
Trinity University Trinity University

Digital Commons @ Trinity Digital Commons @ Trinity

School of Business Faculty Research School of Business

2015

The Interplay Among Software Volatility, Complexity and The Interplay Among Software Volatility, Complexity and

Development Outcomes: Evidence From Open Source Software Development Outcomes: Evidence From Open Source Software

Jorge A. Colazo
Trinity University, jcolazo@trinity.edu

Follow this and additional works at: https://digitalcommons.trinity.edu/busadmin_faculty

 Part of the Business Administration, Management, and Operations Commons

Repository Citation Repository Citation
Colazo, J. A. (2015). The interplay among software volatility, complexity and development outcomes:
Evidence from open source software. International Journal of Information Technology and Management,
14(2-3), 160-171. https://doi.org/10.1504/IJITM.2015.068462

This Article is brought to you for free and open access by the School of Business at Digital Commons @ Trinity. It
has been accepted for inclusion in School of Business Faculty Research by an authorized administrator of Digital
Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

https://digitalcommons.trinity.edu/
https://digitalcommons.trinity.edu/busadmin_faculty
https://digitalcommons.trinity.edu/busadmin
https://digitalcommons.trinity.edu/busadmin_faculty?utm_source=digitalcommons.trinity.edu%2Fbusadmin_faculty%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=digitalcommons.trinity.edu%2Fbusadmin_faculty%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu

 Int. J. Information Technology and Management, Vol. X, No. Y, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

The interplay among software volatility, complexity
and development outcomes: evidence from open
source software

Jorge A. Colazo
Business School – Department of Finance and Decision Sciences,
Trinity University,
Office CGC 305, One Trinity Place,
San Antonio, TX 78238, USA
E-mail: jcolazo@trinity.edu

Abstract: The study posits a mediating role of software complexity in the
association between software volatility and different software development
outcomes. Empirical tests using data from 326 open source software projects
support such a partial mediating role of software complexity in the association
between software volatility and development outcomes. Archival data is tested
using an ordinary least squares mediated model. The paper uses productivity,
defect count and development speed as dependent variables.

Keywords: software complexity; software volatility; open source software;
OSS; software development; development speed; software quality.

Reference to this paper should be made as follows: Colazo, J.A. (xxxx) ‘The
interplay among software volatility, complexity and development outcomes:
evidence from open source software’, Int. J. Information Technology and
Management, Vol. X, No. Y, pp.000–000.

Biographical notes: Jorge A. Colazo is an Assistant Professor at the Finance
and Decision Sciences Department of Trinity University’s School of Business.
An engineer by training, he holds a PhD in Business Administration from The
University of Western Ontario, Canada. Prior to his academic work he had
extensive managerial experience in firms such as Unilever and Toyota, working
in R&D and production. His research interests are related to open innovation,
technology management and lean manufacturing. His work has been published
in Journal of the Association for Information Systems, International Journal of
Innovation Management and other outlets.

1 Introduction

Software complexity impacts on many important software project outcomes, such as the
number of expected defects, the understandability and maintainability of the code, and
the effort required to grow the source base and interface it with other systems. It also
limits the degree of code reuse that is possible for a given software solution, making
scalability more difficult. ‘Filtering through’ software complexity is a programmer –
intensive task that is very difficult to automate (Glass, 2002). In this context,

 2 J.A. Colazo

understanding complexity and exploring practical ways to manage it remains critically
important.

Although complexity is determined by multiple factors, notoriously the scope and
difficulty of implementing initial requirements, it also evolves along the life cycle of the
product, and changes every time new features are added, bugs are fixed, and in general,
changes are made to the source code base. The frequency and magnitude of ongoing
modifications to the software’s source code are captured by the concept of software
volatility (Banker and Slaughter, 2000). Volatility and complexity are different
constructs; while volatility captures the amount of changes made on the source base,
those changes may or may not affect the code’s complexity, i.e., the intricacy of the logic
flow within the software’s control structure.

