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Are auditors’ reliance on conclusions from data analytics impacted 

by different data analytic inputs? 
 
 

Abstract 
Global stakeholders have expressed interest in increasing the use of data analytics throughout the 
audit process. While data analytics offer great promise in identifying audit-relevant information, 
auditors may not uniformly incorporate this information into their decision making. This study 
examines whether conclusions from two data analytic inputs, the type of data analytical model 
(anomaly vs. predictive) and type of data analyzed (financial vs. nonfinancial), result in different 
auditors’ decisions. Findings suggest that conclusions from data analytical models and data 
analyzed jointly impact budgeted audit hours. Specifically, when financial data is analyzed 
auditors increase budgeted audit hours more when predictive models are used than when 
anomaly models are used. The opposite occurs when nonfinancial data is analyzed, auditors 
increase budgeted audit hours more when anomaly models are used compared to predictive 
models. These findings provide initial evidence that data analytics with different inputs do not 
uniformly impact auditors’ judgments.  
 
Key Words: Auditor judgment, Data analytics, Nonfinancial measures, Predictive analytics, 
Text mining  
 
JEL Classifications: M41, M42, C53, C55 
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I. INTRODUCTION 
 

Advances in technology have enabled auditors to increase their use of data analytics 

(AICPA 2015a; Coffey 2015; Ernst and Young 2015a; Deloitte 2018a). These advances have 

facilitated the development of more sophisticated data analytical tools that hold great promise for 

implementation in the audit process. These tools extend auditors’ capabilities in several ways, 

including robotic process automation (Cooper, Holderness, Sorensen, and Wood 2019; Cooper, 

Holderness, Sorensen, and Wood 2021), population testing, and identifying all outliers based on 

established criteria (Jans, Alles, and Vasarhelyi 2014; Kogan, Alles, Vasarhelyi, and Wu 2014; 

Titera 2013; Richins, Stapleton, Stratopoulos, and Wong 2017; Huerta and Jensen 2017). Data 

analytics can also be used for predictive modeling (Statistical Analysis System [SAS] Institute 

2014; Krahel and Titera 2015) and analysis of non-traditional unstructured data, such as text and 

videos (Holton 2009; Warren, Moffitt, and Byrnes 2015; Yoon, Hoogduin, and Zhang 2015; 

Vasarhelyi, Kogan, and Tuttle 2015; Loughran and Mcdonald 2016; PCAOB 2016; IAASB 

2017; PCAOB 2018). Enhanced capabilities of data analytics have caused global stakeholders to 

express interest in increasing the use of data analytics throughout the audit process (PCAOB 

2018; Coffey 2015; IAASB 2017; AICPA 2015b; Appelbaum, Kogan, and Vasarhelyi 2017; 

AICPA 2017). Data analytics hold the potential to fundamentally change the audit process by 

greatly reducing the distinction between analytical procedures and substantive testing (Jans et al. 

2014; Kogan et al. 2014).  

Data analytics can be viewed as an outgrowth of analytical procedures (Appelbaum et al. 

2017). Yet auditors may be averse to using certain data analytics, given their preference for 

simpler analytical procedures (Ameen and Strawser 1994; Trompeter and Wright 2010). Further, 

the PCAOB has identified deficiencies in auditors’ use of analytical procedures (PCAOB 2007a; 
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PCAOB 2007b; PCAOB 2008; PCAOB 2013; PCAOB 2014), suggesting that auditors use 

analytical procedures improperly (Messier, Simon, and Smith 2013). These improper uses may 

persist when data analytics are used. Incorporating data analytics into the audit process will 

allow auditors to reallocate time from labor-intensive tasks to judgment-intensive tasks (AICPA 

2015a; Brown-Liburd, Issa, and Lombardi 2015). Despite the increased capabilities of data 

analytics, if auditors do not use these tools properly, they may miss the opportunity to improve 

the audit process and audit quality (PCAOB 2016; PCAOB 2018). For example, the benefits 

from data analytics will go unrealized if auditors are overwhelmed with too much information 

(Issa and Kogan 2014; Brown-Liburd et al. 2015). Yet extant empirical research on how data 

analytics influence auditors’ judgments is limited to examining data analytic outputs. 

Specifically, prior data analytics research on auditors’ judgments is confined to that of A. Rose, 

J. Rose, Sanderson, and Thibodeau (2017), who demonstrate that auditors are not always 

effective at identifying patterns in data analytic visualizations.1 Therefore, the purpose of this 

study is to provide an initial examination of whether data analytic inputs, specifically the type of 

data analytical model used and the type of data analyzed, influence auditors’ decisions. 

According to cognitive fit theory, auditors will have greater cognitive fit with data 

analytics if they use analyses they are familiar with because cognitive fit increases with 

experience (Goodhue and Thompson 1995; Arnold and Sutton 1998; Dunn and Grabski 2001). 

Cognitive fit occurs when there is congruence between the underlying method or process used by 

a decision maker and a decision aid tool (Vessey and Galletta 1991; Al-Natour et al. 2008). 

While data analytics can perform new analyses of new types of data, auditors will experience 

                                                           
1 Several working papers examine other aspects of analytics: those of Austin, Carpenter, Christ, and Nielsen 2019; 
Emett, Kaplan, Mauldin and Pickerd 2019; Ballou, Grenier, and Reffett 2019; Barr-Pulliam, Brazel, McCallen, and 
Walker 2020; A. Rose, J.  Rose, Sanderson, Thibodeau, and Rotaru 2019; Koreff and Perreault 2020. 
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different levels of cognitive fit using the analytics based on the inputs (i.e., method or process) 

used. Anomaly models perform a distributional (bell curve) analysis to identify outliers (SAS 

2014), and auditors use basic versions of these models when performing analytical procedures 

(Cohen, Krishnamoorthy, and Wright 2000; Asare, Wright, and Trompeter 2000; Glover, 

Prawitt, and Wilks 2005; Brazel, Jones, and Zimbelman 2009). Predictive models analyze 

patterns of previously identified issues and compare them with current patterns (Kuenkaikaew 

and Vasarhelyi 2013). Although there is a lack of research examining auditors’ use of predictive 

models, practitioner sources state that these models are used (KPMG 2012; Deloitte 2013; Ernst 

and Young 2013; Sinclair 2015; PwC 2015; Agnew 2016b; Deloitte 2018b). Given the focus of 

prior academic research on anomaly models and practitioner sources discussing predictive 

analytics in practice, auditors’ experience using predictive and anomaly models is not expected 

to differ, making it critical to consider a second input: the type of data analyzed by these models.   

