1956 cm⁻¹) red-shifted significantly to 2005, 1947 cm⁻¹ upon addition of base. The expected four ν(C=O) features for the C₂-symmetric dimer 2 are only observable in the ground crystalline sample at 2021, 1998, 1962, and 1943 cm⁻¹ (Fig. S23†). The deprotonation event (Scheme 3) resulting in generation of 2 was also achieved with weaker bases such as NEt₄[BrBu₂ArO] or NEt₄[CNBu₂ArO] but not NEt₄[NO₂Bu₂ArO] — underscoring the surprising acidity of this C-H bond. The deprotonation was clearly reversible upon addition of one equiv. of the weak acid Lut·HBr (2021, 1955 cm⁻¹) (Fig. 3). This conversion was also evidenced in the ¹H NMR spectrum by disappearance of the characteristic diastereotopic methylene proton resonances of 1, and a new resonance at 4.45 ppm in 2.

The structure of 2 unequivocally confirms deprotonation of the methylene proton as proposed (but not unambiguously.

![IR spectra](image)

Fig. 3 IR spectra demonstrating reversible deprotonation of monomeric 1 (top, black line) to form dimeric 2 (middle, red line), and protonation of 2 to regenerate 1 (bottom, blue line).

1. 2.186(6) and 2.194(6)
2. Longer than the Fe
3. Carbamoyl-based systems (NH linkage, not CH₂)
4. Phenolate base, NEt₄[MeOtBu₂ArO], participated in H₂ activation in the presence of this base. However, we thus attempted the analogous H₂ activation in the presence of this base. However, in a synthetic scale reaction, treatment of 1 in THF with one equiv. NEt₄[MeOtBu₂ArO] immediately generated a red-orange solution, accompanied by a precipitate (NEt₄Br). This contrasts carbamoyl-based systems (NH linkage, not CH₂), wherein no direct reaction with the same bulky phenolate is observed. Concentration of the filtered solution and successive washes with pentane and Et₂O removed the protonated phenol byproduct (MeOtBu₂ArOH), which was identified by ¹H NMR.

Scheme 3 Reversible deprotonation of 1 to form 2, and proposed bridging coordination of base. Note that the sequence to isolate 2 was performed in MeCN, while the sequence to examine the base-bridged dimer (far right) by EXAFS was performed in THF.

Upon coordination of AsPh₃, a small red-shift is observed in the ν(C=O) stretches to 2024 and 1971 cm⁻¹ and a notable blue-shift (~13 cm⁻¹) to 1642 cm⁻¹ is observed in ν(C=O) stretch of the acyl unit (Fig. S22†). Notably, the bound state of the original thioether-S in 1 was supported by XPS analysis (Fig. S36†).
proven) in another acyl-containing model compound (a mer-
CNS dicarbonyl) recently published by our group,26 suggesting
that this mechanism is broadly applicable. Furthermore,
deプロトン化 of the methylene-acyl moiety has been observed
in another model compound by Song and coworkers through
a suggested keto–enol tautomerization and acylation mecha-
nism, although the analogous intermediate was not identified
in that case.27 These observations suggest that this acyl moiety
is rather reactive, and must be fully understood in structural and
functional synthetic mimics of this enzyme. Indeed, exogenous
base has been noted to decompose previous non-scaffolded
acyl-containing model compounds,28 perhaps related to this
process. The scaffold-supported \([\text{Fe(CO)}_2]^+\) motif of complex 2,
however, is stable and even accommodates further addition of
base.

Bridging coordination of base to the Fe centers (XAS)

Treatment of 1 with two equiv. of \(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\) in THF
resulted in a more dramatic color change from orange to dark
red. Additionally, the IR spectrum of the resulting solution
exhibited further red-shifted carbonyl stretching frequencies
observed at 1996 and 1923 cm
\(^{-1}\) (Fig. S24†) in comparison to 1
or 2. The significant red shift is consistent with binding of the
anionic phenolate donor to displace the Fe–C
\(_\text{methine}\) bonds. Coordination of bridging or terminal 2,6-di-tert-
butylphenolates is not unprecedented in the generation of low-coordinate iron centers.28,29 The fully reversible nature of this event was
demonstrated by treatment of the dark red solution with two
equiv. of 2,6-lutidine–HBr to re-generate a solution of 1 as fol-
lowed by IR spectroscopy (Fig. S25†).