Both volatility and complexity are known to impact diverse performance metrics. For
instance, volatility has been shown to correlate with the cost of enhancing software
(Banker and Slaughter, 2000), whereas complexity is related to the reliability and
maintainability of code (Lew et al., 1988). However, the two constructs have to date been
treated separately in empirical studies exploring their association with development
outcomes.

Some anecdotal evidence supports that there is an interplay between complexity and
volatility; when modifications are made to accommodate new requirements software
complexity grows explosively: “for every 25% increase in problem complexity there is a
100% increase in the complexity of the software” (Woodfield, 1979). The nature of a
potential interplay between volatility and complexity has not yet been hypothesised and
empirically tested. This paper posits that volatility affects development outcomes both
directly and indirectly through the mediating effect of complexity.

The interaction between volatility and complexity is not only academically interesting
but also important from a very practical point of view, because volatility can be managed
a priori or at least moderated by explicit design policy, for instance by structuring
software more rigorously (Banker and Slaughter, 2000). In contrast, the baseline
complexity of a software package is largely a result of initial requirements
implementation and the kind of processing solution chosen to address those requirements.
Once complexity is initially designed into the software it is very difficult to radically
change it, and for the rest of the lifecycle of the product it will define the ability of
programmers to understand the code, impact the developers’ learning rates, and their
ability to find issues and maintain the product.

What motivates this paper is the need to understand the mechanisms by which
volatility affects development outcomes. Are volatility and complexity inextricably
related, or are they independent? If the former were true, the focus to quickly and
productively develop reliable software would need to be the clear definition of initial
requirements and the use of proven algorithms to achieve functionality at the lowest
complexity point. If the latter were true, the focus would have to be placed on minimising
disruptions to the source code base once baseline requirements are achieved.

After hypothesising the mediating role of product complexity on the relationship
between software volatility and a series of software development outcomes,
regression-based techniques to empirically test the hypotheses are used. We select as
outcomes coding productivity, expected pre-test defects, and development speed.

Due to the wealth of data that can be obtained about volatility, complexity and
development outcomes, the research framework for the empirical validation of
hypotheses is a sample of open source software (OSS). OSS is software produced under

 The interplay among software volatility, complexity and development outcomes 3

licensing terms that make the source code of the product available to users. Notable
examples of OSS are Linux, Apache and MySQL.

Results show that software complexity partially mediates the influence of volatility in
all three outcomes, i.e., there is a significant mediation effect but complexity does not act
as a full mediator.

The remainder of the paper is structured as follows: the second section reviews
relevant research and lays out the hypotheses to be tested. Next, the analytical methods
used in this empirical study are explained. The following section explains the results of
the ordinary least squares (OLS) regression model used to test the hypotheses. The last
section contains the study’s conclusions, limitations and implications for future research.

2 Background and hypotheses

It is postulated that the effect of volatility on diverse development outcomes is mediated
by software complexity. The theoretical model represents a simple mediation design,
shown in Figure 1.

Figure 1 Research model: mediation

This mediated model requires supporting the association between the independent
variable (IV) X (volatility) and the dependent variable(s) Y (DVs) (the different
development outcomes) as well as the association between the IV and the mediator M
(complexity), and between the mediator and the DVs. Based on complexity theory and
previous research hypotheses can now be formulated.

2.1 Software volatility and software complexity

Software volatility is the frequency and extent to which the source code is changed along
the product’s lifetime (Banker and Slaughter, 2000). Volatility is in principle neither
beneficial nor detrimental to software development outcomes, only reflecting changes to
the source code base due to different events, such as new features, bug fixing,
modularisation, restructuring and refactoring, among others.

 4 J.A. Colazo

The concept of software volatility refines previous ways of looking at changes in
source code, from the broad software engineering concept of ‘code churn’ (Khoshgoftaar,
1994) or the more simple ‘code delta’ [absolute difference in lines of code (LOC)] and
‘rate of change’ (the relative difference in LOC) (Ajila and Dumitrescu, 2007).

Diverse outcomes are affected by volatility. Code churn has been associated
empirically to defect density (Nagappan, 2005), whereas volatility was associated to
software size and age in a study of software used by the oil industry (Zhang and Windsor,
2003).