Data analytical models can analyze nonfinancial data, creating opportunities to identify 

audit-relevant information from new sources (Warren et al. 2015; Vasarhelyi et al. 2015;  

PCAOB 2016). Predictive models focus on analyzing financial data (Dechow, Ge, Larson, and 

Sloan 2011; Sinclair 2015; Perols, Bowen, Zimmermann, and Samba 2017), whereas analyses 

using anomaly models are mixed between financial and nonfinancial data (Glover et al. 2005; 

Cho, Roberts, and Patten 2010; Hobson, Mayew, and Venkatachalam 2012; Brazel, Jones, and 

Prawitt 2014). Therefore, I expect auditors’ judgments to be influenced more by conclusions 

drawn from financial data analyzed by predictive models than those analyzed by anomaly 

models, and more by conclusions drawn from nonfinancial data analyzed by anomaly models 

than those analyzed by predictive models.  
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An experiment was conducted to examine the impact of the type of data analytical 

models used (predictive vs. anomaly) and type of data analyzed (financial vs. nonfinancial) on 98 

auditors’ decisions. A central data analytics group presented participants with unusual activity 

identified by either anomaly or predictive data analytical models that analyzed either financial 

data (journal entries) or nonfinancial data (e-mail language). The results of this study show that 

different data analytic inputs do not always result in uniform decision-making. Specifically, the 

type of data analytical model used and the type of data analyzed have a differential impact on 

auditors’ decisions to increase budgeted audit hours. Auditors increase budgeted audit hours 

more in response to conclusions from financial data analyzed by predictive models than those 

analyzed by anomaly models. The opposite is true for analysis of nonfinancial data: auditors 

increase budgeted hours more in response to conclusions from nonfinancial data analyzed by 

anomaly models than those analyzed by predictive models. Thus, auditors’ cognitive fit from 

using different analyses results in different budgeted audit hours when viewing conclusions from 

different data analytic inputs (models and data). In follow-up interviews with 26 participants 

from the experiment, interviewees confirmed the tendency of predictive analytics to analyze 

financial information, whereas anomaly models are more likely to analyze both types of data.  

This study provides four contributions to the literature on the impact of data analytics on 

auditors’ decisions. To my knowledge, this is the first study to empirically demonstrate that 

different data analytic inputs, the type of model used and the type of data analyzed differentially 

influence auditors’ judgments. Although data analytics may identify audit-relevant information, 

this study shows that presenting auditors with findings from the analytics may result in different 

judgments, creating a potential missed opportunity to improve audit quality. Yet firms can 

capitalize on these differences to enhance auditor effort in response to identified audit risks by 
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simply tailoring the type of data analyzed by using different data analytical models. Second, this 

study provides initial evidence that predictive analytics influence auditors’ decision-making. 

Third, this study contributes to cognitive fit theory by extending cognitive fit to a new setting: 

auditors’ decisions using data analytics. Finally, alongside providing more opportunities to 

analyze unstructured data (Huerta and Jensen 2017), this study extends prior research on 

auditors’ decisions using nonfinancial data to unstructured data (Trompeter and Wright 2010; 

Brazel et al. 2014). 

II BACKGROUND 
Data Analytics  

Technology is constantly advancing (Hirsch 2015) and is causing significant changes in 

businesses (Eulerich and Kalinichenko 2018). As technology advances, the capability of, and 

interest in, data analytics and analysis of unprecedentedly large data sets in the accounting 

literature has expanded (Alles and Gray 2015). In line with this expansion of analytical 

capabilities, the AICPA’s Assurance Services Executive Committee (ASEC) has developed an 

“Audit Data Analytics Guide” to replace the Analytical Procedures Guide, suggesting that data 

analytics are an outgrowth and expansion of analytical procedures (AICPA 2015b; Appelbaum et 

al. 2017; AICPA 2017). Thus, analytical procedures are a predecessor and subset of data 

analytics.2 Similar to the AICPA’s ASEC committee, the Data Analytics Working Group 

(DAWG) has established the IAASB (IAASB 2017). The primary objectives of the DAWG are 

to determine how to effectively use data analytics to enhance audit quality and to consider 

revising international standards to enable the use of data analytics in the audit process (IAASB 

                                                           
2 Audit data analytics are defined as “the science and art of discovering and analyzing patterns, identifying 
anomalies, and extracting other useful information in data underlying or related to the subject matter of an audit 
through analysis, modeling, and visualization for the purpose of planning or performing the audit” (AICPA 2017). 
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2017). Finally, the PCAOB’s most recent strategic plan states that PCAOB oversight will not 

impede auditors’ use of data analytics that enhance audit quality (PCAOB 2018). 

The availability of data analytics does not guarantee that firms will incorporate these 

tools in the audit process, nor that identification of audit-relevant information by data analytics 

will influence auditors’ decisions. The mere availability of decision-aiding tools, such as data 

analytics, is insufficient to improve decision-making because decision makers may not use these 

tools (F. Davis, Bagozzi, and Washaw 1989; Messier 1995; Venkatesh, Morris, G. Davis, and F. 

Davis 2003). For example, decision makers may resist using new technologies and features of 

new technologies (Loraas and Wolfe 2006; Diaz and Loraas 2010; Loraas and Diaz 2011), even 

when the tool has always provided accurate information (Sutton, Young and McKenzie 1995).  

While the focus of this study is on auditors’ decisions using data analytics, given the 

limited prior empirical examination, insights on this topic can be obtained from examining 

auditors’ use of data analytics predecessor: analytical procedures (see Messier et al. 2013 for a 

review). Analytical procedures influence auditors’ decision-making (Asare et al. 2000; Glover et 

al. 2005; O’Donnell and Schultz 2003; Brewster 2011; Luippold and Kida 2012). Yet PCAOB 

inspections have identified deficiencies in auditors’ use of analytical procedures (PCAOB 2007a; 

PCAOB 2007b; PCAOB 2008) (e.g., insufficiently investigating unexpected fluctuations 

[PCAOB 2008; PCAOB 2014]).  

Although prior research has focused on auditors’ use of analytical procedures using 

financial measures (Asare et al. 2000; Knapp and Knapp 2001; O’Donnell and Schultz 2005), 

nonfinancial measures have been examined as well (Cohen et al. 2000; Brazel et al. 2009; Brazel 

et al. 2014). These nonfinancial measures include employee headcount, production space, 

warehouse space, trading volume, retail space, economic conditions, industry changes, growth, 
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and market penetration (Amir and Lev 1996; Cohen et al. 2000; Brazel et al. 2009; Brazel et al. 

2014). Nonfinancial measures can facilitate the development of more precise expectations 

(Trompeter and Wright 2010) and enhance decision-making (Messier et al. 2013).   

Data Analytical Models 

The two types of data analytical models examined in this study are anomaly models and 

predictive models. Anomaly models use a bell curve analysis to identify outliers (SAS 2014). 

Prior research on analytical procedures has focused on similar, albeit less sophisticated, anomaly 

models (Cohen et al. 2000; Glover et al. 2005; Brewster 2011), suggesting that auditors are 

experienced with the mental processes required to incorporate the results from these models into 

their decision-making. Anomaly models can identify data exhibiting abnormally high or low 

amounts compared with a peer group (DHHS 2014; SAS 2014), and changes from prior periods 

(Cohen et al. 2000; Brewster 2011). Although anomaly models can identify emerging events, a 

limitation of these models is that they are prone to identifying false positives (SAS 2014).  

