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Aviation is a complicated transportation system, and safety is of paramount importance because aircraft failure often involves
casualties. Prevention is clearly the best strategy for aviation transportation safety. Learning from past incident data to prevent
potential accidents from happening has proved to be a successful approach. To prevent potential safety hazards and make effective
prevention plans, aviation safety experts identify primary and contributing factors from incident reports. However, safety experts’
review processes have become prohibitively expensive nowadays. The number of incident reports is increasing rapidly due to the
acceleration of advances in information technologies and the growth of the commercial and private aviation transportation
industries. Consequently, advanced text mining algorithms should be applied to help aviation safety experts facilitate the process
of incident data extraction. This paper focuses on constructing deep-learning-based models to identify causal factors from
incident reports. First, we prepare the data sets used for training, validation, and testing with approximately 200,000 qualified
incident reports from the Aviation Safety Reporting System (ASRS). Then, we take an open-source natural language model, which
is well trained with a large corpus of Wikipedia texts, as the baseline and fine-tune it with the texts in incident reports to make it
more suited to our specific research task. Finally, we build and train an attention-based long short-term memory (LSTM) model to
identify primary and contributing factors in each incident report. The solution we propose has multilabel capability and is
automated and customizable, and it is more accurate and adaptable than traditional machine learning methods in extant research.
This novel application of deep learning algorithms to the incident reporting system can efficiently improve aviation safety.

that affects or could affect the safety of aviation operations
[2]. Unlike accidents, which usually involve fatalities or
serious injuries, incidents are much more frequent and less

1. Introduction

In the last two decades, we have witnessed rapidly evolving

customer expectations and paradigmatic business mergers
and acquisitions in the mushrooming development of the
aviation industry. In this highly competitive environment,
airline companies have increasingly exploited information
technologies to turn challenges into business opportunities
and support decision-making. Automated decision support
technologies remain one of the main challenges in air
transportation [1]. Aviation incident reporting and inves-
tigation systems are a crucial part of the ongoing digiti-
zation of safety efforts. Incidents are anything abnormal

costly than accidents. They are a valuable source of data to
help identify potential hazards. Incident reports record
various abnormal events and provide reference data to the
Federal Aviation Administration, the National Aeronautics
and Space Administration, and the National Transportation
Safety Board, during the processes of decision-making,
procedure design, threat identification, training, and so
forth [3]. Since aviation transportation is a highly sophis-
ticated system, many factors, such as human error, aircraft
mechanical failure, extreme weather, and unreasonable
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company policy, or a combination of them, can result in
incidents. Due to the paramount value of incident data,
countries and multinational institutes have devoted sig-
nificant efforts to collecting and storing incident reports for
analytical decision-making.

The Aviation Safety Reporting System (ASRS), jointly
operated by the FAA and NASA, is one of the leading
aviation incident reporting systems and is used extensively
in North America. The system receives aviation incident
reports submitted by airports, airline companies, pilots, and
crews daily. Then the system analyzes and responds to in-
cident reports to identify potential hazards early and prevent
aviation accidents. Incident reporting and investigation
systems are critical components of safety management in
aviation transportation [4]. The information frequently
encountered in incident investigations includes the events
leading up to the accident, the factors that increased risk, the
detection of problems, and the attempts to resolve the
problems, all of which can be provided by individuals in-
volved in incidents [5]. The ASRS, a rich and reliable da-
tabase of information on aviation incidents, is used by NASA
and the FAA to evaluate the effectiveness of risk manage-
ment actions. As a distinctive contribution to safety man-
agement, the feedback from incident reporting systems is a
vital early-warning tool for decision-makers and planners
tasked with improving safety margins in the face of doubled
or quadrupled operations [4].

Most of the incident reports are submitted to the ASRS
voluntarily. A reporter involved in an incident can fill out an
ASRS reporting form anonymously. The narrative is the
most informative part of an incident report. The reporter
recounts the actual events before, during, and after the
incident. Narrative texts mostly describe mechanical fail-
ures, observations, behaviors, and weather conditions re-
lated to the incident. All submitted ASRS reports are
currently manually analyzed and assigned at least one out of
sixteen primary factors and no more than four out of sixteen
contributing factors by experienced aviation safety analysts
[6]. The identification of the primary and contributing
factors is a crucial step. The tabular data collected from the
reporter includes 96 tabular attributes, such as the reporter’s
role, qualifications, and experience, type of aircraft involved,
type of operator, cabin activity, weather, and many other
event-specific details. Unfortunately, based on a random
selection of 10,000 incident reports, more than 50% of the
incident reports are missing at least half of these attributes,
and most of the attributes that are often present, such as
date, local time, and state, seem to have little relevance to the
causes of the incidents. Thus, the current predicament is that
each incident report’s narrative text data is the only reliable
and informative source to identify the incident-causing
factors. Table 1 is an example of a typical ASRS incident
report and the conclusions made by human experts (Tables 1
and 2 ).

The analysis of incident causal factors in the incident
reports has been helpful in investigating the root causes of
aviation incidents. The research conducted in [7] studied
design-induced problems in Flight Management Systems
(FMSs) by selecting 99 incident reports related to FMSs
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from the ASRS. It concluded that a significant number of
operational and design-induced problems exist in FMSs,
because the user interface of FMSs is not optimally
designed. Manufacturers should find a better balance in
FMS design between logic and ease of use to reduce the
occurrence of errors. Another study [8] used 37 incident
reports from the National Transportation Safety Board
(NTSB) database to study errors in decision-making in the
aviation domain and discussed the nature of such errors,
what main factors contribute to them, and what solutions
might mitigate them. Reference [9] analyzed the causal
factors in aviation maintenance by investigating 3,783
ASRS incident reports related to maintenance incidents. It
concluded that individual-related and management-related
factors are the most frequent reasons for maintenance
error. The nonmaintenance perspective should be given
more attention because it can provide abundant infor-
mation that is usually not included in maintenance per-
sonnel reports. To study the multifactor and single-factor
effects on human performance in Air Traffic Management
(ATM), [10] used over 400 European aviation incident
reports related to ATM as their source data. The research
concluded that research focusing on single-factor (stress,
fatigue, communication, etc.) effects on human perfor-
mance is poorly suited to the complexities of contemporary
ATM, because incident reports often indicated multifactor
cooccurrences. In sum, a collection of aviation safety re-
search and analysis has relied on incident reports and their
conclusions about causal factors. At present, the ASRS
heavily depends on human experts to identify the causal
factors. However, the increasing number of incident re-
ports submitted every day, due to the rapid growth of the
aviation industry, has caused analysis of the newly gen-
erated incident reports to be delayed by three to six months.
This delay reduces the effectiveness of the ASRS as an early-
warning system for decision-makers, aviation organiza-
tions, and government agencies.