Attempts to determine the molecular structure resulting
from the treatment of 1 with two equiv. of \(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\)
(or, equally, treatment of 2 with one equiv. of base) by X-ray
crystallography were unsuccessful. The resulting species was
thus probed by iron K-edge X-ray absorption spectroscopy
(Fig. 4). The XANES region of the iron K-edge X-ray absorption
spectrum displays a pronounced pre-edge peak at 7113.5(1) eV
corresponding to a nominal Fe(1s \(\rightarrow\) 3d) transition (Fig. 4A); the
intensity of this peak is consistent with iron contained in a
non-centrosymmetric coordination environment (e.g. 5-coor-
dinate distorted square pyramidal).30 The EXAFS data for 1
with two equiv. of base are best modeled as a dimer of
five-coordinate Fe centers ligated by two short CO ligands at
1.77 Å and three additional light atom ligand donors, modeled
as N-scatterers, at 2.03 Å, which is similar to the two short
carbonyl ligands (1.79 Å) and 3–4 light atom donors, modeled
as N-scatterers, at 2.05 Å obtained from the model to the EXAFS
data for 2. It is therefore likely that the three light-atom ligand
donors modeled at 2.03 Å in 1 treated with two equiv. of
\(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\) — are the acyl-C donor, a pyridine-N donor,
and an additional coordinated phenolate-O donor. The Fe–CO
bond length observed in 1 with two equiv. of \(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\)
is slightly shorter than the average Fe–CO distance observed in
2, and is consistent with the increased π-backbonding as corre-
borated by the red-shifted carbonyl stretching frequencies.
In addition to the Fe–CO significant multiple scattering pathways
found between \(R' = 2.5–3.5\) Å in the Fourier transform,
which dominates the EXAFS of both 1 treated with two equiv. of
\(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\) and 2, an Fe–Fe vector could also be
located. For 1 treated with two equiv. of \(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\), the
Fe–Fe vector is found at 3.44 Å; a wavelet transform of the
EXAFS data of 2 clearly shows the Fe–Fe single scattering
pathway is resolvable from the Fe–CO multiple scattering
pathways, supporting this assignment (Fig. S42†). In contrast,
the XAS data for 2 yields an Fe–Fe single scattering pathway at
3.80 Å, which is consistent with the crystallographic results.
Taken together, these data are fully consistent with the formul-
ation of 1 with two equiv. of \(\text{NET}_4\{\text{MeOTBu}_2\text{ArO}\}\) as a phenoxy-
brided Fe–Fe dimer (Fig. 4).

Biomimetic H2 activation by the first dimer (2)

Complex 2 without base. Generation of 2 results in two
analogous features of the H14d active site: (i) a labile coordina-
tion site \(t\)rans \((\text{MeCN})\) to the acyl unit and (ii) a basic site on
the ligand. Notably, in contrast to the endogenous pyridine-O
or PNP pincer complexes,31 the location of the deprotonated
methine-C basic site on the ligand framework \(t\)rans to the open
site is not positioned favorably for cooperative H2 activation;
nevertheless we hypothesized that the deprotonated 2 may still
activate H2. A crystalline sample of 2 was dissolved in a THF
solution containing model substrate \(\text{[TolIm][BARF]}\) as hydride
acceptor and incubated with 7 atm D2. The \(^1\)H NMR spectrum
(Fig. 5A) of the reaction was monitored, revealing new reso-
nances at 2.59 ppm and \(-14.90\) ppm, corresponding to
deuteriation of the 2-methylpyridine moiety of the
Anth-C
\(_\text{HNSMe}\) ligand and an Fe–D species, respectively. No
hydride transfer product \(\text{[TolImD]}\) was observed after three days
of monitoring. The isotopic inverse reaction (\(d^8\)-THF, H2) was
performed with the free ligand and Fe–H species first being observed after 24 hours (Fig. S7†). Incorporation of deuterium into the free ligand indicates that while 2 is competent for D₂ activation, D₂ activation and protonation of the methine-C results in the liberation of ligand from the \{Fe(CO)₂\} unit. During this process, heterolysis of D₂ presumably results in the transient generation of the neutral species [(Anth·CH₂NSMe)FeD(CO)₂]; however, provided only the detection of the liberated Anth·CH₁NSMe ligand, we were initially unable to unambiguously ascribe the Fe–H or D resonance at −14.90 ppm.