Code churn has even been shown to be a good indicator of portions of the code where
security vulnerabilities are likely to occur (Shin, 2011), and similar results were found in
the case of the OSS development environment eclipse (Zimmermann et al., 2007). In the
case of object oriented software, ‘code smells’ are sections of the source base that present
maintainability issues and they are also related to volatility in the case of two open source
projects that are part of the Apache web server (Olbrich et al., 2009).

Software volatility has been measured in extant research by the fraction of software
modules that were changed per new release (Belady and Lehman, 1976), or by the
number of enhancements per function point (Banker and Slaughter, 2000).

The definition of software complexity is more complicated than that of volatility,
since there are different types of complexity such as structural and logic complexity, and
for each type several metrics have been proposed (Weyuker, 1988). It is accepted that
complexity is multidimensional, although there is still discussion on which dimensions
are appropriate (Kearney et al., 1986; Glass, 2002).

For this paper, complexity is defined as the intricacy of the logical flow of data from
input to output within the functions in the source code, and it is related to the degree of
understandability of the code (Glass, 2002). This definition of complexity is captured by
the time-tested concept of cyclomatic complexity or McCabe’s complexity (McCabe,
1976).

2.2 The indirect effect: complexity vs. performance

Based on complexity theory it can be posited that these observed relationships can be
condensed and explained by a simple model where software volatility has both direct
effect on outcomes and a mediated indirect effect on them, with software complexity as
mediator.

Complexity theory (Byrne, 2002) posits that a certain order is emergent when
organisms or agents interact. The system will adopt a stability status ranging from stable
to chaotic depending on the behaviour of feedback loops present in the agents’
interactions (Benbya and McKelvey, 2006). For software, agents can be construed as the
software files, modules or the algorithms that render the required functionality.

Complexity theory predicts that complexity will increase as the number of interfaces
among agents grows. In practice, several attributes of the software’s code related to the
increase in the number of inter-agent interfaces have been found to impact on
complexity: the absolute code size in LOC, the number of files, the number of modules
and the degree of structure of the source code (Banker et al., 1989). As the system
becomes more unstable, its required performance diminishes and spurious feedback loops
produce glitches (bugs).

Empirically, complexity has in fact been shown to strongly correlate with
maintainability (Banker et al., 1989) productivity (Gill and Kemerer, 1991) reliability and

 The interplay among software volatility, complexity and development outcomes 5

defect count (Lew et al., 1988). More complex programmes are more difficult to
understand (Stamelos et al., 2002), and require more cognitive effort from the developer
(Rilling and Klemola, 2003). Complexity density (cyclomatic complexity divided by the
number of code statements) is negatively related to maintenance productivity (Gill and
Kemerer, 1991).

2.3 The mediating effect: volatility vs. complexity

Complexity theory helps understand the association between volatility and complexity.
One of the leading reasons for software volatility is adding new features. Obviously,
adding features require modifying the source base, and hence implies some degree of
volatility. But it also introduces new interfaces between modules and amplifies mutual
causal loops (Maruyama, 1963), some of which are unexpected and add logic paths in a
non-linear fashion increasing complexity likewise.

This agrees with the practitioner’s perspective, recognising that changes in source
code required when adding features have a multiplicative effect on the design of
algorithms and interfaces, and it has been suggested that “explicit requirements explode
by a factor of 50 or more into implicit design requirements” (Glass, 2002). Adding or
modifying algorithms changes the control structure within the logic of the code, thus
changing the logic complexity. Bug fixing is also positively related to volatility, but when
defects are fixed, the algorithmic solution tends to be refined and rid of unnecessary
feedback loops that caused unexpected behaviour.

Other causes of volatility associated with complexity are restructuring and
refactoring. Restructuring software involves rearranging the components that define the
architecture of the system, such as modules or files (Arnold, 1989) and applies to
procedural programming languages. Refactoring is the equivalent of restructuring but for
object-oriented languages. In both restructuring and refactoring the main focus is to
simplify the structure while preserving the expected behaviour of the software (Mens and
Tourwé, 2004). Refactoring and restructuring often standardises algorithms, classes and
objects, and often times they involve the breaking down of components, altering the
number of control interfaces. All of these modifications potentially alter the complexity
of the code base.