The situation described above has become increasingly
urgent in recent years due to the burgeoning growth of
commercial air transportation, private aircraft, and un-
manned aircraft systems in the aviation industry [1], thereby
yielding a quickly mounting number of incident reports.
Figure 1 shows annual incident reports ASRS received over
the last 28years. For instance, ASRS only received ap-
proximately 4,600 incident reports in 1981, compared with
about 108,000 incident reports per month in 2019. Worse
yet, the lack of timely and accurate analysis of the incident
reports substantially reduces the value of the data, making
effective safety prevention and improvement strategies in-
creasingly challenging (Figure 1).

Safety in aviation transportation is crucial. Analyzing
incident reports quickly and accurately on a large scale
facilitates the decision-making process and makes early
detection and prevention of potential hazards possible. In
this study, we build a deep-learning model that can identify
not only primary factors but also contributing factors with
promising results described later on. The main contributions
of our research to reduce gaps in extant research are
summarized as follows:
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TaBLE 1: The example of an incident report and its analysis results.

Incident report submitted:

Narrative: busy session numerous over flights requiring course changes to avoid traffic. Six or seven arrivals to different airports descending
through over flights and several departures. A satellite propeller arrival was coming in from the north at 10000 and an over flight was off the
departure end NE bound at 11000 two F16 south departed routed north climbing to 15000 a military intercept was squawking 7777. I
assumed this was in error and I informed the lead. I turned the aircraft to 020 heading to split the other traffic and allow the climb to
continue. I consciously thought about re-assigning the altitude but after the squawking the turn and traffic issuance, I did not want to throw
any more numbers at the pilot who would increase the transmissions and potential confusion. I wanted to get this guy on course and off my
frequency but had to wait until he topped. The guy at 10000 made numerous other transmissions. Then looked at the F16 south and he was
climbing very fast as I was about to transmit the F16 south showed 16000 and asked intermediate fix. They were cleared to the block. I said
no, assigned altitude 15000, contact ZKC. No traffic observed, but at 560 knots aircraft can mess things up pretty quick.

Tabular data:

Time: 200905

Local Time of Day: 1201 — 1800
96 attributes R.elatlve Position: (missing)

Cabin Light: (missing)

Results analyzed by human experts:

Primary Factor: human factors

Contributing Factors: human factors, procedure, aircraft

Synopsis: arbus flight crew landing on runway 8L at ATL reports a runway incursion after being instructed to taxi via delta; bravo; Victor;
Foxtrot to the ramp. Crew failed to turn on to bravo and entered 8R at delta. An EMB170 crew had to reject their takeoff on runway 8R.

Originally, an incident report comprises two components, Narrative and Tabular data. In most cases, Tabular data is neither reliable nor useful because it is
either missing or not quite related to the incident. After being reviewed by human experts, Primary Factor, Contributing Factors, and Synopsis are the
conclusions generated from this incident.

TaBLE 2: A comparison of our study with extant research related to aviation reporting system.

Studies Research target Data set Algorithms Performance

Modification on the close call
taxonomy is needed, but results were
not discussed quantitatively

Bliss’s taxonomy, a
manual case-by-case
review process

Tiller et al. Analyze close call incident
[14] reports to assess severity level

117 reports from the
ASRS (2014-2016)

Extract metadata and keywords N-Grams Support Incident reports classified to seven

Tanguy . .~ 86,912 qualified reports . . . . . o
etal [2] from the narrgt}ves, and topic used from DGAC Vector Machme topic major topics, with about 78% F, score
mining modeling on average
o ASRS incidents from . Some incidents are clqsely relaFed to
Automate the topic mining N-Grams topic key words, and topic modeling
Kuhn [15] 2010 to 2015 (the exact . . ;
process ; . modeling identified those well, but results were
number is not specified) o
not evaluated quantitatively
Robinson  Identify the contributing factors 7,484 incident reports Latent semantic analvsis Ideni:i?i’ dt;ft'ntl}lllitﬁ:uicctorjezgfaCh
[13] of the incident reports from the ASRS 4 ’ Y

significant improvement

Identify two primary causal
factors of incidents with
machine learning

Automate to identify two most casual
factors, and topic mining used to
extract structured information

168,227 incidents from Naive Bayes Hoeffding

Shi et al. [4] the ASRS tree OzaBagADWIN

Demonstrate that deep learning is a
powerful tool for processing complex
textual data. We achieve best
performance so far to identify the
primary factor and contributing
factors among related research

Identify the primary factor and
multiple contributing factors of 181,651 incident reports Deep recurrent neural
each incident from six most from the ASRS networks
causal factors

Our study

(1) Rather than directly addressing the task of classifying (2) To the best of our knowledge, our study is the first

incident reports, we make an early attempt to in-
troduce a well-trained deep-learning language
baseline model that can “understand” general En-
glish texts, and then we refine our model based on
the performance of the baseline model to cope with
the incident reports. Our research shows that about
4% accuracy is gained.

attempt to perform a multiclass and multilabel op-
eration on ASRS incident reports on a large scale.
Our study pushes the application of deep learning
methods in the safety management domain forward.
We propose suitable metrics to evaluate the per-
formance of this multiclass and multilabel classifi-
cation, which is rarely used in extant research as they



120,000
100,000 -
80,000
60,000
40,000

20,000

O T T T T T T T
1981 1986 1991 1996 2001 2006 2011 2016 2021
Year

Annual number of incident reports

FiGure I: Annual incident reports ASRS received from 1981 to
2019.

primarily  focus on
classification.

binary or single-label

(3) Our study demonstrates the high adaptability and
reusability of deep learning methods. Therefore, our
proposed deep learning methods are applicable to
many tasks that demand text analysis, especially in
an automated way. In addition, once the data is
updated or the task is changed somewhat, the de-
veloped deep learning model can be modified ac-
cordingly without starting over from scratch.

This study establishes a fruitful research foundation for
researchers who seek to apply deep learning methods to the
solution of a myriad of text analysis problems in general and
especially for those whose corpora include a customized
vocabulary of technical terms. Our proposed approach sheds
light on nontrivial optimizations to improve the baseline
model’s accuracy, as we strive to present a procedure to
develop a deep learning model to help solve the pressing
problem of aviation safety decision support.

The rest of this paper unfolds as follows. Section 2 is a
review of relevant research. In Section 3, we describe the raw
data and statistics and how to prepare them to be suitable for
the training in the next step. Section 4 briefly introduces the
main steps to build a deep recurrent network model using
Python deep learning libraries and refine it based on our
specific task. Section 5 epitomizes the experiments to de-
termine hyperparameters in the model. We highlight the
critical parameters that often significantly affect the per-
formance of deep learning models, and we introduce new
metrics to evaluate the results and compare them with re-
lated extant research. Section 6 discusses the potential im-
plications of our research, and Section 7 presents the
conclusions and limitations of this study.