Complex 2 with base. Provided our previous work,¹⁸ we postulated that an extra equivalent of base in solution would drive H₂ activation and prevent protonation of the methine-C responsible for ligand loss. Therefore, 1 was first treated with two equiv. of base (i.e. NEt₄[MeOtBu₂ArO]) and the model substrate [TolIm](BArF). The THF solution was incubated with 7 atm D₂ and the reaction was monitored by ²H NMR spectroscopy. Two new resonances were observed in the ²H NMR spectrum at 6.11 ppm and 5.57 ppm (Fig. 5B), corresponding to the successful hydride transfer product TolImD and MeOtBu₂ArOD, respectively. Additionally, an unassigned peak at 2.21 ppm was observed that was distinct from the free Anth·CH₂NSMe ligand resonance. Attempts to optimize the desired hydride transfer reaction and suppress the peak at 2.21 ppm were unsuccessful.

Competitive formation of reduced Fe-carbonyl species

H₂ activation without substrate (definitive reduced iron extrusion). To date, spectroscopic observation of a biomimetic Fe–H species capable of hydride transfer to an organic substrate has remained elusive in both Hmd enzyme and synthetic systems. To observe the putative Fe–H intermediate responsible

Scheme 4 Mechanistic pathway for the reactions of the iron-acyl unit with H₂ and substrate, with the corroborating structural and spectroscopic evidence as indicated for both the observed and proposed intermediates.
for hydride transfer, we repeated the experiment in the absence of the substrate \([{}^{18}\text{Im}][\text{BARF}]\) with the intention of trapping the reactive intermediate. A THF solution of 1 was first treated with two equiv. of base (i.e. \(\text{NEt}_4[\text{MeOTBu}_2\text{ArO}]\)) and incubated with 7 atm D\(_2\). Indeed, the \(^2\text{H}\) NMR spectrum exhibited two new resonances at 5.56 ppm and -8.87 ppm, corresponding to \(\text{MeOTBu}_2\text{ArOD}\) and an \(\text{Fe}^{2+}\text{D}^+\) species, respectively (Fig. 5C). The isotopic inverse reaction (i.e. \(\text{d}^0\text{THF}, \text{H}_2\)) was carried out and the \(^1\text{H}\) NMR displayed the analogous \(\text{Fe}^-\text{H}^+\) resonance at -8.85 ppm within 1 hour of incubation (Fig. S9†). The resulting \(^1\text{H}\) NMR spectrum demonstrated a mixture of products over the course of the reaction, and we therefore attempted to more cleanly generate the \(\text{Fe}^-\text{H}\) species through the use of the strong hydride donor, \(\text{NaHBEt}_3\) Again, in situ generated 2 treated with 0.9 equiv. of \(\text{NaHBEt}_3\) resulted in a \(^1\text{H}\) NMR spectrum displaying the same \(\text{Fe}^-\text{H}^+\) resonance at -8.83 ppm (Fig. S10†).

We serendipitously obtained dark red crystals from the THF solution of both the \(\text{H}_2/\text{D}_2\) and \(\text{NaHBEt}_3\) reactions in the NMR reaction tube which were — contrary to our optimistic expectation — identified as the known di-iron carbonyl dianion \((\text{NEt}_4)_2[\text{Fe}_2(\text{CO})_8]\) by X-ray diffraction, proving the reduction of the ferrous starting material to \(
\text{Fe}^-(-1)\). Provided the overwhelming evidence of reductive chemistry and our previous observation of unbound ligand, we considered a conversion pathway to better explain the formation of \((\text{NEt}_4)_2[\text{Fe}_2(\text{CO})_8]\) (Scheme 4) in the context of the observed \(\text{Fe}^-\text{H}^+\) or \(\text{D}^+\) resonance and extrusion of the metal center from the anthracene scaffold.