Predictive models “analyze patterns and past performance in relationships to a particular 

desired outcome to predict the probability of that outcome” (SAS 2012, 2). As stated in a report 

to Congress, “A single predictive model is often as effective as multiple non-predictive models” 

(DHHS 2015, 9). Predictive analytics can identify patterns with previously unexamined variables 

to identify otherwise undetectable patterns indicative of a misstatement risk. This allows models 

to adapt to new events and independently develop new models (Kuenkaikaew and Vasarhelyi 

2013). Predictive models can aid in fraud detection (Perols et al. 2017; Grover et al. 2018). These 

models demonstrate that material misstatements are more likely to be filed subsequent to a 

reversal of abnormally high accruals (Dechow et al. 2011). Predictive models can also facilitate 

asset valuations as well as forecasting cash flows, revenue, and stock performance (Sinclair 
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2015; Schneider, Dai, Janvrin, Ajayi, and Raschke 2015; Agnew 2016a). Predictive models are 

more powerful and less prone to identifying false positives than other analytics, such as anomaly 

models (SAS 2014; DHHS 2015). However, these models are confined to identifying patterns 

with previous events (SAS 2014) and cannot identify patterns associated with emerging risks.  

III. THEORY AND HYPOTHESIS DEVELOPMENT 

Cognitive Fit 

Cognitive fit is the congruence of the cognitive process used by a decision maker and the 

underlying decision strategy of a tool used to facilitate decision-making (Vessey and Galletta 

1991; Arnold and Sutton 1998; Al-Natour et al. 2008). The Theory of Technology Dominance 

(TTD) identifies factors influencing implementation of a technology enabled tool (Triki and 

Weisner 2014), such as data analytics (Brown-Liburd et al. 2015). TTD states that a user’s 

reliance on a decision-aiding tool is a function of cognitive fit (as well as task experience, task 

complexity, and decision aid familiarity) (Arnold and Sutton 1998). Thus, according to TTD, an 

increase in cognitive fit will increase a decision maker’s reliance on a decision-aiding tool.3 TTD 

defines cognitive fit as “the degree to which the cognitive processes used with the decision aid to 

complete or solve a task match the cognitive processes normally used by an experienced decision 

maker” (Arnold and Sutton 1998, 180).  

A lack of cognitive fit between the decision maker and the decision-aiding tool requires 

the decision maker to mentally transform the information presented into a useful format. Mental 

transformation often causes the decision maker to discount or disregard information (Nisbett and 

                                                           
3 I opted against examining the influence of task experience, task complexity or familiarity with the decision-aiding 
tool on auditors’ decision-making because of concerns related to collecting appropriate data and using effective 
manipulations. Prior experience adjusting a budget was measured and did not differ across conditions. While prior 
cognitive fit research has focused on cognitive fit arising from different presentation formats (Vessey and Galletta 
1991), this study focuses on cognitive fit arising from users’ experience with the underlying process used by a 
decision-aiding tool (Goodhue and Thompson 1995; Arnold and Sutton 1998; Dunn and Grabski 2001). 
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Ross 1980), such as red flags identified (Masselli et al. 2002), ultimately impairing performance 

(Agarwal et al. 1996). When a decision maker is not required to mentally tranform information, 

it is less mentally taxing, which induces use of the information (Hampton 2005). Individuals seek 

to minimize cognitive effort (Triki and Weisner 2014), so they will forego mental effort at the 

expense of decision quality (Todd and Benbasat 1992).  

Because greater experience using a particular analysis increases cognitive fit (Goodhue 

and Thompson 1995; Dunn and Grabski 2001), auditors will exhibit greater cognitive fit with 

conclusions drawn from data analytics using familiar analyses. Even when not directly 

conducting analysis, decision makers’ cognitive fit will increase when they have prior experience 

using the analysis employed by the tool. Greater cognitive fit between the decision maker and the 

information provided makes it easier for the decision maker to acquire information (Messier 

1995) and, in turn, engage in quicker and more accurate problem solving (Vessey 1991; Vessey 

and Galletta 1991; Noga and Arnold 2002; Dunn, Gerrad, and Grabski 2017; Kelton et al. 2010; 

Tuttle and Kershaw 1998). While conclusions drawn from different analytics may be similar, or 

even identical, the underlying process used to arrive at that conclusion can vary significantly, and 

as a result, affect cognitive fit. Therefore, auditors will experience higher levels of cognitive fit 

when viewing conclusions from data analytics that use a familiar process.  

Auditors are experienced with the underlying process used by anomaly models because 

analytical procedures tend to represent less sophisticated versions of these models (Asare et al. 

2000; Cohen et al. 2000; Glover et al. 2005; Brewster 2011). Additionally, practitioner sources 

discuss the use of predictive models (PwC 2015; KPMG 2012; Deloitte 2018b; EY 2013; 

Sinclair 2015; Agnew 2016a; AICPA 2017). Therefore, auditors are expected to have 

comparable experience with the underlying processes of these models and the level of cognitive 
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fit experienced will not differ. Comparable experience with different models makes it critical to 

consider the impact of a second input, the type of data analyzed, on decision-making.  

Type of Data Analyzed 

Although the two types of models previously discussed are expected to be used at similar 

levels, extant literature shows that predictive models are typically used to analyze financial data, 

whereas anomaly models are mixed. Anomaly models can make comparisons of nonfinancial 

data with financial data (Brazel et al. 2009; Brazel et al. 2014; Brazel and Schmidt 2019) and 

with a peer group to identify high amounts of certain language (Cho et al. 2010; Li 2010; 

Humpherys et al. 2011; Davis and Tama-Sweet 2012; Hobson et al. 2012; Warren et al. 2015). 

These comparisons suggest that anomaly models more commonly analyze nonfinancial data than 

predictive models do, giving rise to higher cognitive fit. Accordingly, conclusions from 

nonfinancial data will have a greater impact on auditors’ decisions when analyzed by anomaly, 

as compared with predictive, models. 

Unlike in the case of nonfinancial data, when considering the analysis of financial data, 

predictive models focus almost exclusively on analyzing financial data (Dechow et al. 2011; 

Sinclair 2015; Agnew 2016b; Perols et al. 2017; Nallareddy and Ogneva 2017), whereas 

anomaly models analyze financial and nonfinancial data (Cohen et al. 2000; Glover et al. 2005; 

Cho et al. 2010; Hobson et al. 2012; Brazel et al. 2014). Predictive models in accounting tend to 

focus on financial data such as accruals, financial performance, and earnings dispersion (Dechow 

et al. 2011; Sinclair 2015; Agnew 2016b; Perols et al. 2017; Nallareddy and Ogneva 2017). 

Therefore, when analyzing financial data, auditors will have more experience, and greater 

cognitive fit using predictive models than using anomaly models. Accordingly, conclusions from 
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financial data will have a greater impact on auditors’ decisions when analyzed by predictive, as 

compared with anomaly, models. 