2. Related Work

2.1. Automated Incident Analysis in Safety Management.
Safety management is a continuous improvement process
that reduces hazards and prevents incidents in aviation. The
incident reporting system is a crucial part of safety man-
agement, as it collects data and evidence for decision-
making, identifies potential risks to help prevent accidents,
and provides examples to educate personnel. Extant research
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primarily concentrates on text mining techniques to auto-
mate the analysis of incident reports. Therefore, extant re-
search has attempted to apply machine learning techniques
to extract textual information. Table 2 compares this study
with extant research that used aviation incident data. Tixier
et al. [11] examined 2,200 construction incident reports by
applying a rule-based automated content analysis system.
The length of the sample reports presented in their paper was
usually less than 50 words, and they primarily manually
mapped keywords to specific incidents. Therefore, their
proposed method is not easily applicable to lengthy and
complicated narratives. Mousa et al. [12] proposed the
XGboost algorithm to classify 13,165 highway-railroad
crossing incidents and reported an accuracy of 99.11%.
However, other baseline methods, such as Decision Tree or
Random Forest, also achieve around 98.5% accuracy.
Therefore, it is likely that the incident reports they were
dealing with are naturally easy to differentiate. Shi et al. [4]
applied manual feature engineering to the ASRS data set
with Term Frequency-Inverse Document Frequency (TF-
IDF) and fed the features into three supervised machine
learning algorithms, Naive Bayes, Random Forest, and
Support Vector Machine (SVM), to identify the two most
frequent primary factors: “human factors” and “aircraft.”
The shortcomings of this research are that primary factors,
“human factors,” and “aircraft” combined account for about
81% of all incidents, and, even with only the two most
frequent primary factors selected, the three traditional
machine learning methods used in the research could only
achieve an average accuracy about 81% at best. Therefore, a
practical model that can handle more factors with improved
accuracy is needed. Tanguy et al. [2] built classifiers with
French national aviation occurrence data (DGAC!). The
authors employed manual feature engineering using
N-Grams and topic modeling and used the extracted fea-
tures to train an SVM classifier. Rather than attempting to
identify the primary factors from the incident reports, their
goal was to discover the main topics of the incident, such as
“cabin,” “ground,” and “weather.” The disadvantage of their
method is that, even when things like “cabin” and “weather”
are mentioned in an incident report, they are not necessarily
the actual factors that caused the incident. Robinson [13] was
one of the first authors to tackle multilabel classification
using an ASRS data set. The author built a latent semantic
analysis (LSA) model, trained it with 4,497 incidents, and
tested the model on 2,987 other incidents. However, the
author reported poor model performance with an average F,
score of 0.409 due to the small sample size used in the
research overly ambitious attempt to classify all factors.
Our literature review indicates research gaps existing in
the extant research. Most of the extant studies only use a
relatively small number of data samples to develop their
models. Models developed in this way may only be appli-
cable to limited data sets. However, transportation incident
reports are usually highly unstructured. Furthermore, al-
though Shi et al. [4] used an extensive data set in their
research, they only addressed the two most frequent factors,
human factors and aircraft, which account for about 80% of
all incidents, and ignored the rest. Such oversimplification
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restricts the model to limited applications. The proposed
methods in extant research are subject to two significant
shortcomings: (1) a lack of high accuracy (less than 80%) and
(2) a limited number of primary and contributing factors.
Therefore, effectively automated identification of multiple
incident factors to support decision-making remains one of
the main challenges in aviation reporting systems. Due to
various contributing factors such as human factors, aircraft,
weather, and company policy [16], the inherent complexity
of aviation operations requires reviewers with aviation ex-
perience to make sensible judgments. Accumulated evidence
of the successful application of deep learning methods to the
analysis of incident reports could bring about the acceptance
of this approach as a solution to aviation safety management.

2.2. Emerging Deep Learning Methods in Transportation.
In the last few years, deep recurrent networks, a subclass of
deep learning methods, have been widely applied in
transportation decision-making systems and have achieved
promising results. Dong et al. [17] applied deep neural
networks to predict traffic crashes. The study shows the
advantages of deep learning methods over SVM, including
automatic feature extraction, superior performance, and the
ability to handle heterogeneous data. Cortez et al. [18] used
bidirectional long short-term memory (LSTM) to predict
emergency events using data from the Korean Ministry of
the Interior in 2015, and the LSTM model showed better
performance than SVM and time series models. A more
recent aviation study [19] used recurrent networks to predict
flight trajectory and their results illustrated the promising
performance of the blended deep learning model in pre-
dicting flight trajectory and assessing en-route flight safety.
Luo et al. [20] combined KNN and LSTM to predict traffic
flow. KNN was used to address spatial data and LSTM for
temporal data. The study reported that the deep learning
method achieved superior performance on real traffic data.
All the above studies have successfully shown the superiority
of deep learning methods on large and unstructured data
sets over traditional machine learning algorithms.

The deep neural network model, which combines the
advantages of unsupervised and supervised learning algo-
rithms, is superior to traditional machine learning algorithms
in many respects, especially in this “Big Data” era. Instead of the
manual feature engineering required by traditional machine
learning algorithms, deep learning methods can extract in-
trinsic features without human intervention. The manual
feature engineering is primarily based on word frequency
statistics [21], such as TF-IDF and N-Grams. Its main short-
coming is that it has difficulty in capturing the relationships
among textual data accurately. In deep neural networks, on the
other side, the word is represented as a high-dimensional
vector using a skip-gram technique [22]. In this way, intrinsic
relationships among words and the meaning of each word can
be constructed and calculated, and this approach has yielded
outstanding results [23]. Second, another advantage of deep
neural networks is that traditional machine learning methods
primarily predict by merely counting the word frequencies or
probabilities of words that appear together, rather than

extracting the meaning of the word based on its semantic
context. However, deep neural networks have the ability to
“remember” or store previous information. This ability is
beneficial for building relationships among words that do not
appear close to each other. This ability is crucial to our tasks
because incident reports may not be written in an organized
and concise way. That is one of the main reasons why the
automatic analysis of incident reports is challenging. Last, deep
neural networks are naturally suitable for use with a large
amount of textual data. More data is helpful to refine the word
embeddings [24]. Word embeddings are also called word
vectors. They are a way of converting textual data o numbers.
Unlike other common ways of embedding, such as frequency
embedding, TF-IDF, Count Vectors, and word vectors are
initialized randomly, then trained, and refined with a large
corpus of texts. The essence of word embedding is that all the
other words in the context decide the value of a word vector.
Mikolov et al. [25] developed this method, and it has gained
significant attention in natural language processing since then.
With word embeddings applied, the model can evolve along
with the accumulation of incident reports, as the ASRS is
constantly receiving them.