We first contemplated the retrosynthesis of the observed \((\text{NEt}_4)_2[\text{Fe}_2(\text{CO})_8]\) product, hypothesizing its derivation from bond formation between two simple \(\text{Fe}(\text{CO})_4\) building blocks. Upon inspection of known, simple iron tetracarbonyl compounds, we intuited that the product could be derived from initial protonation or deprotonation of one \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\) unit, thus providing the necessary \(\text{Fe}^-\text{H}^+\) species in the context of the observed \(\text{Fe}^-\text{H}^+\) or \(\text{D}^+\) resonance and extrusion of the metal center from the anthracene scaffold.

We hypothesized heterolysis of \(\text{H}_2\) across the \(\text{Fe}\) center and bound ligand could explain the generation of \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\) and protonation to liberate the free ligand; however, no reaction was observed upon treatment of \(\text{Li}[(\text{Anth}=\text{CH}_2\text{NSMe})\text{CH}_2\text{No}]\text{HFe}(\text{CO})_4\) by
\(\text{Fe}(\text{CO})_5\) (i.e. \(\text{Fe}(\text{CO})_5\) \(\text{Fe}(\text{CO})_4\)) exhibited CO stretching frequencies of similar energy to the related complex described by Song at the feature above 1600 cm\(^{-1}\), as would otherwise indicate a C=O stretch. We hypothesized heterolysis of \(\text{H}_2\) across the \(\text{Fe}\) center and bound ligand could explain the generation of \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\) and protonation to liberate the free ligand; however, no reaction was observed upon treatment of \(\text{Li}[(\text{Anth}=\text{CH}_2\text{NSMe})\text{CH}_2\text{No}]\text{HFe}(\text{CO})_4\) with \(\text{D}_2\) by \(^2\text{H}\) NMR spectroscopy (Scheme 4, bottom). Instead, treatment of \(\text{Li}[(\text{Anth}=\text{CH}_2\text{NSMe})\text{CH}_2\text{No}]\text{HFe}(\text{CO})_4\) with \(\text{D}_2\) by \(^2\text{H}\) NMR spectroscopy (Fig. S17†). Analogous control experiments performed with 2,6-lutidine-HCl provided similar results, supporting that the phenolic proton was the active agent — rather than H-atom or other radical chemistry. As indicated in Scheme 4, the extruded \(\text{Fe}(\text{CO})_4\) unit undergoes further chemistry to form \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\); however, the nature or mechanism of this particular reaction remains elusive at this time.

Lastly, we considered the initial reduction event of the ferrous starting complex to \(\text{Fe}(0)\). Based on the activation of \(\text{H}_2/\text{D}_2\) mediated by 2 and the control reaction treating 2 with \(\text{NaHBEt}_3\) and the spectroscopically detected reduced Fe carbonyl species—we postulate that reduction of the ferrous metal center occurs by loss of the unobserved, reactive hydride as a proton along with two electron reduction to form \(\text{Fe}(0)\). Consistent with our previous work,\(^{18}\) detection of the highly reactive (especially anionic) Fe–H species of \([\text{Fe}]-\text{hydrogenase}\) synthetic models is difficult. Intriguingly, this reductive product in hydride transfer reactions of \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\).\(^{33}\) Indeed, \([{}^{18}\text{Im}][\text{BARF}]\) was separately treated with \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\) but no hydride transfer reaction was observed over the course of several days (Fig. S14†), further supporting the role of \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\) as the exclusive active hydride transfer agent.

Identification of \(\text{NEt}_4[\text{HFe}(\text{CO})_4]\) also confirms the loss of ligand which was observed by \(^1\text{H}\) NMR spectroscopy in both gas reactions utilizing \(\text{H}_2\) (Fig. S15†) and upon treatment with \(\text{NaHBEt}_3\) (Fig. S16†). Furthermore, we re-emphasize the observation of a feature at 2.51 ppm corresponding to deuterium of the methylpyridine moiety of the ligand in the \(^2\text{H}\) NMR spectrum upon generation \(\text{NEt}_4[\text{DFe}(\text{CO})_4]\) (Fig. S87).
pathway contrasts the well-characterized intramolecular hydride transfer reaction resulting in methylthiol extrusion observed in another model system from our group [mer-CNS; no scaffold], likely due to the unbound state of the thioether-SMe unit downstream of 1 in this case.

