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DATA ANALYTICS (AB)USE IN HEALTHCARE FRAUD AUDITS 

 

ABSTRACT 

This study explores how government-adopted audit data analytic tools promote the abuse of power 
by auditors enabling politically sensitive processes that encourage industry-wide normalization of 
behavior. In an audit setting, we investigate how a governmental organization enables algorithmic 
decision-making to alter power relationships to effect organizational and industry-wide change. 
While prior research has identified discriminatory threats emanating from the deployment of 
algorithmic decision-making, the effects of algorithmic decision-making on inherently imbalanced 
power relationships have received scant attention. Our results provide empirical evidence of how 
systemic and episodic power relationships strengthen each other, thereby enabling the 
governmental organization to effect social change that might be too politically prohibitive to enact 
directly. Overall, the results suggest that there are potentially negative effects caused by the use of 
algorithmic decision-making and the resulting power shifts, and these effects create a different 
view of the level of purported success attained through auditor use of data analytics.  
 
Key words: Algorithmic decision-making, Data analytics, Government auditors, Healthcare, 

Medical fraud detection, Power. 
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“Could one imagine a society, or even a group of people, where nothing was trusted and 
where explicit checking and monitoring were more or less constant? . . . The more one 
thinks about it, the more apparent it is that the imperative ‘never trust, always check’ 
could not be a universalizable principle of social order: constant vigilance is somehow 
autodestructive.” (Power, 1999, 3) 

 
1. INTRODUCTION 

Under the auspices of promoting efficient and cost-effective monitoring of compliance with 

federal regulations, the United States (U.S.) Federal Government has recently leveraged data 

analytics to streamline fraud audits aimed at healthcare providers—a move paralleled by major 

public accounting firms who recently invested heavily in developing new audit technologies, 

including data analytics to detect fraud and errors in their clients’ financial statements (Eilifsen et 

al., 2020; see also Deloitte, 2016; EY, 2017; KPMG, 2016; PwC, 2017). The U.S. Small Business 

Jobs Act of 2010 requires the Centers for Medicare & Medicaid Services (CMS) to implement the 

Fraud Prevention System (FPS), a data analytic tool designed to identify potential Medicare 

fraud—which is construed as a pressing problem due to high societal costs (van Capelleveen et al., 

2016). Currently, the data analytic tool draws on algorithms to identify reimbursement claims 

indicative of likely fraud (OIG, 2017) and thus represents a new audit tool whose appropriateness 

and reliability needs to be critically evaluated (Commerford et al., 2020). The FPS was enacted on 

June 30, 2011 (DHHS, 2012) and was soon publicized as a major success based on steadily 

increasing returns on investment (ROI) (CMS, 2015; DHHS, 2012, 2014, 2015) while largely 

ignoring actual fraud convictions which would indicate true effectiveness (van Capelleveen et al., 

2016). Nevertheless, consideration of the success criteria relied upon by the U.S. Government soon 

triggered interest in deploying similar audit data analytic tools to other U.S. Government programs.  

While the U.S. Government advertised the self-identified success of the FPS, researchers 

have cautioned that algorithmic decision-making warrants particular scrutiny when used by 
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governmental entities whose decisions have implications for society. Despite these calls for 

scrutiny, prior literature has rather narrowly focused on benefits of implementing advanced data 

analytic technologies to increase business opportunities and performance (Abbasi et al., 2016; 

Chen et al., 2012; Grover et al., 2018; Mahama et al., 2020; Peters et al., 2016; Reinking et al., 

2020a, 2020b) and, to a limited extent, on the impact of data analytics on auditors’ decision making 

(e.g., Commerford et al., 2020; Eilifsen et al., 2020; Koreff, 2021; Rose et al., 2017). An underlying 

assumption of these prior studies is that the effects of algorithmic decision-making are limited to 

the users of the analytics tool and the entity that constitutes the target of the data analysis. We 

challenge this assumption and explore the propensity of algorithmic decision-making to encourage 

normalized behavior with potential detrimental outcomes for an entire industry and ultimately 

society. As such, our motivation is to examine the negative effects of data analytic-driven 

normalization of behavior.  