Despite being powerful and efficient type of algorithms
successfully applied to many domains, deep learning
methods have found limited implementation in trans-
portation incident reporting systems, which require natural
language processing. The goal of this paper is to cover this
research gap by building deep recurrent neural networks
that can automate aviation incident report analysis with
better performance than extant research.

3. Data Preparation

3.1. Data Descriptive. We downloaded about 200,000 inci-
dent reports from the ASRS database ranging from January
1988 to July 2020 when accessed on October 2, 2020, yielding
a total of 181,651 qualified reports. Other unqualified re-
ports, such as those without labels or those that are too short
(fewer than 20 words), are discarded. Every incident report is
composed of four pieces of text from two persons (their
narratives and callbacks), which we have combined as a
single narrative text sent to our model. Figure 2 shows the
distribution of the number of words and sentences in our
data sets. The considerable variations of number of words
and sentences make it more difficult to build a robust model.

There are 16 primary factors identified by human experts
in aviation incidents; however, we only use incident reports
involving the six most frequent categories of human factors
(HF), aircraft (AC), company policy (CP), procedure (PR),
weather (WE), and airport (AP), which make up 95% of the
incident reports. Incidents attributed to rare factors are not
considered in this research, because they only account for a
fraction of all incidents and would need more data to
generate meaningful results. We believe that our research
thus achieves a reasonable balance in terms of performance,
feasibility, and reasonable simplification. Table 3 lists all
primary factors and their percentages of all incidents. The
highlighted factors are used in this study and other rare
factors are ignored.
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TaBLE 3: There are sixteen primary causal factors identified by the
human experts in the database.

. Percentage
Primary casual factor Count in all incidents
Human factors 112,305 58.6%
Aircraft 43,119 22.5%
Company policy 7,676 4.0%
Procedure 7,626 4.0%
Weather 6,450 3.4%
Airport 4,475 2.3%
ATC equipment/buildings 2,803 1.5%
Chart or publication 2,519 1.3%
Environment, non-weather-related 2,180 1.1%
Airspace structure 1,163 0.6%
Equipment/tooling 465 0.2%
Manuals 338 0.2%
Staffing 238 0.1%
MEL 211 0.1%
Incorrect/unavailable part 154 0.1%
Logbook entry 32 0

The distribution of causal factors is highly unbalanced. Extant research
primarily focus on the identification of the first two factors and ignore
others. This study addresses the six most frequent factors, which account for
as much as 95% of all incidents. Therefore, our solution is more applicable
and feasible, because it can handle more factors, and is not targeting all
factors, which causes the prediction performance to be worse due to the data
unbalance.

In this research, we use narrative texts as the input to our
model and, according to the input, our model predicts the
primary (single-label) and contributing factors (multilabel)
and compares them with the actual labels to evaluate the
model’s performance. We do not use the “Synopsis” section
of each report as an extra input, because it is not the original
content of the incident report and would make our auto-
mated text analysis less convincing.

Table 4 summarizes the essential statistics about multiple
causal factors in ASRS data sets. Factor (or label) cardinality
[26, 27] indicates that there are 1.47 factors (1 primary and
0.47 contributing factors) per report on average across all
incident reports. This is the underlying reason for our

decision to train our model to predict up to two factors for a
single incident report, as mentioned in section 2. Identifying
more than two factors for each incident report is not nec-
essary in our research because cases of more than two factors
are rare, and it would introduce unnecessary complexity
without obvious performance gain. There are 28 distinct
causal factor sets cooccurring in all incident reports, of
which the most frequent combination is that of human
factors and aircraft.

Table 5 shows the distribution of the six most frequent
causal factors in detail. The overall occurrence of human
factors (HF) is over 26 times more than that of airport (AP).
The imbalance of the data distribution is likely to cause the
classifiers to be biased toward the dominant category, in this
case, human factors. Oversampling is applied to augment
rare samples to overcome this issue. The other method we
use to mitigate the bias is to apply a confidence threshold to
human factors. Both are discussed in Section 5.

3.2. Data Preprocessing. We preprocess the narrative texts to
reduce complexity and make the model more robust. Initially,
the words in the report are tokenized into a list of its con-
stituent words. Punctuation and stop words are removed in this
step as they are not useful for text analysis [28]. Stemming and
lemmatization are also applied to the input to decrease the
number of distinct words and consequently reduce the model’s
complexity. To perform stemming and lemmatization accu-
rately, a recognized Python library, the Natural Language
Toolkit (NLTK) [29], is utilized. The ASRS extensively uses 537
acronyms for the words and phrases that frequently appear in
narratives to make raw texts concise. For example, “STOL”
stands for “Short Takeoff and Landing,” and “VLF” represents
“Very Low Frequency.” These acronyms are decoded to their
full words as the word vectors of acronyms are not seen in the
pretrained word embeddings, which has been trained with the
Wikipedia corpus. In addition, there are many meaningless
words (or noise) existing in the corpus, such as “eeegl3,”
“shedcb,” and “sewart.” Thus, we remove any word that ap-
pears fewer than four times in our ASRS data sets. The study
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TaBLE 4: Important statistics about the utilized ASRS data set.

Multilabel statistics Value
Number of utilized factors 6
Number of valid samples 172,990
Factor cardinality 1.47
Factor density 0.245
Number of distinct label sets 28

Most frequent label set

{Human factor, aircraft}

After cleaning and preprocessing, we use the six most frequent labels from 172,990 reports. On average, every report has 1.47 labels (label density of 0.245).

TasLE 5: The distribution of the number of labels along with distribution of labels within each number.

Number of labels Total (%) HF (%) AC (%) CP (%) PR (%) WE (%) AP (%)
One 65.3 42.7 17.4 0.9 2 0.8 1.3
Two 24.3 14.6 4.6 2.01 1.05 1.16 0.8
Three 8.7 4.88 1.38 0.73 0.47 1.01 0.25
Four 1.6 0.8 0.2 0.15 0.08 0.3 0.08
Overall 100 63.0 23.6 3.8 3.6 3.3 2.4

The data is interpreted in this way; take the highlighted number for instance; 14.6% of all incident reports are marked exactly two causal factors (labels), and
one of them is HF. It shows that HF prevails in both single and multiple labels.

[30] also used this straightforward but effective method to
remove uncommon and useless words. In this way, many
uncommon words are removed, while the important infor-
mation of each incident report is kept intact. After pre-
processing, a total of 6,960 unique words remain from 181,651
incident reports in this study.