Auditors are expected to have comparable experience using anomaly and predictive 

models. Yet auditors will experience greater cognitive fit and their judgments will be influenced 

more by conclusions from predictive analytics that analyze financial data as compared with 

nonfinancial data. Alternatively, there is no significant distinction in the cognitive fit expected 

for anomaly models based on the data analyzed. Therefore, I expect auditors to rely more on 

conclusions from analyzing financial data using predictive analytics than those using anomaly 

analytics, and more on conclusions from analyzing nonfinancial data using anomaly analytics 

than those using predictive analytics.  

Hypothesis: Auditors will rely more on conclusions from predictive (anomaly) data 
analytic models of financial data than those from anomaly (predictive) data analytic 
models of financial (nonfinancial) data. 
 

IV METHODS - EXPERIMENT 

Participants 

Using an online survey, I collected and analyzed responses from 98 external financial 

statement auditors identified through professional connections.4 Participants averaged 9.0 years 

of audit experience. Thirty-seven participants (38%) had the title of manager, director, or partner. 

National or international firms employed sixty participants (61%). Seventy-six participants 

                                                           
4 To incentivize participants, upon completion of the survey, they could choose from a list of charities to which a $5 
donation would be made on their behalf. This study was approved by University of Central Florida’s Institutional 
Review Board. Six participants failed manipulation checks (three in the Predictive-Nonfinancial condition, two in 
the Predictive-Financial condition, and one in the Anomaly-Financial condition). The results presented include these 
participants; however, excluding them from the analysis does not change the inferences drawn from this study 
except as noted in footnote 14. Despite passing both manipulation checks, one participant chose to decrease 
budgeted audit hours by 10 percent in response to the risk identified, and was excluded from the analysis.  
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(78%) were CPAs. Sixty-one participants (62%) reported prior experience using data analytics.5 

See Table 1 for additional demographic information. 

[INSERT TABLE 1 HERE] 

Experimental Task and Procedure 

 Using a case adapted from Brazel and Agoglia (2007),6 participants were told to assume 

the role of senior auditor for Madison Inc., a privately held midsize sporting equipment 

manufacturer. Participants received background information about the client and that their firm’s 

Central Data Analytics Group identified possible unusual activity related to Madison’s revenue 

cycle.7 While participants could have conducted analyses on their own, they were presented with 

conclusions from the Central Data Analytics Group as a way to affect cognitive fit without 

requiring them to spend significant time conducting analyses. The Central Data Analytics Group 

was described consistently across conditions.   

To ensure that participants carefully considered the relevance of, and did not blindly rely 

on, information provided before incorporating it into their judgments, the client was described as 

low risk and the Central Data Analytics Group was described as not consisting of CPAs and at 

                                                           
5 Sixty-eight percent of participants in both financial data conditions reported prior experience using data analytics. 
Sixty-two and a half and fifty percent of participants in the predictive-nonfinancial and anomaly-nonfinancial 
conditions, respectively, reported experience using data analytics. Prior experience using data analytics did not 
significantly differ across conditions (p > 0.10). However, it is important to note that the hypothesis is based on 
auditors’ familiarity with the underlying analysis employed by data analytics, not necessarily the use of analytics.  
6 This case has been adapted by subsequent research (Hirsch 2020). 
7 Section 1.51 of the AICPA’s Audit Data Analytics (ADA) guide provides documentation guidelines for auditors 
when using data analytics (as in the case of this study in which a central data analytics group provides the analysis). 
Per these guidelines, documentation may include the following: 

• risks of material misstatement that the procedure intended to address at the financial statement level or at 
the assertion level 

• The ADA and related tools and techniques used 
• The identifying characteristics of the specific items or matters tested  
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times making inaccurate judgments.8 Next, participants received an explanation of the underlying 

logic of the respective models and data analyzed. Participants were told that the Central Data 

Analytics Group identified a misstatement with a possible range just above performance 

materiality of $304,000. Specifically, the conclusion reached read in part “Nonetheless, the 

Central Data Analytics Group stated that by using (predictive analytical models / anomaly 

analytical models) to analyze (journal entries / e-mails), they believe there is a 56% risk that 

revenue is overstated by some amount between $270,000 and $310,000.” Participants were then 

asked about the extent they would change budgeted hours and rely on the unusual activity 

identified for their fraud risk assessment. After completing the case, participants answered 

manipulation check questions and completed demographic questions. 

Independent and Dependent Variables 

Two independent variables (the type of data analytical models used and type of data 

analyzed) were manipulated between participants resulting in a 2 X 2 design. The model type 

manipulation described the Central Data Analytics Group as using either anomaly or predictive 

models. To ensure participants understood the manipulation, I included a description of the 

models’ application. In the anomaly models’ condition, I informed participants that identification 

of unusual activity occurred by comparing Madison Inc.’s current year activity with the current 

year activity of other sporting goods manufacturing clients to identify high and low amounts. 

This is consistent with anomaly models’ making high or low comparisons against a peer group 

(Cho et al. 2010; Li 2010; Humpherys et al. 2011; Price, Sharp, and Wood 2011; Davis and 

Tama-Sweet 2012; Hobson et al. 2012; SAS 2014; DHHS 2014). The manipulation discussing 

                                                           
8 Informal conversations between the researcher and auditors from five international firms revealed that data 
scientist groups (or their equivalents) have provided documentation that contained errors or ambiguous information.  
One audit manager stated specifically, “In my experience, they are never spot on”.    
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the analysis by the anomaly models read, in part, “Anomaly models identify statistical outliers 

indicating very high or low amounts based on your firm’s client base.”  

In the predictive model condition, I informed participants that identification of unusual 

activity occurred by identifying a similarity in Madison Inc.’s current year activity to the activity 

of a different sporting goods manufacturing client when that client had a material misstatement. 

This is consistent with predictive models’ ability to identify future events using historical 

patterns (Dechow et al. 2011; Perols et al. 2017). The manipulation discussing the analysis by the 

predictive models read, in part, “Predictive models compare information in the data collected 

from clients associated with previously identified events/occurrences to current information.”  

I described the type of data analyzed as either financial or nonfinancial. For the financial 

data manipulation, the Central Data Analytics Group analyzed the ratio of the number of journal 

entries just below performance materiality to the total number of journal entries.9 For the 

nonfinancial data manipulation, the Central Data Analytics Group analyzed the ratio of 

optimistic language in external e-mails to that in internal e-mails.10 E-mails have been analyzed 

as part of forensic audits, including by the Federal Trade Commission and the Department of 

Justice, and during the Enron investigation (Torpey, Walden, and Sherrod 2009, 2010; 

Debreceny and Gray 2011; Ernst and Young 2013; Beach and Schiefelbein 2014). Companies’ 

use of optimistic language differs. For example, poorer environmental performers use more 

optimistic language in 10-K disclosures (Cho et al. 2010), and earnings press releases contain 

more optimistic language than MD&A disclosures (Davis and Tama-Sweet 2012). 