Conclusions

In summary, we have prepared an acyl-containing anthracene-scaffolded [Fe]-hydrogenase model compound that exhibits a dynamic fac-CNS donor motif and performs H2 activation. The subtle structural replacement of the previously studied carbamoyl ligation for the methylene-acyl moiety provides a dramatically different reaction pathway to H2 activation, which first involves clean and structurally characterized deprotonation of the methylene linker. Notably, the anthracene-scaffolded model complex exhibits well-controlled reactivity upon base treatment in comparison to non-scaffoed systems, possibly due to the controlled hemi-lability of the thioether-S. The methine-ligated for hydride transfer in this system.

Attempts to utilize exogenous base for H2 activation in concert with 2 to prevent the loss of ligand and Fe reduction were unsuccessful, but importantly enabled us to structurally and spectroscopically characterize relevant intermediates in this process. Numerous control reactions delineate a mechanistic pathway describing these conversions. This enhanced understanding of this deleterious, competitive process may contribute to the design of a more robust biomimetic reactivity system for understanding the reactivity of acyl(methylene)-containing synthetic analogues of [Fe]-hydrogenase. The inclusion of the authentic and biomimetic pyridone and/or thiolate motifs may drastically alter the reactivity profile(s) described herein, thereby providing more enlightened insight into Nature’s delicate choice of donor identity and location in the [Fe]-hydrogenase active site.

Ligand syntheses

5-(8-Chloroanthracen-1-yl)-2-methylpyridine (Anthr·C8H7N·Cl). A mixture of 5-bromo-2-methylpyridine (2.02 g, 11.8 mmol), KOAc (3.43 g, 35.0 mmol), BPh3P2 (4.43 g, 17.4 mmol), Pd2(db)2 (0.213 g, 0.233 mmol), and SPhos (0.194 g, 0.473 mmol) were prepared in 100 mL of dioxane under N2 atmosphere inside a glove box. The reaction mixture was refluxed for 6 h, and the resulting orange color solution was used in a next step without isolation. In a separate vessel, 1,8-dichloroanthracene (3.16 g, 12.8 mmol) was prepared in 20 mL of dioxane, and K2PO4 (7.40 g, 34.9 mmol) was dissolved in 15 mL of degassed water. The anthracene solution and then the K2PO4 solution were added into the reaction solution. After refluxing for 12 h, the reaction solution was cooled to room temperature and filtered over Celite pad. The organic products were extracted with ethyl acetate (EA) and dried over Na2SO4. The product was further purified by silica gel column chromatography (7 : 1 to 4 : 1 hexane/EA) to afford a yellow solid. Yield: 2.07 g (58%). 1H NMR (400 MHz, CDCl3): δ 8.27 (s, 3H), 7.36 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.45 (d, J = 5.8 Hz, 1H), 7.57 (m, 2H), 7.85 (dd, J = 7.9, 2.3 Hz, 1H), 7.94 (d, J = 8.6 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 8.52 (s, 1H), 8.75 (d, J = 2.3 Hz, 1H), 8.86 (s, 1H). 13C NMR (100 MHz, CDCl3): 24.36, 121.73, 122.81, 125.26, 125.54, 125.68, 127.25, 127.35, 127.46, 128.30, 129.17, 130.59, 132.20, 132.28, 132.29, 133.14, 137.05, 137.67, 149.75, 157.67. IR (solid-state): 3036, 1614, 1533, 1307, 1028, 888, 374 cm⁻¹. HR-MS (ESI): calcd for [C20H14ClN+H]+: 304.0888; found: 304.0899.