As shown in Table 5, the distribution of the incident
categories is highly imbalanced. Oversampling is used to
augment the original data, because removing data from
overrepresented classes, called undersampling, would not have
been conducive to our deep learning approach, as deep learning
improves with more data. Oversampling is a process that
augments the data samples of underrepresented classes by
copying them a certain number of times. In this study, incident
reports labeled “aircraft” are copied two times, and those la-
beled “airport” ten times, and they are put back in the training
data set. Finally, as shown in Table 6, of 181,651 incident re-
ports, 80% are randomly picked as the training data set, 10% are
used as the validation data set, and 10% are reserved as test data
to measure model performance [31]. We apply oversampling
after splitting the data to avoid data leakage between training,
validation, and test sets. Unlike the validation data used by the
model to monitor its performance during the training process,
test data is kept isolated until the evaluation stage to guarantee
the validity of the test data sets.

In this study, we only use oversampling to augment
training data sets to identify primary factors. Regarding
contributing factors, there is no noticeable performance gain
from oversampling according to our experiments, because
contributing factors are already mixed.

4. Methodology

4.1. Analysis and Processing of Aviation Incident Reports.
The aviation incident reports are primarily free-form text
describing each incident. A few incident reports may include
some tabular data, such as the time and location, but the tabular

data is missing in most incident reports. Therefore, the incident
data has a strong temporal and spatial correlation because
natural language is sequential, as the meaning of a word de-
pends on the words that precede or follow it. However, tra-
ditional machine learning treats data (words) independently
distributed in the context by following certain patterns that can
be found statistically. Hochreiter and Schmidhuber proposed
the first LSTM model [32], which is an advanced form of
recurrent neural network (RNN), as it introduces “memory”
and “forget” cells. These cells can effectively resolve problems
such as vanishing gradient and long-term dependence with
which RNNs struggle. This study uses an LSTM neural network
model to process word vectors and make classifications.

The overall procedure of our model is shown in
Figure 3. As mentioned in Section 1, we approach the
problem by developing models that can identify the
primary and contributing factors of the ASRS incident
reports based on deep recurrent neural networks. Spe-
cifically, we start with a general unsupervised language
model called Universal Language Model Fine-Tuning
(ULMFIT), thoroughly trained by Wikipedia articles [33].
Next, we use an inductive transfer learning technique to
refine this general model on our specific ASRS data sets to
get familiar with the structure and semantics of the
narrative text in the incident reports. Inspired by [34], we
implement a universal language model based on Averaged
Stochastic Gradient Descent Weight-Dropped LSTM
(AWD-LSTM), a state-of-the-art variant of RNNs for
language modeling and text classification tasks. The model
uses a variety of effective regularization techniques that
significantly improve the generalization performance of
vanilla LSTM recurrent neural networks. Afterward, using
supervised learning and 80% of the incident reports as
training data sets, we build and fine-tune classifiers using
the AWD-LSTM model and additional concatenation and
feed-forward layers to predict primary and multiple
contributing factors in the textual reports.
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TaBLE 6: The summary of the incident reports and their label distribution in the training set before and after data oversampling, as well as

validation and test sets.

Original Train (oversampled) Validation Test
Human factors (HF) 87356 (62.8%) 87356 (25.4%) 10941 (64.0%) 16145 (63.4%)
Aircraft (AC) 32690 (23.5%) 65380 (19.0%) 3823 (22.4%) 6620 (26.0%)
Company policy (CP) 5335 (3.8%) 53350 (15.5%) 635 (3.7%) 1047 (4.1%)
Procedure (PR) 5321 (3.8%) 53210 (15.4%) 645 (3.7%) 1004 (4.0%)
Weather (WE) 4979 (3.6%) 49790 (14.5%) 623 (3.7%) 952 (3.7%)

3424 (2.5%)
139105 (100%)

Airport (AP)
Total

34240 (10.0%)
343326 (100%)

428 (2.4%)
17095 (100%)

643 (2.5%)
25451 (100%)

Validation and test data are maintained as imbalanced as the original training set to truly represent the data sample distribution.
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FiGURE 3: End-to-end diagram of the identification of factors of incident reports. Incident reports including the narratives are downloaded
from the ASRS database. After being preprocessed, they are fed to deep neural network model which is composed of two components: (i) a
language modeling module, an input layer of embedding and three stacked layers of bidirectional AWD-LSTM recurrent neural networks;
and (ii) a prediction module, a flatten layer and three fully connected layers. After processing by these two modules, a probability score is
assigned to each factor. Finally, the primary and contributing factors are predicted based on the ranking of probability scores.

We address the identification of the primary factors
(single-label) and contributing factors (multilabel) as two
different classification tasks, although they share the same
architecture until the last layer. It might be tempting to use
highest and second-highest probability factors as multilabel
results, so that only one model is sufficient to classify
multilabel, multiclass tasks. However, the experiment from
this study shows inferior results with this approach, as the
results are likely to be biased toward dominant factors in the
data set. Instead, the training processes for single label and
multiple labels have to run separately with corresponding
truth labels. Table 3 shows a complete procedure of our
approach. After the data preprocessing stage explicitly
explained in Section 3, we apply deep neural networks on the
textual data. The major steps are explained as follows.

4.2. The Baseline Natural Language Model. Unlike extant
research, which does not use any textual data aside from the
data used for the primary task of each study and thus restricts

the quality and quantity of the data set, we first introduce a
universal language model [35] that is pretrained with a large,
well-prepared Wikipedia text corpus, thanks to Salesforce
Research’. The benefits of this approach are threefold: (1) The
pretrained open-source model is trained thoroughly. It is called
“universal” as it covers a large set of textual data, including most
of the words that appear in the incident reports. (2) The
amount of available textual data is greatly increased. Even
though we have 181,651 incident reports with a total of about
46 million words, this is still not a large enough corpus to train
a deep neural network model well. Google’ recommends a
corpus of about 0.8 billion words. (3) This approach saves
significant computational resources. Otherwise, a supercom-
puter would take one month to train a well-prepared language
model, which is not feasible for most academic researchers.

4.3. Baseline Language Model Fine-Tuning. We have a well-
made baseline natural language model, but the problem is
that it seems to be unrelated to our specific task. After all, the
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incident narrative data is different from the Wikipedia text
corpus. This is where fine-tuning comes into play [36]. To
make the baseline language model suited to our specific task,
we refine our universal language model using the ASRS data
set. Inspired by [34], we implement a universal language
model based on AWD-LSTM.

4.4. Prediction of Primary and Contributing Factors. As
Figure 3 shows, after the words have been processed by the
language model, they are now presented in high-dimen-
sional vectors and fed to artificial neural networks (ANNs) to
generate the prediction. Extant research has proven ANNSs to
be successful at classification tasks [37]. Naturally, the one
having the highest probability score among the six factors
should be identified as the primary factor. However, due to
the imbalance of the sample data and the narrative texts’
intrinsic complexity, we apply novel adjustable thresholds to
“human factors” only to control the rate of false positives, as
discussed in more detail in Section 5. No threshold is applied
to other primary factors or when identifying multiple
contributing factors. In this way, we achieve a good balance
among the six most common primary factors in the overall
performance without adding too much complexity.