We examine how government-adopted audit data analytic tools promote abuse of power1 

by auditors and drive processes encouraging industry-wide normalization of behavior. Specifically, 

we explore how statistical analysis tools utilized in fraud inspection processes prescribed by the 

U.S. Federal Government are deployed to justify abuse of power via auditor enforcement actions. 

These are used against healthcare providers in a fashion that stifles their financial viability and 

shifts power toward larger, albeit not necessarily more effective or efficient, actors. Algorithmic 

decision-making has the potential to bring out the worst of “The Audit Society” where methods of 

checking and verification can be perverse, burdensome, and inevitably costly (Power, 1999, 2). 

 
1 For this study, we follow Hall (1999) who notes that it is commonly understood that power concerns the 
relationships between two or more individuals, where the actions of one actor impact the actions of the other. In the 
context of government auditor-auditee relationships, we define ‘abuse of power’ as a situation in which the exercise 
of power by the auditor (i.e., the auditor’s actions) can justifiably be considered excessively unreasonable or unfair 
by the auditee. Power dynamics, in our context, refers to the fluid nature of relative power held by various actors 
within a social setting. 
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We opted for a qualitative research approach, which can aid in validating theory and 

enhancing our understanding of power dynamics in an accounting information systems (AIS) 

setting (Sarker et al., 2018a). While we collected data by reviewing public and proprietary 

documents and obtaining documents through Freedom of Information Act requests, our primary 

data stem from 40 semi-structured interviews with individuals employed by organizations subject 

to a fraud audit.2 This approach enabled us to obtain first-hand insights from participants in the 

field (Malsch and Salterio, 2016). 

Our results show the capacity of data analytics to allow government auditors to justify 

sanctions, promote the use of power and abdicate responsibility for the consequences, 

notwithstanding several shortcomings of the data analytic models when applied in practice. 

Overall, our findings suggest that the use of advanced audit analytics tools, when legitimated by 

governmental bodies, not only elevates the systemic power (Clegg, 1989; Kärreman, 2010; 

Lawrence et al., 2012) bestowed upon authorized users of the technology, but also promotes the 

abuse of such power. This is consistent with views that governmental audits are not just designed 

for better financial controls, but to challenge the organizational power and discretion of relatively 

autonomous groups of experts such as doctors to make them adhere to redefined performance 

measures and criteria (Power, 1999, p. 98). We show that claims to expert power, justified by 

access to government-sanctioned audit analytic tools, are used to legitimate enforcement actions 

that have the potential to trigger radical shifts in industry-wide power dynamics.  

Notably, factors such as access to care and changes to the quality of care at providers 

undergoing a fraud audit are absent in Reports to Congress. These reports focus on ROI rather than 

 
2 One respondent’s employing organization did not go through a fraud audit; however, we proceeded with the 
interview to understand their perceptions of the threat and nature of the audits as they prepared for the future 
possibility and likelihood of an audit. 
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the implications of data-driven fraud audits for the availability of quality healthcare. We argue that 

technology-driven fraud prevention and detection initiatives normalize behavior (Sargiacomo et 

al., 2015; Sharma and Lawrence, 2015), which is not always appropriate for highly specialized 

industries, such as the healthcare industry (Cassel and Reuben, 2011; Marmor et al., 2005; Mashaw 

and Marmor, 1994). Inappropriate normalization efforts have the potential of marginalizing or even 

bankrupting various actors within an industry, thereby affecting industry-wide power-dynamics. 

Moreover, specialization in the healthcare industry advances knowledge to improve society as a 

whole (Mashaw and Marmor, 1994). Normalization initiatives may discourage providers from 

specialization, ultimately hindering the advancement of knowledge and the provision of better 

healthcare, and as a by-product reallocating power to larger, non-specialized providers. 