                                                           
9 This ratio is a risk factor. For example, the HealthSouth fraud began with numerous fraudulent journal entries just 
below performance materiality in an effort to avoid auditor detection (Beam 2015; Smith 2016). 
10 E-mails can provide an important source of evidence about the background and intent of managerial actions 
(Debreceny and Gray 2011), and have been used by the SEC to monitor credit agencies (SEC 2008).  
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 Participants responded to how they would change budgeted audit hours for revenue from 

the initial budget of 30 hours as the primary dependent variable. A sliding scale anchored at 

negative 100 percent and positive 100 percent measured the primary dependent variable (Bud). 

The reliance scale from Hampton (2005) was adapted and the total scale was included as a 

second dependent variable (Rel) to measure participants’ likelihood of relying on the conclusions 

from the analytics for their fraud risk assessment.11 Because the instrument described the risk 

identified as “unusual activity” and not a fraud risk, budgeted audit hours was chosen as the 

dependent variable (as opposed to reliance for fraud risk).  

The five items comprising the Rel variable were measured on seven-point Likert scales. 

The first item elicited participants’ belief that the information identified by the data analytics 

represents a fraud risk. The second item measured participants’ confidence in the accuracy of the 

information identified by the data analytics. The third item measured the participants’ level of 

confidence in evaluating fraud risk without the data analytics and was reverse coded. Item four 

addressed participants’ willingness to incorporate the findings from the data analytics into their 

fraud risk assessment. The final item captured participants’ willingness to rely on the findings 

from the data analytics. To assess the reliability of Rel, Cronbach’s alpha was calculated as 0.83, 

which is above the recommended threshold of 0.70 (Nunnally 1978).  

V RESULTS - EXPERIMENT 

Identification of Potential Covariates 

Participants in all conditions provided information regarding their experience using data 

analytics, specifically with both anomaly and predictive models. Participants with experience 

                                                           
11 Participants’ Fraud Risk Assessment was also measured, but did not differ across conditions. While cognitive fit 
has been shown to affect task completion time (Dunn et al. 2017), completion time was not examined because some 
participants appeared to complete the task over more than one sitting. 
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using data analytics were asked to respond on two five-point Likert scales regarding how 

experienced they were at using anomaly and predictive models with endpoints of “Not at all 

experienced” (1) and “Extremely experienced” (5). A t-test revealed no significant difference (t = 

0.497) in participants’ experience using predictive models (mean 2.559) as compared with 

anomaly models (mean 2.590).12 This demonstrates the use of anomaly models at comparable 

levels to predictive models in practice. Examination of demographic variables for potential 

covariates identified the participants’ employer size as a covariate for Bud such that, participants 

employed by larger firms recommended greater budgeted audit hours.  

Test of Hypotheses 

Table 2 Panel A provides descriptive statistics for the Bud dependent variable. The 

descriptive statistics show that on average, participants across conditions increased budgeted 

audit hours by approximately 16 percent. The ANCOVA results presented in Table 2 Panel B 

show that conclusions from the type of data analytical model used interacts with the type of data 

analyzed to affect participants’ determination of budgeted audit hours (F = 6.20, p = 0.015). The 

results presented in Table 2 support the Hypothesis.13 These results demonstrate that when data 

analytics analyze nonfinancial data, participants increase budgeted audit hours more in response 

to conclusions from anomaly models than to those from predictive models. The opposite is true 

for data analytics analyzing financial data: participants increase budgeted audit hours more in 

                                                           
12 All statistical tests presented are two tailed. The means are less than the midpoint of the scale labeled “Moderately 
experienced” (p<0.01 in both instances). Participants with data analytics experience reported more experience using 
anomaly models in the predictive conditions than in the anomaly conditions (2.97 vs. 2.17, p<0.01). Yet prior 
experience using anomaly models was not a significant covariate (p=0.47) when included in the primary ANCOVA.   
13 Additional analysis was conducted (1) excluding directors and partners, (2) excluding staff, (3) excluding auditors 
employed by local firms (with and without the size covariate), (4) replacing the Size variable with an indicator 
variable for being employed by an international firm, (5) including an indicator variable for managers, directors, and 
partners, (6) including an indicator variable for staff, (7) excluding the Size covariate, (8) controlling for 
professional experience, (9) controlling for Audit Experience, and (10) controlling for Age. The Hypothesis 
remained supported in all instances.   
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response to conclusions from predictive models than to those from anomaly models. Thus, firms 

can enhance audit effort in response to identified audit risks by tailoring the type of data 

analyzed by different analytical models. Figure 1 provides a graphical representation of the 

results for the Bud dependent variable.  

[INSERT TABLE 2 HERE] 

[INSERT FIGURE 1 HERE] 

Because of the significant interactive effect (p = 0.015) on budgeted audit hours 

identified in Table 2 Panel B, I analyzed simple effects while controlling for employer firm size. 

Results are presented in Table 2 Panel C. Although simple effects are not appropriate as the sole 

test of an interaction, they can provide a supplemental test of theory (Guggenmos et al. 2018). 

The results presented in Table 2 Panel C show that the effect of the type of data analytical 

models used on budgeted audit hours depends on the type of data analyzed. Specifically, when a 

conclusion was reached from analyzing financial data, participants increase budgeted audit hours 

more in response to unusual activity identified by predictive models as compared with anomaly 

models (F = 2.88, p = 0.093).14 Alternatively, when a conclusion was reached from analyzing 

nonfinancial data, participants increase budgeted audit hours more in response to unusual activity 

identified by anomaly models as compared with predictive models (F = 3.33, p = 0.071). These 

results provide additional support for the Hypothesis. 

Additional analysis examined participants’ increase in budgeted audit hours when 

predictive analytics analyzed different types of data. Results indicate that when predictive 

models were used to draw conclusions, participants increase budgeted audit hours more when 

these models analyzed financial data than when the analyzed nonfinancial data (F = 6.86, p = 

                                                           
14 Excluding participants that failed manipulation checks results in this finding becoming insignificant (p>0.10). 
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0.010). However, participants’ increase in budgeted audit hours did not differ based on the type 

of data analyzed by anomaly models (F = 0.82, p = 0.366).15 

Table 3 Panel A provides descriptive statistics for the Rel dependent variable to measure 

auditors’ reliance on the conclusions from the analytics for their fraud risk assessment. The 

descriptive statistics show that, on average, participants across conditions were slightly willing to 

rely on the conclusions from the analytics for their fraud risk assessment. The ANCOVA results 

presented in Table 3 Panel B show that conclusions from the type of data analytical model and 

the type of data analyzed do not jointly influence auditors’ reliance on the analytics for their 

fraud risk assessments (F = 0.32, p = 0.571). The lack of support for the Rel variable in light of 

support for the Bud variable may be attributable to auditors’ higher threshold to raise fraud risk 

given the substantial amount of follow-up work required when increasing fraud risk as opposed 

to budgeted audit hours.   