5. Experimental Setup and Result Discussion

As shown in Table 4, each report contains one primary
factor and an average of 1.47 contributing factors.
Therefore, we design the model to predict up to two
contributing factors for each incident report after weighing
the advantages and disadvantages of additional complexity.
In this study, two classifiers are developed: (i) a single-label
classifier to predict the primary factor and (ii) a multilabel
classifier to predict up to two contributing factors. These
two classifiers follow the same methodology explained in
Section 4, except that different truth labels and label sets are
used during the training step. This is a clear example of the
adaptability and reusability of deep learning models.
Usually, only the project layers need updates when the task
is changed, while the main model remains the same. We
will discuss the details of our experimental setup and re-
sults later in this section.

5.1. Configuration. In this section, we briefly discuss the
configuration and critical hyperparameters of our model,
that is, learning rate, batch size, hidden layer size, dropout,
and so forth. We use a grid search algorithm [38] to find the
optimal values that lead to the highest performance on the
training set.

Both primary and contributing identification classifiers
use a three-layer LSTM* model with 1152 hidden units in the
hidden layer. We train our model on a Tesla V100-SXM2
GPU machine with 16 GB of memory. We use a batch size of
128 as optimum, based on the computing stability of the
stochastic gradient descent and memory restrictions of the
GPU machine. Each word is vectorized to 400 dimensions
using a vocabulary size of 60,000. The optimal number of
dimensions is often between 300 and 500, according to

industry experiments and research [39]. In this study, the
maximum length of a sequence is set to 700 words to avoid
the diminishing returns of larger networks [40]. As shown in
Figure 2, most of the incident reports have no more than 700
words; for reports having more words, all words beyond 700
are simply truncated and ignored. Thus, the input shape is
(128, 700, 400).

As mentioned in Section 4, the deep RNN language
model is based on the AWD-LSTM, which uses dropouts on
the recurrent weights for effective regularization and pre-
vents the model from overfitting. As a means of regulari-
zation, such dropouts can effectively reduce the overfitting
problem [41]. In this study, the dropout values for the
embedding, input/output of every intermediate layer, the
output of the final layer, and the hidden-to-hidden weights
(recurrent weight-dropped) are 0.25, 0.15, 0.1, and 0.2,
respectively.

To train our deep neural network’s parameters with
ASRS incident reports, we use Slanted Triangular Learning
Rate [33]. It quickly increases within the first few hundred
iterations and then gradually decays until the epoch ends.
This dynamic learning rate enables the model to learn
quickly when the loss is high in the beginning and to
gradually refine the parameters when the loss becomes
smaller’.

5.2. Retraining Effect on Language Modeling and Factor
Identification. As mentioned in Subsection 4.3, AWD-
LSTM, initially trained on a well-prepared wiki text corpus,
is our baseline LSTM model. It is retrained using the ASRS
data set to make it work well in this study. Such retraining is
especially useful if the text data of the target task is massive.
Figure 4 shows how the training loss, validation loss, and
prediction accuracy of the language model change during
the training epochs. Each epoch takes about 45 minutes to
complete. Initially, the training loss and validation loss are
reduced, and the accuracy gradually improves, which in-
dicates that the model can make better predictions in each
epoch. In other words, the model is learning. After certain
epochs, in our case, after the 15 epoch, training loss
continues to decrease linearly, while validation loss and
accuracy stabilize at certain values, indicating the optimal
time to terminate training; otherwise, the model will overfit
on the training set, a notorious problem in deep learning
[42]. In our study, retraining the language model improves
the identification accuracy of the primary factor by 3.6%,
consistent with the retraining gain described in the literature
[33, 43].

5.3. Evaluation Metrics. Primary factor identification results
are normalized to prevent the results of dominant classes
from weighing too much. Therefore, in this study, per-
centages of true positives, false positives, and false negatives,
rather than their counts, are used to calculate the precision
and recall. Normalization puts more weight on rare classes,
and this is usually more reasonable to measure classes that
are not evenly distributed [44].
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FIGURE 4: Language model learning curve. Accuracy here is defined
as the percentage of predicted correct next word from a given
vocabulary. Initially, the language model AWD-LSTM can achieve
an accuracy of only 0.28; after 15 epochs, the accuracy improved to
0.38, a significant boost.

An “exact match” metric makes sense to evaluate the
performance of the primary causal factor identification, as
there is only one primary factor for each incident report.
However, “exact match” does not work very well for eval-
uating the performance of multiple causal factor identifi-
cation, because “exact match” completely ignores partial
correctness. Thus, [45] introduces 11 common evaluation
metrics for multiple causal factor (multilabel) identification.
In this paper, hamming loss, micro-F,, and macro-F, are
selected to measure our results, as these three are commonly
recognized and chosen in previous research [13, 46].

Hamming loss is the fraction of labels that are incorrectly
predicted. Unlike “exact match,” hamming loss is more
forgiving in that it penalizes only the individual labels that
do not match the truth labels [47]. Hamming loss is a loss
function; thus the lower, the better.

Besides the hamming-loss metric, macro-F; and micro-
F, are two conventional methods to evaluate the perfor-
mance of multiple causal factor identification [48]. The
critical distinction between macro-F, and micro-F, is that
macro is an average per category, while micro is an average
per sample point. These metrics are computed according to
the following equations:

1o 1
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1< 2221)’1‘1‘}117
macroF| == ) o, (2)
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where h;; is the target, y;; is the prediction, m is the number
of samples, and [ is the number of labels.
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5.4. Primary Factor (Single-Label) Identification Performance.
As “human factors” still account for 25.4% of all incidents after
oversampling, the classifier tends to be biased toward “human
factors.” To further reduce the bias, we apply a confidence
threshold to control the percentage of false positives in the
“human factors” category. For example, a confidence threshold
equal to 0.55 means that the classifier only labels an incident
with “human factors” if it has 55% confidence or more; oth-
erwise, the category with the second-highest confidence, even it
is lower than HF, is chosen. See Table 7 for an example.
Primary factor identification results are shown in Ta-
ble 8. We apply the threshold to the “human factors” class
only to reduce the rate of its false positives because it greatly
outnumbers the other classes. Based on our experiments
with different thresholds starting from 0.3 to 0.7 with in-
crement of 0.05, we find that an HF threshold of 0.55 ef-
fectively reduces the rate of HF’s false positives. Considering
that the data samples of each factor are imbalanced, we
believe that micro-F, is a better way to assess the model’s
performance because micro-F, is an average per sample
point (see equation (3)). As shown in Table 9, the micro-F,
scores of all classes except WE are improved (Tables 8 and 9).