2-Methyl-5-(8-(3-(methylthio)phenylanthracen-1-yl)pyridine (Anthr·C8H7N·N5S4). A mixture of 5-(8-chloroanthracen-1-yl)-2-methylpyridine (Anthr·C8H7N·Cl) (1.75 g, 5.76 mmol), 3-(methylthio)phenylboronic acid (0.967 g, 5.75 mmol), Na2CO3 (0.610 g, 5.75 mmol), [Pd2(db)2] (0.105 g, 0.115 mmol), and XPhos (0.111 g, 0.233 mmol) was prepared in 160 mL of THF : H2O (7 : 1) under N2 atmosphere. The reaction solution was heated at 85 °C for 12 h under N2 atmosphere. After cooling the solution to room temperature, the mixture was quenched with a saturated NH4Cl(aq) solution (~10 mL). The organic product was extracted with DCM and washed with saturated brine (2 × 100 mL). The product was dried over Na2SO4 and concentrated under vacuum, and further purified by silica gel column chromatography (4 : 1 to 1 : 1 hexane/EA) to afford a yellow solid. Yield: 1.58 g (70%). 1H NMR (400 MHz, d6-THF): δ 2.45 (s, 3H; thioether-CH3), 2.55 (s, 3H; pyridine-CH3), 7.26 (s, 1H), 7.28 (s, 2H), 7.34 (m, 1H), 7.41 (m, 3H), 7.53 (t, J = 7.6 Hz, 2H), 7.75 (dd, J = 8.0, 2.4 Hz, 1H), 8.07 (t, J = 7.5 Hz, 2H), 8.55 (s, 1H), 8.60 (s, 1H), 8.61 (s, 1H). 13C NMR (100 MHz, d6-THF):...
Metal complex syntheses

\[
\text{[Anth-C}^{\text{H}2\text{NS}^{\text{Me}}}\text{Me}]\text{Fe(CO)}_2[\text{Br}] (1). \]
A portion of Anth-C^{\text{H}2\text{NS}^{\text{Me}}}\text{Me} ligand (0.20 g, 0.51 mmol) was prepared in 15 mL of THF under N\text{2} atmosphere on the Schlenk line. After cooling the solution to 0 °C, 1.6 M n-BuLi in hexanes (0.32 mL, 0.51 mmol) was dropwise added into the solution and stirred for 30 minutes. Next, the reaction solution was cooled to −80 °C, and 67 µL (0.50 mmol) of Fe(CO)\text{5} (diluted in 5 mL of THF) was injected into the solution over 1 min. The solution was slowly warmed to −20 °C while stirring for 3 h under dark conditions. In a separate flask, 26 µL (0.50 mmol) of Br\text{2} was diluted in 5 mL of THF under N\text{2} atmosphere. Next, the reaction solution was cooled to −70 °C, and the Br\text{2} solution was dropwise added into the reaction solution. After stirring for 2 h at −70 °C, the volatiles were removed under vacuum at room temperature. The residual solid was washed with pentane and Et\text{2}O to afford an orange-yellow powder. Yield: 240 mg (77%).

\[
[\text{Anth-CH}^2\text{NS}^{\text{Me}}\text{Fe(CO)}_2[\text{Br}](\text{AsPh}_3)] (2). \]
Compound 1 (40 mg, 65 µmol) and AsPh\text{3} (20 mg, 65 µmol) were stirred in 5 mL of DCM at room temperature for 2 hours then stored overnight at −20 °C. The solvent was removed in vacuo, and the residual solid was extracted with Et\text{2}O. The Et\text{2}O soluble fraction was concentrated to afford a yellow-orange solid. Single crystals for X-ray diffraction were grown from vapor diffusion of pentane in to a vial of the complex dissolved in FPh at −20 °C. Yield: 37 mg (62%).

Data availability

Crystal structure data has been deposited in the Cambridge Crystal Structure Database, and additional spectra and experimental details are contained in the ESI.

Author contributions

Experiments were conceived and designed by J. Seo, SAK and MJR and executed by all co-authors. EXAFS data were acquired and analyzed by J. Shearer. X-ray diffraction data were analysed by VML. ERR and STG performed supporting syntheses and spectroscopic characterizations, respectively.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported by the National Science Foundation (NSF CHE-1808311 to MJR and CHE-1854854 to JS) and the Welch Foundation (F-1822, MJR). We thank Angela Spangenberg, Garrett Blake and Steve Sorey for critical assistance with NMR data collection. The authors also thank Chris Joseph for assistance in X-ray crystallography data collection.

Notes and references