VI METHOD - INTERVIEWS 

 Consistent with the experiment above, prior accounting research examining cognitive fit 

tends not to include a measured cognitive fit variable. For example, prior accounting cognitive fit 

research manipulates information presentation formats (Dunn and Grabski 2001; Dunn et al. 

2017; Dunn and Grabski 2000; Frownfelter-Lohrke 1998; Dilla and Steinbart 2005), and 
                                                           
15 I considered the possibility that the predictive-nonfinancial condition was driving the results by having the lowest 
mean, but represents a scenario that does not occur in practice. If this condition never exists in practice, participants 
decisions may have been attributable to a lack ability to make an informed decision in this scenario, rather than a 
lack of cognitive fit. I took two measures to ensure that an unrealistic condition was not driving the results: First, 
examination of interview data (see below) revealed that predictive analytics indeed analyze non-financial data 
(although much less common than analyzing financial data). Therefore, auditors have experience, albeit limited, 
using predictive analytics to analyze financial data and the predictive-nonfinancial condition is not a scenario that 
never occurs in practice. Second, following the guidance set forth by Guggenmos et al. (2018), results of a planned 
contrast, while controlling for employer firm size, revealed that participants in the predictive-nonfinancial condition 
recommended the lowest increase in budgeted hours (F = 4.83, p = 0.031) and that participants in the predictive-
financial condition recommended the greatest increase in budgeted hours (F = 4.30, p = 0.041). These results are 
consistent with the graphical depiction of results in Figure 1 and the simple effects shown in Table 2 Panel C. Taken 
together, the results of the planned contrasts show that support for the hypothesis is not driven by only one of the 
financial data conditions.  
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participants level of education (i.e., undergraduate student vs. graduate student) (Dunn and 

Grabski 2001; Noga and Arnold 2002). Although measuring cognitive fit in the initial 

experiment with all participants using a well established and validated scale would have been the 

optimal approach, unfortunately a limitation of prior research is that no such scale exists.  

Given the lack of a well established and generally accepted scale to measure cognitive fit, 

I was unable to reliably measure cognitive fit in the experiment. To address this limitation, I 

conducted follow up interviews with 26 participants who self-reported completing the 

experiment. This allowed me to explore the relationship between auditors’ prior experience and 

familiarity with different analyses, and the results of the experiment. Conducting these 

interviews allowed me to collect first hand experience-related data (e.g., participants experience 

using data analytics as well as how this experience increases cognitive fit and the likelihood of 

adoption of the analytics) from part of the initial sample and examine cognitive fit at the time of 

the initial experiment (Malsch and Salterio 2016).16 Ultimately, conducting interviews allowed 

me to understand the complexity of auditors behavior beyond capturing a single (unvalidated) 

cognitive fit measure.  

Semi-structured interviews were used to collect data on topics of interest, while 

permitting the researcher to be flexible during the interview (Miller and Crabtree 1994). The 

results from the experiment demonstrate that auditors use predictive and anomaly models at 

comparable levels, thus I did not ask interviewees to compare their use of predictive and 

anomaly analytics (a required criteria for being interviewed was self-reporting completing the 

experiment, so I already captured this data from interviewees). Rather, the focus of the 

interviews was on factoring impacting data analytic adoption and use (i.e., cognitive fit) and the 
                                                           
16 While I considered conducting an additional experiment, this approach would require development and validation 
of a cognitive fit scale, likely following a process similar to Hurtt (2010), and is beyond the scope of this study. 
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proportion of time the interviewees had experience with the individual models analyzing 

different data. Interviewees were asked about their experience using predictive and anomaly 

analytics to prompt recall of their experience using these analytics. Next, I asked interviewees to 

compare their level of experience using each analytical model analyzing financial and 

nonfinancial data. Finally, I asked interviewees about factoring impacting data analytic use. See 

Appendix A for the interview protocol.17 The interviews lasted an average of 24 minutes and 

were conducted via Zoom or phone. All but one interview was recorded and subsequently fully 

transcribed by the researcher or a research assistant.  

 A data-centric analysis was employed (Benbasat et al. 1987; Eisenhardt 1989; Miles and 

Huberman 1994; Yin 2009), which views data as “an entity representing a fixed meaning, and 

emphasizes the use of systematic logical operations of the data to derive knowledge or findings” 

(Sarker et al. 2018a, 761). I coded the data by identifying quotes discussing familiarity with 

processes used by analytics and experience using analytics as factors impacting use of analytics 

and making comparisons between different data analytic inputs. These quotes were compiled to 

accomplish data display and aid in the conclusion drawing/verification process (O’Dwyer 2004; 

O’Dwyer 2011; O’Dwyer et al. 2011), with the quotes best supporting the main findings being 

selected for inclusion below. Given the need for objectivity of coding and analysis in qualitative 

studies (Malsch and Salterio 2016; Power and Gendron 2015; Sarker et al. 2018b), to ensure the 

accuracy, reliability, validity, and trustworthiness of the findings, a research assistant 

independently followed the same process.18 Data saturation, the point at which additional 

                                                           
17 The interview protocol was modified after the second interview.  
18 Cohen’s Kappa was 0.814, which is above the recommended threshold of 0.80 (Neuendorf 2002). All coding 
discrepancies were resolved. 
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interviews did not contradict nor add any significant information (Sutton et al. 2011; Malsch and 

Salterio 2016), was achieved. 

VII RESULTS – INTERVIEWS 

 Consistent with prior cognitive fit literature, interviewees discussed that an understanding 

of the processes used by the analytics (Vessey and Galletta 1991; Arnold and Sutton 1998; Al-

Natour et al. 2008), and prior experience using the analytics (Goodhue and Thompson 1995; 

Dunn and Grabski 2001), increases their likelihood to use conclusions from the analytics. 

Interviewee’s also discussed their experience using analytics with different inputs in line with the 

argument set forth in the literature review. Taken together, the interviews provide evidence for 

experience using familiar analyses increasing adoption of data analytics, and the results of the 

experiment being attributable to cognitive fit.   