2.4 The direct effect: volatility vs. performance

Having argued for the association between volatility and complexity, it is now time to
review evidence supporting a direct effect of volatility on productivity, defect count and
development speed, the DVs.

First, volatility has been shown to positively associate with software enhancement
costs (Banker and Slaughter, 2000). Software enhancement is part of the maintenance
stage of software evolution, by far the most costly stage in software’s lifecycle (Lehman,
1998). Maintenance costs are directly related to the productivity in generating the
modifications necessary to enhance the functionality of the programme. It can be
expected that volatility is going to be associated with development productivity,
especially in mature programmes that are in the maintenance stage of their life cycles.

Second, volatility is also positively related to error count. Software volatility may
alter the ability of software maintainers to identify and fix bugs, and hence impact on the
expected defect count (Kemerer et al., 2012). In fact, less volatile software shows fewer

 6 J.A. Colazo

errors when technology-based approaches are used to maintain it while more volatile
software does better when maintained based on the interaction of experienced developers
(Kemerer et al., 2012). Volatility can be expected to positively relate to defect count.

Third, volatility can be expected to be related to development speed. Software is
generally released when development and reliability milestones have been met and the
behaviour of the system is stable. Improving reliability depends on finding and correcting
issues. Volatility is related to the effort to understand code, critical step in finding new
issues (Nagappan, 2005) and it can be expected that more volatile software will be less
understandable and hence extend inter-release times. Also, restructuring activities aimed
at simplifying the architecture while maintaining external behaviour require increased
volatility, and then volatility can be expected to influence inter-release times
(development speed).

Given the above support for both direct effects of volatility on development outcomes
and for a potential indirect effect through software complexity, it can be posited:

H1 Complexity mediates the effect of volatility on productivity.

H2 Complexity mediates the effect of volatility on defect count.

H3 Complexity mediates the effect of volatility on development speed.

3 Methods

The research framework for this study consists of OSS projects. The unit of analysis is
the project. OSS project team information is hosted in web-based repositories which have
been used repeatedly as sources of archival data for empirical studies (c.f., Mockus et al.,
2002). In line with the majority of these studies, this paper uses projects hosted in Source
Forge (SF) (http://www.sourceforge.net).

When measuring software metrics, the use of a samples with a single language is
preferred (Jones, 1986). For this paper, the programming language of the projects was
restricted to ‘C’ because besides being one of the most popular programming languages
in SF, it has a rich tradition of static software metrics that have been validated empirically
and can be obtained with off-the-shelf software analyzers. In accordance with previous
empirical research on OSS, projects with six or more team members were selected,
because most OSS projects with fewer developers do not show in general high levels of
activity (Crowston and Howison, 2003; Colazo and Fang, 2010) and projects in a
relatively mature stage are desirable.

In the SF repository, there were 326 software projects being developed by six or more
core team members and using ‘C’. These 326 projects constituted the sample. In spite of
the non-probabilistic nature of the sample (see limitations), it contained projects with
varied types of applications, sizes, and degrees of maintainability (Oman and
Hagemeister, 1994) (Table 1). Data were cross-sectional, and collected between starting
January 2008 with updates until July 2011. The average tenure of the projects was 30
months since their inception.

The source code for OSS is accessed by developers through some form of version
control software that allows developers to keep track of modifications to the source code.
The versioning system currently used at SF is called SubVersion. A Subversion client
was used to download the source code files for each project. The client programme

 The interplay among software volatility, complexity and development outcomes 7

provided a history of the modifications committed to files, yielding the name of the
committer, date of commit, name of file modified, total LOC added and total LOC
deleted for each commit.

The projects’ source code files were downloaded and parsed with software analyzer
programmes to obtain both product size in LOC as well as other static metrics such as
code complexity and Halstead’s (1977) metrics that were later used to calculate number
expected bugs and maintainability.