5.5.  Contributing Factors (Multilabel) Identification
Performance. In this study, each incident’s contributing
factors are prepared by combining the original primary and
contributing factors (if any) of the incidents. An example is
shown in Table 10.

As mentioned in Section 5, our model is designed to
predict up to two factors for each incident report. Conse-
quently, any prediction is definitely a mismatch for incidents
that are labeled with more than two factors. Nevertheless,
multilabel evaluation metrics consider partial match (see
equations (1)-(3) in Section 5.3). Table 11 summarizes the
multilabel performance of our model by each category and
overall performance. Our model achieves an F; score of
0.763 by averaging four averages: micro-avg, macro-avg,
weighted-avg, and sample-avg. As shown in Table 5, “human
factors” and “aircraft” significantly outnumber the other
four categories combined. Therefore, micro-avg, calculated
by counting true positives, false negatives, and positives
globally, is preferable for evaluating our model’s perfor-
mance. Sample-avg, average based on samples, and
weighted-avg, average based on labels, are adjusted versions
of micro-avg and output similar results. On the other hand,
the macro-avg metric can be expected to generate the worst
F, score as it treats all classes equally, totally ignoring the
number of samples in each class. Thus, it is less accurate than
the other three metrics due to data imbalance (Table 11).

5.6. Comparison of Our Results to Previous Studies. To better
understand our model’s performance, we compare our re-
sults with previous studies addressing similar tasks, as well as
with a base model without fine-tuning. To make the com-
parison valid and convincing, we use the same data sets as
the previous studies. Because single-label and multilabel
tasks have different evaluation metrics, we compare them
separately.
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TaBLE 7: An example of how the “HF threshold” affects the identification result.
Probability of each factor
HF threshold HF AC CP PR WE AP Identification
Threshold =0 0.42 0.37 0.09 0.03 0.03 0.06 HF
Threshold =0.55 0.42 0.37 0.09 0.03 0.03 0.06 AC

If an HF threshold is specified, HF will only be identified when its probability

exceeds the specified value; otherwise, the factor with the second-highest

confidence is chosen. In this way, the bias toward the dominant factors is well compensated by tuning the threshold. Threshold=0 (no threshold).

Threshold =0.55.

TaBLE 8: Comparison of the confusion matrix of the single label with and without the threshold (orthogonal values highlighted).

Predicted label
Threshold =0
HF AC PR WE CP AP
HF 0.92 0.05 0.01 0.01 0.01 0.01
AC 0.16 0.82 0 0.01 0.01 0
Truth label PR 0.57 0.05 0.33 0.02 0.03 0
WE 0.33 0.07 0.01 0.59 0.01 0
CP 0.51 0.13 0.03 0.02 0.31 0
AP 0.51 0.07 0 0.02 0.04 0.35
Threshold = 0.55
HF 0.84 0.07 0.03 0.02 0.02 0.02
AC 0.08 0.89 0.01 0.01 0.01 0.01
PR 0.37 0.09 0.47 0.02 0.03 0.02
Truth label WE 0.30 0.05 0.03 0.59 0.01 0.02
CP 0.32 0.16 0.04 0.02 0.42 0.04
AP 0.34 0.08 0.02 0.03 0.05 0.47

By applying a proper threshold, the model’s ability to identify other rarer classes is significantly improved, and overall performance of HF is improved as well.

TaBLE 9: After applying the threshold, the model’s overall performance in terms of micro-F, score is improved, especially for rarer factors, as

precision and recall become more balanced.

Probability threshold =0

Probability threshold =0.55

F, score improvement

Precision Recall Micro-F, Precision Recall Micro-F, Percentage
HF 0.306 0.92 0.502 0.373 0.84 0.516 +2.7%
AC 0.689 0.82 0.748 0.664 0.89 0.761 +1.7%
CP 0.756 0.31 0.440 0.778 0.42 0.545 +23.9%
PR 0.868 0.33 0.478 0.783 0.47 0.588 +23.0%
WE 0.882 0.59 0.706 0.855 0.59 0.702 - 0.5%
AP 0.971 0.35 0.514 0.83 0.47 0.596 +16.0%
TaBLE 10: An example of how multiple labels are prepared for each incident report using one-hot encoding.
HF AC PR WE CP AP Truth label
v — — — v — [100010]

1 indicates that a factor is present, and 0 indicates that a factor is absent. Matches
evaluated by the Python scikit-learn library [49].

Table 12 clearly shows that our model is superior to Shi
et al.’s [4] in terms of label categories and model accuracy.
We not only identify the six most common causal factors but
also expand our model to address multiple causal factors. In
addition, our HF accuracy is significantly better, while AC
accuracy is equivalent. With the improved HF accuracy, the
overall accuracy is improved significantly, as it is the most
frequent class. Robinson’s research [13] is the most closely
related study we can find in terms of multilabel classification.
He implements a latent semantic analysis algorithm to
classify all 16 classes for only 4,497 incident reports,

and mismatches of multiple labels prepared in this way can be conveniently

compared with our 138,392 reports for training. As men-
tioned in Section 1, the ten rarest classes account for less
than 5% of total incident reports. Therefore, his research
attempts to classify 16 classes with such little data are not
very reasonable, and the result is inferior to ours. In ad-
dition, the advantages of the fine-tuned language model are
also demonstrated, because it refines the word embeddings
with the target data set. Table 12 indicates that the LSTM
with the fine-tuned language model outperforms the one
without fine-tuning by 3.3% on HF accuracy and 1.9% on
AC accuracy in single-label classification. In multilabel
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TaBLE 11: A summary of our model’s performance in identification of multiple causal factors.

Precision Recall F, score
HF 0.88 0.93 0.90
AC 0.87 0.83 0.85
PR 0.70 0.46 0.56
WE 0.71 0.43 0.53
CP 0.65 0.37 0.47
AP 0.68 0.39 0.50
Micro-avg 0.84 0.77 0.80
Macro-avg 0.75 0.57 0.63
Weighted-avg 0.82 0.77 0.79
Sample-avg 0.88 0.84 0.83

Hamming loss = 0.091

TaBLE 12: A performance comparison of our method with previous research, regarding single-label and multilabel identification.