 Interviewees discussed the need to understand and experience cognitive fit with the 

analysis performed by the analytics to use the conclusions from the analytics. This need to 

understand, attributable to a lack of cognitive fit, is in line with decision makers need to mentally 

transform unfamiliar information into a useful format (Nisbett and Ross 1980). Specifically, 

interviewees noted: 

[when using new method or data being] … a little potentially aware that I have never 
looked at this before or done it before. … I would want to make sure that I had the right 
thought process or have the right data and want to make sure everything is right before I 
jump to any conclusions (Interviewee #7) 

I think if someone can understand how the analytics are getting to their certain conclusion 
then I think that that's really helpful (Interviewee #18) 

Interviewees also discussed how prior experience using analytics induces use of the 

analytics. This is in line with prior literature highlighting prior experience induces cognitive fit 
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(Goodhue and Thompson 1995; Dunn and Grabski 2001), and use of information. Interviewees 

specifically stated: 

I think, you know, it all comes down to your experience using it … So I'd say those are 
probably the largest one [resistance to using analytics] is the lack of experience … and I 
think that's why people would push away from using data analytics (Interviewee #24) 

anytime there's new data, I'm a little bit nervous. … has it been done before? Is it tried 
and true? If it's tried and true or if it's been used and it's worked … I think if it's been 
tried before, an auditor’s willingness [to use the analytics] will increase. If the auditor has 
experience with the process or with the client I think there can probably be higher 
willingness to use certain analytics. (Interviewee #16) 

Experience with different inputs   

The results from the experiment demonstrate that auditors have comparable experience 

using anomaly and predictive models. Consistent with the argument in the literature review, 

overall, interviewees highlighted the tendency for predictive analytics to focus on the analysis of 

financial data, as opposed to nonfinancial data. Alternatively, the use of anomaly analytics 

tended to focus more on a mix of financial and nonfinancial data. While interviewees discussed a 

greater focus of predictive analytics on financial data than anomaly analytics, they acknowledged 

that these analytics analyze nonfinancial data. Interviewees discussed the tendency for predictive 

analytics to focus on analysis of financial data when stating: 

80 percent are a number … based on financial data and then the other 20 percent is … 
nonfinancial. (Interviewee #4) 
 
Primarily financial data was the focus. In order to interpret the results, we certainly 
needed to have nonfinancial data, but all of the inputs were financial. (Interviewee #17) 
 
My experience personally with nonfinancial data is probably limited. So, I think in terms 
of financial data … it’s more prevalent. (Interviewee #18) 

 
 In discussions of the use of anomaly analytics, such a distinction between analysis of 

financial and nonfinancial data was not as apparent. Interviewees discussed greater use of 
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nonfinancial data for anomaly analytics than for predictive analytics. Interviewees discussed the 

use of nonfinancial data being a necessary piece of analysis performed by anomaly analytics:   

It’s kind of hard to detach the two [financial and nonfinancial data] from each other. It’s 
because you kind of use your knowledge of any nonfinancial circumstances to kind of 
frame what would be your anomalies. (Interviewee #6) 
 
For the anomaly analytics, I don’t think that there was a disparity within inputs 
(Interviewee #13) 
 
… we did compare that financial data to nonfinancial data ... we did put a lot of weight I 
think into the nonfinancial [data]. (Interviewee #16) 

 
VIII CONCLUSION 

Technological advancements have enabled the development of more sophisticated data 

analytics. These analytics hold the potential to improve the audit process by facilitating analysis 

of larger data sets of traditional data (Jans et al. 2014), along with analysis of new types of data 

(Warren et al. 2015; PCAOB 2016; Agnew 2016a; IAASB 2017). Despite the interest from 

practice to increase the use of data analytics throughout the audit process (IAASB 2017; PCAOB 

2016; PCAOB 2018b), limited empirical research has examined the impact of data analytics on 

auditors’ decisions, including a lack of research examining analytic inputs (Rose et al. 2017).  

This study contributes to the literature by providing initial empirical evidence that 

conclusions from different data analytic inputs influence auditors’ decisions. When auditors view 

conclusions from data analytics that analyzed financial data, they increase budgeted hours more 

from predictive models than from anomaly models. The opposite is true when they view 

conclusions from analysis of nonfinancial data: a greater increase in budgeted hours occurs from 

anomaly models than from predictive models. The results of this study suggest that using data 

analytics to increase audit quality will require more than presenting auditors with the conclusions 

from the data analytics. Specifically, auditors’ reliance on the analytics varies according to 
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factors such as cognitive fit, and may vary according to the other variables TTD discusses. 

However, firms can capitalize on these differences to enhance auditor effort by simply tailoring 

the type of data analyzed with different data analytical models.  

The results of this study contribute to the TTD and cognitive fit literature by 

demonstrating that cognitive fit with data analytics influences budgeted audit hours decisions. In 

line with TTD, I find that greater cognitive fit is influenced by users’ prior training and 

experience (Goodhue and Thompson 1995; Dunn and Grabski 2001), and these differences in 

experience contribute to different levels of cognitive fit and ultimately decision-making. Follow-

up interviews with participants from the experiment showed that participants had greater 

experience using predictive analytics that analyze financial data as compared with nonfinancial 

data, yet this difference is not as apparent for anomaly analytics. These experience levels 

analyzing different analyses are consistent with auditors’ change in budgeted hours. 

Because this is the first study to empirically examine auditors’ use of data analytics with 

different inputs, it has some limitations, along with opportunities for future research. A limitation 

of this study is that it examined only two types of data analytical models that analyzed two types 

of data on one outcome. Future research could examine how the inputs in this study and other 

inputs (for example, analysis of internal versus external data) resulting in different outputs (such 

as visualizations versus text) influence auditors’ decisions when using data analytics. Future 

research should seek to examine what combination of data analytical models (i.e., using anomaly 

models in conjunction with rules-based models19) and data results in the greatest change in 

auditors’ decisions, because using multiple data types provides more useful insights than relying 

                                                           
19 Rules based analytics identify data based on predetermined criteria (SAS 2014) and can identify when violations 
of established business processes exceed a predetermined threshold (Jans, Lybaert, and Vanhoof 2010; Jans, Alles, 
and Vasarhelyi 2013), and when transactions exceed a certain threshold (Christensen, Glover, and Wood 2012). 
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on only one type of data (Richins et al. 2017). Given that internal auditors’ decisions affect 

senior management (Carcello, Eulerich, Masli, and Wood 2018; Carcello, Eulerich, Masli, and 

Wood 2020), and operating performance (Jiang, Messier, and Wood 2020), future research may 

seek to examine the impact that data analytics have on internal auditors’ judgments. Further, 

extant research provides mixed results about auditors’ performance using decision-aiding tools 

(Beck, Limor, Arunchalam, and Wheeler 2014). Therefore, future research may seek to examine 

how auditors’ use of data analytics with inherent biases affects performance and what 

remediation strategies (Farkas and Hirsch 2016) may be effective at reducing these biases. 

Another limitation of this study is that cognitive fit was not directly measured in the 

initial experiment. Unfortunately, a limitation of several cognitive fit studies in accounting is not 

measuring cognitive fit (Dunn and Grabski 2001; Dunn et al. 2017; Dunn and Grabski 2000; 

Frownfelter-Lohrke 1998; Dilla and Steinbart 2005), which is likely somewhat attributable to a 

lack of a generally accepted scale to measure cognitive fit. While I was able to obtain data 

related cognitive fit from some of the participants in the initial experiment to partially mitigate 

this limitation, future research should develop and validate a scale to measure cognitive fit 

(potentially following a process similar to Hurtt (2010)) to better test cognitive fit theory.   