From the source code files for each project, quality of coding was measured by the
number of total expected pre-test software defects (called ‘B’ after the initial letter of
‘Bugs’) (Ottenstein, 1981), standardised per thousand lines of source code (B/KSLOC).
The parameter ‘B’ estimates the expected number of defects latent in the source code,
and it has been validated (Gremillion, 1984) against actually found quality defects in the
software testing stage. Note that a higher defect count corresponds to lower software
quality. The number of delivered bugs ‘B’ (Ottenstein, 1981) was derived from
Halstead’s software volume ‘V’ (Halstead, 1977) by the formula:

2/3 3,000B V −=

Halstead’s volume is calculated as:

2logHV N n=

NH is called programme length:

1 2HN N N= +

And n is called programme vocabulary:

1 2n n n= +

Being n1 the number of distinct logic operators (e.g., +, /, *, mod, abs, IF-THEN,
SWITCH and so on) and n2 the number of distinct operands (those that take part in the
operations), N1 the total number of operators and N2 the total number of operands.
Obtaining the number of operators and operands depends on language-specific accepted
conventions and then requires a language-specific parser (Szulewski et al., 1984).
Scitools (2012) metrics suite was used.

Development speed was measured by the average number of days between any two
consecutive versions (inter-release time). The version control software log files provided
the version numbers of the software as it was being developed. For each project, all dates
when a change in the revision number occurred were recorded for all different types of
software versions: major versions (e.g., 1.0, 2.0, etc.), minor versions (1.1 to 1.2 for
example), and ‘build’ versions (e.g., 2.1.1 to 2.1.2). Times between minor releases were
used and show the highest statistical power, but conclusions do not change if major or
build releases are used instead.

Productivity was measured by the number of LOC written per developer per month, a
popular and established measure for development productivity (c.f., Jones, 1986).

Software complexity was measured using the project’s average McCabe’s (1976)
cyclomatic complexity factor. Two different off-the-shelf code analyzers were used
(Scitools, 2012; Testwell Oy, 2012). The range of complexity in the sample was
inspected using the guidelines given by Marciniak (1994). This analysis showed that the
programmes ranged from simple to highly complex (Table 1).

 8 J.A. Colazo

Table 1 Sample programme complexity

Cyclomatic complexity range Category %

1–10 Simple 59
11–20 Moderately complex 24
21–50 Complex 14
> 50 Highly complex to intractable 3

To measure volatility the number of feature requests, the number of bug patches
submitted and the number of changes to the source code (commits) per month for each
project, standardising them by the number of LOC were obtained, to which principal
components analysis was applied to extract the common variance.

The measures for volatility and complexity were subjected to a content validity
assessment (Moore and Benbasat, 1991; Hinkin, 1998) using a panel of software
development experts associated to a university. Eight experts were provided with
construct definitions and asked to match constructs with measures. They came to 87.5%
agreement, which is higher than the 75% normally indicative of content adequacy
(Schriesheim et al., 1993).

Data passed robustness check of the factor analysis by examining and addressing the
key assumptions of number of cases, linearity of factor items, multivariate normality, and
absence of outliers. In principle the items discussed would load on only one significant
factor that would reflect software volatility. The criterion of eigenvalues higher than 1.0
(Kaiser, 1974) yielded as expected only one significant factor, with 43% of the total
variance captured by the factor.

For each dependent variable, the model tested can be seen in Figure 1. The total effect
of X on Y is represented by path c. Path a represents the effect of X on the mediator M,
whereas path b is the effect of the mediator M on the dependent variable Y partialling out
the effect of X. A valid identity is that:

ab c c′= −

where ab is the indirect effect of X on Y through M, or the difference between the total
effect c and the direct effect ,c′ and as such a measure of the mediating effect of M. In
order to support mediation a, b and c should be significant, and the difference between c
and c′ should be non-trivial. The latter condition can be difficult to interpret, and
bootstrapping methods are used to get a confidence interval of the product ab, where if
the confidence interval does not contain zero, the mediating effect is supported (Preacher
and Hayes, 2008).

Following those premises, a regression analysis with bootstrapping was carried out to
ascertain the significance of the mediating effect of complexity on the impact of volatility
on the different DVs.