AC

Studies Algorithm HF accuracy Remark
accuracy
Naive Bayes 73.2% 81.1%
Shi et al. [4] Hoeftding tree 74.9% 87.0% This study targets HF and AC only
OzaBagADWIN 76.5% 88.3%
LSTM without fine-tuned 34.8% 85.1% ' .
language model Our study achieves a better result regarding HF and can
Our study . - .
LSTM with fine-tuned language identify four more factors
88.1% 87.0%
model
Studies Algorithm Harlr;rsrsnng F, score Remark
Robinson . . . .
[13] Latent semantic analysis 0.269 0.409 Impractically targeting 16 factors
LSTM without fine-tuned 0.135 0.628
language model ’ ' Our study feasibly targets the six most frequent factors with
Our study ; > .
LSTM with the fine-tuned 0.091 0.763 promising results achieved

language model

The advantage of the deep learning methods over traditional machine learning methods is clearly shown.

classification, the LSTM with the fine-tuned language model
has a lower hamming loss but higher F; score compared with
the base model. To sum up, these results demonstrate that
the use of a fine-tuned language model can improve clas-
sification accuracy.

6. Implications

We build two classifiers to identify the primary and con-
tributing factors, using a deep recurrent network algorithm.
These models are trained with the narrative texts of ASRS
incident reports. With our classification models, the amount
of incident report analysis done by human experts can be
significantly reduced. When an incident report is generated,
our first classifier identifies the primary factor and then
properly indexes it into the database. Then, the second
classifier identifies additional contributing factors. Our
model can automate most of the tasks, and human experts
may only need to check the incidents classified with low
confidence by our model. The implications of our study are
summarized in four perspectives presented below.

First, from the perspective of aviation safety reviewers,
our study can help them facilitate the identification of causal
factors. As demonstrated in Section 5, our model achieves an
average accuracy of 82% on the six most common factors

and about 89% on the two most common factors on average.
In addition, our model has achieved the best multilabel,
multiclass identification results compared with extant re-
search. Our study has shown that this approach can identify
causal factors for 95% of incident reports in the database
with little human intervention. If they adopt our approach,
aviation incident reporting systems can quickly issue initial
results to relevant parties, such as air traffic controllers,
airline companies, and airport authorities.

Second, incident reports that are identified with high
confidence by our models do not require review by safety
experts. Less than 4.7% of incident reports are predicted with
low confidence (probability threshold < 0.55). Safety ex-
perts may only need to review those incident reports to make
sure causal factors are correctly identified. Figure 5 is an
example of an incident report parsed by our model with an
attention mechanism applied [50]. The attention mechanism
is an algorithm to calculate each word and sentence’s relative
importance based on the required outputs. For instance, if
the truth label (the output) is “aircraft,” then words and
sentences likely to be related to “aircraft” are assigned higher
importance or probability in the incident texts. As Figure 5
shows, the highlighted words and sentences are likely the
critical information associated with the true causal factors of
the incident. These highlights can help safety experts locate
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descending through over flights and several departures. Satellite propeller arrival was_at 10000

a military intercept was squawking 7777. I assumed this was in [Eli@land I [informed thelead.|1 turned the aircraft to 020

heading to

I consciously thought about_

but after the squawking the turn and traffic issuance, I didn’t want to throw any more numbers at the pilot who would

increase the transmissions and potential confusion. I wanted to

_ The guy at 10000 made _Then looked at the F16 south and he was

climbing very fast as I was about to transmit the F16 south showed 16000 and asked intermediate fix. They were cleared
to the block. I said no, assigned altitude 15000, contact ZKC. No traffic observed, but at 560 knots aircraft can mess

things uppretty quick.

FIGURE 5: Example of narrative texts that have been processed by our model. With the attention mechanism application, the potential
essential sentences or words are highlighted, and they are more comfortable for human experts to review.

the definitive information faster, which substantially expe-
dites the manual review process. At the same time, safety
experts’ correct labeling of manually reviewed incident re-
ports can improve the model’s performance in the long run.
This model can further evolve into a text summarization
system by generating a “Synopsis” [51], which currently has
to be generated by safety experts manually. By reviewing the
“Synopsis” generated from each incident report, the number
of incidents that a human expert can handle per unit of time
is greatly increased.

Third, from the perspective of reporting systems, such
automation makes the generation of statistical reports easier.
Due to the voluntary nature of the reports submitted to
ASRS, NASA mainly uses the data as a lower-bound esti-
mate. For example, there were 112,305 human error incident
reports submitted to the ASRS from January 1988 through
July 2020. It can be confidently concluded that at least
112,305 human errors contributed to aviation incidents
during this period. Based on this lower-bound estimate,
decision-makers can determine whether a problem exists
and requires further investigation [52]. It is easy to provide
aggregated and even dynamic incident statistics once the
causal factor identification is automated with satisfactory
performance.

Fourth, the deep learning solution developed in this
study, a very versatile technique, can be redesigned and
adapted to different domains other than aviation. This study
has chosen the ASRS as an explicit example to show how
deep learning techniques can help safety experts process a
large quantity of textual data quickly and accurately. The
application of this technique can help aviation safety experts
find emerging dangers and potential hazards promptly from
a large volume of incident reports. Although the incident
reports in other transportation domains might be different
in terms of quantities, textual characteristics, report formats,
and so forth, the methodology designed in this paper can be
adapted to address those varied tasks.

7. Conclusion and Limitations

Incident report analysis is crucial to improve safety man-
agement in high-risk work environments. Though a large
amount of incident data is generated every day with the

advances in data storage management and Internet of Things
(I0T), effective and timely utilization of these resources has
been hampered by the tremendous human effort needed to
identify incident causes. This study presents models that can
automate causal factor identification of ASRS incident re-
ports based on deep recurrent neural networks. Our results
demonstrate that deep recurrent neural network algorithms,
trained and fine-tuned with proper transfer learning tech-
niques, are versatile enough to build classifiers to predict the
primary factor or multiple factors with minor modifications.
Therefore, an initial understanding of incident reports’
factors can be gained from automated incident report
analysis. Given these potential benefits, this study’s prom-
ising results may encourage researchers to explore the ap-
plication of deep learning algorithms to other domains, such
as autotransportation, medical facilities, information tech-
nology failure, and injury reporting, where automated text
analysis is much needed.

There are several limitations to this deep learning ap-
proach. Currently, we are only able to classify the six most
frequent categories in ASRS data sets. Ten other much rarer
categories, accounting for approximately 5% of all incident
reports, are unaddressed, primarily due to the lack of suf-
ficient sample data for training the deep learning approach.
Additional efforts will be required to find a deep learning
architecture that requires less data or to figure out effective
ways to augment the limited data samples. Another limi-
tation of our study is that we have limited our multilabel
classifier to no more than two factors. However, about 9% of
incident reports have more than two labels. A more so-
phisticated model may further improve identification ac-
curacy. Finally, tabular data such as locations and time
periods are not used in the deep learning model proposed in
this study. Future studies can investigate the causal rela-
tionships between tabular data and incident factors to de-
termine which locations or time periods are more likely to be
associated with human factor-related incidents.

Data Availability

The data used in this paper was collected from asrs.arc.na-
sa.gov/search/database. html. Researchers can request the data
from the ASRS, or they can download it from the website.
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