These results highlight the importance of public accounting firms to properly train their 

employees on the use of data analytics to enhance cognitive fit and facilitate uniform decision-

making. Thus, future research could examine how to most effectively induce auditors’ use of 

data analytics to improve decision making. For example, despite individuals’ aversion to 

trainings (Baxter, Holderness, and Wood 2016), future research may seek to examine the most 

effective training methods to induce auditors’ reliance on data analytics. Finally, because 
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auditors have been shown to underreport hours, future research may seek to examine auditors’ 

likelihood of underreporting hours using data analytics (Pickerd, Summers, and Wood 2015). 
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Figure 1 
Graphical Depiction of Results for Bud 

 
 

  
 

 
Bud measures particpants percentage change in budgeted audit hours. Participants used a slider 
scale ranging from -100% to 100% to indicate their desired change in budgeted audit hours. 
 
 

 



37 

 

Table 1 
Demographic Profile of Participants (n=98) 

   GENDER 
   Predictive  Anomaly 
   n %  n % 

Financial Male  17 68.0%  13 52.0% 
 Female  8 32.0%  12 48.0% 
        

Nonfinancial Male  17 70.8%  15 62.5% 
 Female  7 29.2%  9 37.5% 

        
   TITLE 

   Predictive  Anomaly 
   n %  n % 

Financial Staff  6 24.0%  6 24.0% 
 Senior  7 28.0%  6 24.0% 
 Supervisor  1 4.0%  0 0.0% 
 Manager  5 20.0%  6 24.0% 
 Director  2 8.0%  1 4.0% 
 Partner  4 16.0%  6 24.0% 
        

Nonfinancial Staff  5 20.8%  5 20.8% 
 Senior  8 33.3%  11 45.8% 
 Supervisor  3 12.5%  3 12.5% 
 Manager  5 20.8%  3 12.5% 
 Director  0 0.0%  1 4.2% 
 Partner  3 12.5%  1 4.2% 
        

   FIRM SIZE 
   Predictive  Anomaly 
   n %  n % 

Financial Local  2 8.0%  6 24.0% 
 Regional  11 44.0%  3 12.0% 
 National  4 16.0%  8 32.0% 
 International  8 32.0%  8 32.0% 
        

Nonfinancial Local  3 12.5%  0 0.0% 
 Regional  6 25.0%  7 29.2% 
 National  8 33.3%  5 20.8% 
 International  7 29.2%  12 50.0% 
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   AUDIT MANUFACTURING CLIENTS 

   Predictive  Anomaly 
   n %  n % 

Financial Yes  13 52.0%  13 52.0% 
 No  12 48.0%  12 48.0% 
        

Nonfinancial Yes  15 62.5%  9 37.5% 
 No  9 37.5%  15 62.5% 
        

   AUDIT PRIVATELY HELD CLIENTS 
   Predictive  Anomaly 
   n %  n % 

Financial Yes  22 88.0%  18 72.0% 
 No  3 12.0%  7 28.0% 
        

Nonfinancial Yes  22 91.7%  20 83.3% 
 No  2 8.3%  4 16.7% 

 
Note: More participants in the predictive-nonfinancial condition reported auditing manufacturing 
clients than participants in the anomaly-nonfinancial condition (p=0.0866).  Participants in the 
anomaly-financial condition reported higher titles than participants in the anomaly-nonfinancial 
condition (p=0.0778).  Neither of these differences were significant when included in an 
ANCOVA for either dependent variable.   
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Table 2 
Descriptive Statistics and Tests of Hypothesis 

Percent Increase in Budgeted Audit Hours 
 
 
 
Panel A - Descriptive Statistics - Change in Budgeted Audit Hours mean [standard deviation]

Type of Data Predictive model Anomaly model Overall
Financial 19.480 14.160 16.820

[14.021] [9.616] [12.199]
n=25 n=25 n=50

Nonfinancial 11.375 18.417 14.896
[9.458] [11.769] [11.146]
n=24 n=24 n=48

Overall 15.510 16.245
[12.567] [10.827]

n=49 n=49

Panel B: ANCOVA Results
Source of variation df MSE F-Statistic p-value

Type of Model 1 2.030 0.02 0.898
Type of Data 1 174.151 1.42 0.237
Types of Model*Type of Data 1 762.480 6.20 0.015
Firm Size 1 752.275 6.12 0.015
Error 93 122.890

Panel C: Follow-Up Tests of Simple Effects controlling for employer Size
Source of variation df MSE F-Statistic p-value
Effect of Type of Model on Nonfinancial Data 1 409.033 3.33 0.071
Effect of Type of Model on Financial Data 1 353.780 2.88 0.093
Effect of Type of Data on Predictive Models 1 843.339 6.86 0.010
Effect of Type of Data on Anomaly Models 1 101.252 0.82 0.366

Type of Model

Dependent variable is the percent change in budgeted audit hours.  Participants used a slider scale ranging from -100% to 100% to select 
their answer.
The Type of Model was manipulated by varying whether the participants was told the Central Data Analytics Group used Anomaly models 
(Type of Model=1) or Predictive models (Type of Model=0).  Type of Data was manipulated by varying whether the Central Data Analytics 
analyzed financial data (Type of Data=1) or nonfinancial data (Type of Data=0).
Firm Size measures the size of the accounting firm the participant is employed by.  Local firms are measured as 1, regional firms as 2, 
national firms 3, and international firms as 4.
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Table 3 

Descriptive Statistics and Tests of Hypothesis 
Reliance 

 
Panel A - Descriptive Statistics - Reliance mean [standard deviation]

Type of Data Predictive model Anomaly model Overall
Financial 22.600 21.920 22.260

[5.635] [5.515] [5.528]
n=25 n=25 n=50

Nonfinancial 20.333 20.958 20.646
[6.404] [5.086] [5.730]
n=24 n=24 n=48

Overall 21.490 21.449
[6.069] [5.276]
n=49 n=49

Panel B: ANCOVA Results
Source of variation df MSE F-Statistic p-value

Type of Model 1 0.019 0.00 0.981
Type of Data 1 63.809 1.98 0.163
Types of Model*Type of Data 1 10.427 0.32 0.571
Error 94 32.235

Type of Model

Dependent variable is the Reliance scale adapted from Hampton (2005). The reliance dependent variable is the total score of five questions 
answered on 7 point likert scales. These questions measure participants 1) agreement that the information identified by the data analytics 
represents a fraud risk, 2) confidence in the accuracy of the findings of the data analytics, 3) confidence to evaluate fraud risk without the 
analytics (reverse coded), 4) willingness to incorporate the findings from the analytics into their fraud risk assessment, 5) willingness to rely 
on the findings of the data analytics while assessing fraud risk. The total Reliance score may range from 5 to 35. The means are reported in 
Panel A.
The Type of Model was manipulated by varying whether the participants was told the Central Data Analytics Group used Anomaly models 
(Type of Model=1) or Predictive models (Type of Model=0).  Type of Data was manipulated by varying whether the Central Data Analytics 
analyzed financial data (Type of Data=1) or nonfinancial data (Type of Data=0).  
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