4 Results

Results of the regression and bootstrap analyses are presented in Table 2.

 The interplay among software volatility, complexity and development outcomes 9

Table 2 Results

Unstandardised coefficients

Dependent variables (DVs)

Productivity Defects Speed
(time b/releases)

Volatility → complexity
(a)

–0.0185 + –0.0184 * –0.0282 **

Complexity → DV (b) 0.3228 ** 0.1141 *** –58.5712 *
Volatility → DV, total
effect (c)

0.1653 *** 0.016701 ** –26.7977 ***

Volatility → DV, direct
effect ()c′

0.1713 *** 0.0188 ** –28.4494 ***

R2 0.07 * 0.16 ** 0.29 **
95% bootstrap confidence intervals for indirect effects ab

–0.0060 –0.0021 1.6517
Mediation effect (ab)

Lower Upper Lower Upper Lower Upper
 –0.0103 –0.0021 –0.0036 –0.0010 0.5657 2.8719

Notes: N = 326.
Number of bootstrap samples: 5,000.
+p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.

H1 was supported. The model with productivity as a dependent variable shows all paths
were significant, as well as the mediating effect of complexity. Volatility is negatively
correlated with complexity (p < 0.1), and complexity is positively correlated with
productivity (p < 0.01). Volatility’s direct effect on productivity is positive (p < 0.001),
i.e., the more volatile the software, the higher the productivity. The mediating effect of
complexity is partial, since the introduction of the mediator does not render the direct
effect insignificant.

H2 was supported. The model for number of defects shows that all paths were
significant as well as the mediating effect of complexity. More volatile software is
associated with a higher defect count (p < 0.01), and the direct effect is partially mediated
by software complexity.

Finally, H3 was supported as well. The results for development speed (time between
releases) shows again a partial mediating effect for complexity, with more volatile
software associated with faster development (p < 0.01). The mediating effect of
complexity is again partial.

The sign for path coefficient ‘b’ seems to indicate that projects with higher
productivity become more complex, more error prone and faster to reach release
milestones. The direct effect of volatility on defect count supports previous studies
linking volatility with reliability issues (Nagappan, 2005). Also, results show that projects
that release often are more volatile.

 10 J.A. Colazo

5 Conclusions, limitations and future research

Results support that there is a mediating effect of software complexity in the association
between software volatility and diverse development outcomes. Results have several
contributions for both academia and practice.

From the theoretical perspective, first, the mediating effect of complexity helps
explain the observed similar impacts of both volatility and complexity on performance.

Second, the mediating effect is partial in all cases. The effect of volatility on
productivity, quality and speed is not totally explained by a mediating effect. This can be
explained by changes to the source base that do not modify complexity, such as adding
comments, and by some restructuring activities that do not change the underlying logic
structure.

From the practical point of view, the observed partial mediation provides an avenue
to influence the evolution of complexity by policing actions that contribute to volatility.
Examples are increasing accountability to minimise unnecessary changes, implementing
performance inquiry, critical managerial judgement and sanctions, all of which have been
shown to mitigate the effects of complexity (Midha and Slaughter, 2011).

Project managers can also increase reliability by carefully administering the
frequency of restructuring/refactoring. When restructuring and considering alternative
algorithms, care should be taken to choose the least complex solution whenever possible,
and documenting the source code with comments that may help understandability.

The sample contained relatively mature projects, and a negative association was
obtained between volatility and complexity, perhaps contrary to standard knowledge.
This result is understandable because at a mature stage changes in the source code aim to
decrease complexity. This result is worth replicating in samples with projects at an earlier
stage in their life cycle.

As it is always the case with empirical research, this study has limitations. One of
them is the non-probabilistic nature of the sample, calling for replication with software
written in other languages and in proprietary applications rather than in the OSS realm.
Due to limitations in the dataset more covariates have not been included as statistical
controls, which should be explored in future research. Another limitation is the definition
of complexity, which predominantly captures logic intricacy. Other definitions such as
structural complexity or architectural complexity should be explored as well. Productivity
and quality in software are complex constructs that were simplified in terms of
considering only LOC and bugs per KSLOC; these results should be confirmed using
different and broader measures.

References
Ajila, S.A. and Dumitrescu, R.T. (2007) ‘Experimental use of code delta, code churn, and rate of

change to understand software product line evolution’, Journal of Systems and Software,
Vol. 80, No. 1, pp.74–91.

Arnold, R.S. (1989) ‘Software restructuring’, Proceedings of the IEEE, Vol. 77, No. 4, pp.607–617.
Banker, R.D. and Datar, S.M. et al. (1989) ‘Software complexity and maintainability’, ICIS 1989,

AIS, Boston, MA.
Banker, R.D. and Slaughter, S.A. (2000) ‘The moderating effects of structure on volatility and

complexity in software enhancement’, Information Systems Research, Vol. 11, No. 3,
pp.219–240.

 The interplay among software volatility, complexity and development outcomes 11

Belady, L.A. and Lehman, J.A. (1976) ‘A model of large program development’, IBM Systems
Journal, Vol. 15. No. 3, pp.225–252.

Benbya, H. and McKelvey, B. (2006) ‘Toward a complexity theory of information systems
development’, Information Technology & People, Vol. 19, No. 1, pp.12–34.

Byrne, D. (2002) Complexity Theory and the Social Sciences: An Introduction, Routledge,
Abingdon, Oxon, UK.

Colazo, J.A. and Fang, Y. (2010) ‘Following the sun: temporal dispersion and performance in open
source software project teams’, Journal of the Association for Information Systems, Vol. 11,
No. 11, pp.684–707.

Crowston, K. and Howison, J. (2003) ‘The social structure of free and open source software
development’, 24th International Conference on Information Systems, Seattle, WA.

Gill, G.K. and Kemerer, C.F. (1991) ‘Cyclomatic complexity density and software maintenance
productivity’, IEEE Transactions on Software Engineering, Vol. 17, No. 12, pp.1284–1288.

Glass, R.L. (2002) ‘Sorting out software complexity’, Communications of the ACM, Vol. 45,
No. 11, pp.19–21.

Gremillion, L.L. (1984) ‘Determinants of program repair maintenance requirements’,
Communications of the ACM, Vol. 27, No. 8, pp.826–832.

Halstead, M.H. (1977) Elements of Software Science, Elsevier, New York, NY.
Hinkin, T.R. (1998) ‘A brief tutorial on the development of measures for use in survey

questionnaires’, Organizational Research Methods, Vol. 1, No. 1, pp.104–121.
Jones, C. (1986) Programming Productivity, McGraw-Hill, New York.
Kaiser, H.F. (1974) ‘An index of factorial simplicity’, Psychometrika, Vol. 39, No. 1, pp.31–36.
Kearney, J.K. and Sedimeyer, R.L. et al. (1986) ‘Software complexity measurement’,

Communications of the ACM, Vol. 29, No. 11, pp.1044–1050.
Kemerer, C.F. and Moody, G.D. et al. (2012) Effective Corrective Maintenance Strategies for

Managing Volatile Software Applications, Working paper [online]
http://www.pitt.edu/~ckemerer/Research.htm.

Khoshgoftaar, T.M. (1994) ‘Improving code churn predictions during the system test and
maintenance phases’, International Conference on Software Maintenance, IEEE, Victoria, BC,
Canada.

Lehman, M.M. (1998) ‘Software’s future: managing evolution’, IEEE Software, Vol. 15, No. 1,
pp.40–44.

Lew, K.S. and Dillon, T.S. et al. (1988) ‘Software complexity and its impact on software
reliability’, IEEE Transactions on Software Engineering, Vol. 14, No. 11, pp.1645–1655.

Marciniak, J.J. (Ed.) (1994) Encyclopedia of Software Engineering, John Wiley & Sons,
New York, NY.

Maruyama, M. (1963) ‘The second cybernetics: deviation-amplifying mutual causal processes’,
American Scientist, Vol. 51, No. 2, pp.164–179.

McCabe, T. (1976) ‘A software complexity measure’, IEEE Transactions on Software Engineering,
Vol. SE-2, No. 4, pp.308–320.

Mens, T. and Tourwé, T. (2004) ‘A survey of software refactoring’, IEEE Transactions on
Software Engineering, Vol. 30, No. 2, pp.126–139.

Midha, V. and Slaughter, S. (2011) ‘Mitigating the effects of structural complexity on open source
software maintenance through accountability’, ICSIS 2011, AIS, Shanghai, China.

Mockus, A. and Fielding, R.T. et al. (2002) ‘Two case studies of open source software
development: Apache and Mozilla’, ACM Transactions on Software Engineering and
Methodology, Vol. 11, No. 3, pp.309–346.

Moore, G.C. and Benbasat, I. (1991) ‘Development of an instrument to measure the perceptions of
adopting an information technology innovation’, Information Systems Research, Vol. 2, No. 3,
pp.192–222.

 12 J.A. Colazo

Nagappan, N. (2005) ‘Use of relative code churn measures to predict system defect density’, ICSE
2005, AIS, St. Louis, MO.

Olbrich, S. and Cruzes, D.S. et al. (2009) ‘The evolution and impact of code smells: a case study of
two open source systems’, Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, IEEE Computer Society.

Oman, P. and Hagemeister, J. (1994) ‘Construction and testing of polynomials predicting software
maintainability’, Journal of Systems and Software, Vol. 24, No. 3, pp.251–266.

Ottenstein, L. (1981) ‘Predicting numbers of errors using software science’, ACM SIGMETRICS
Performance Evaluation Review, Vol. 10, No. 1, pp.157–167.

Preacher, K.J. and Hayes, A.F. (2008) ‘Assymptotic and resampling strategies for assessing and
comparing indirect effects in multiple mediator models’, Behavior Research Methods, Vol. 40,
No. 3, pp.879–891.

Rilling, J. and Klemola, T. (2003) ‘Identifying comprehension bottlenecks using program slicing
and cognitive complexity metrics’, 11th IEEE International Workshop on Program
Comprehension, Portland, OR.

Schriesheim, C.A. and Powers, K.J. et al. (1993) ‘Improving construct measurement in
management research: comments and a quantitative approach for assessing the theoretical
content adequacy of paper-and-pencil survey-type instruments’, Journal of Management,
Vol. 19, No. 2, pp.385–417.

Scitools (2012) Understand, Static Metrics Analyzer, Scientific Toolworks Inc.
Shin, Y. (2011) ‘Evaluating complexity, code churn and developer activity metrics as indicators of

software vulnerabilities’, IEEE Transactions on Software Engineering, Vol. 37, No. 6,
pp.772–787.

Stamelos, I. and Angelis, L. et al. (2002) ‘Code quality analysis in open-source software
development’, Information Systems Journal, Vol. 12, No. 1, pp.43–60.

Szulewski, P.A. and Sodano, N.M. et al. (1984) Automating Software Design Metrics, Rome Air
Development Center, Rome, NY.

Testwell Oy (2012) CMT++. Hermia, Testwell: Software Static Metrics Analyzer, Finland.
Weyuker, E.J. (1988) ‘Evaluating software complexity measures’, IEEE Transactions on Software

Engineering, Vol. 14, No. 9, pp.1357–1365.
Woodfield, S.N. (1979) ‘An experiment on unit increase in software complexity’, IEEE

Transactions on Software Engineering, Vol. 5, No. 2, pp.76–79.
Zhang, X. and Windsor, J. (2003) ‘An empirical analysis of software volatility and related factors’,

Industrial Management and Data Systems, Vol. 103, No. 4, pp.275–281.
Zimmermann, T. and Premraj, R. et al. (2007) ‘Predicting defects for eclipse’, Predictor Models in

Software Engineering, 2007. PROMISE’07: ICSE Workshops 2007, International Workshop
on, IEEE.

View publication statsView publication stats

https://www.researchgate.net/publication/277623502

	The Interplay Among Software Volatility, Complexity and Development Outcomes: Evidence From Open Source Software
	Repository Citation

	Microsoft Word - X COLAZO.doc