This research makes several important contributions to the AIS literature. First, the 

research helps address calls to consider audits in governmental contexts (Free et al. 2020; Gendron 

et al. 2007) as we look specifically at how government auditors appropriate data analytic tools to 

redefine the audit relationship. Second and more specifically, this study extends prior research 

which has narrowly focused on the capabilities of various outlier detection algorithms to identify 

potential Medicaid fraud related to a single type of healthcare providers (i.e., dentists) within a 

single state (see van Capelleveen et al., 2016).3 Our study, which explores potential downsides of 

algorithmic decision-making draws on data related to Medicare as well as Medicaid fraud 

investigations from a diverse range of healthcare providers across multiple U.S. states. Third, 

researchers have pointed to the dearth of empirical research on data analytic tools used for auditing 

purposes and the effect of these new technologies on the conduct of audits (Austin et al., 2019; 

Eilifsen et al., 2020). Our study addresses those calls for additional research. Fourth, the present 

 
3 See van Capelleveen et al., (2016) for a review of prior (non-accounting) research on the ability of data mining and 
outlier detection techniques to improve healthcare fraud identification. 
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study advances knowledge about the implications of government-encouraged algorithmic 

decision-making on the power dynamics between auditors acting on behalf of the federal 

government and constituents. Fifth, our investigation offers future research a better understanding 

of the transformation of power dynamics within an important social setting (i.e., the healthcare 

industry) (van Capelleveen et al., 2016) as a result of algorithmic decision-making. Finally, we 

show implications of using technology to promote change. Our finding that government-

encouraged algorithmic decision-making elevates the systemic power of the actors using the 

technology concerns a manifestation of power that has received little attention in the literature 

(Simeonova, 2018), even though power and politics associated with information system inventions 

is a recurring theme in this literature (Avgerou and McGrath, 2007).  

This research also makes an important contribution to audit research and the discourse on 

“The Audit Society” (Power, 1999). Power (p. 96) identifies two extreme possibilities of audit 

failure which are viewed as never likely to be found in pure form. We find both to exist in 

essentially pure form under the shifting circuits of power surrounding algorithmic decision-making 

by auditors. First, the audit process can take on a life of its own with its own goals irrespective of 

the reasons that the auditees exist as a service to society. Second, the audit process becomes the 

dominant reference point for auditees’ organizational activities and effectively colonizes auditee 

organizations—implanting the values of a third party and a focus on normalization of behavior. 

Beyond the macro-foundations of the discourse on “The Audit Society”, we also provide evidence 

of how the audit society is created and reinforced at the micro-level as we examine how data 

analytics that interpret deviations in the audit trail of healthcare organization’s transactions as 

evidence of fraud, actually construct an organizational factivity that all deviations are fraud 

(Power, 2021). 
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2. THEORETICAL BACKGROUND 

2.1 Power 

It is commonly understood that power concerns the relationships between two or more 

individuals, where actions of one actor impact actions of the other (Hall, 1999). Simple as this 

sounds, the literature has long recognized that defining and measuring power is a formidable 

challenge, not least due to the elusive nature of power as a concept with cryptic characteristics that 

are difficult to label and comprehend (Jasperson et al., 2002). Thus, it is not surprising that 

numerous conceptualizations of power have emerged in prior literature. For purposes of this study, 

we draw on two perspectives on power that, while distinct, have been used in conjunction to 

explain organizational and social change. These two perspectives, which seem to dominate current 

discourse, are power as a restraining force and power as a productive force (Kärreman, 2010).  

The first conceptualization of power characterizes it as a restraining force used to coerce 

individuals into acting in compliance with another individual’s desire, thereby restraining the actor 

subject to power from acting according to their own wishes (Kärreman, 2010). This 

conceptualization aligns with episodic power, which emphasizes rather discrete, strategic actions 

by an actor (Lawrence, Winn, & Jennings, 2001) used to limit others’ decision-making alternatives 

(Lawrence et al., 2005). Thus, the power as a restraining force / episodic power viewpoint 

embraces a “power over” perspective that highlights the advantageous nature of power that allows 

an actor to regulate the potential actions of other individuals (Lawrence et al., 2012), set agendas, 

remove opponents, and limit other’s decision alternatives (Lawrence et al., 2005). This power over 

another may be attributable to professional capital—e.g., a physician’s power over a patient (Guo 

et al., 2017). Other examples of this perspective, which encompasses French and Raven’s (French 

and Raven, 1959) concept of “legitimate power,” include the power of a teacher over a student, or 
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of a manager over a staff member. Legitimate power, which is closely related to the concept of 

authority, is often bestowed upon an agent by a legitimizing actor (French and Raven, 1959).  

The second conceptualization of power characterizes it as an enabling rather than a 

restraining force. This conceptualization aligns with the notion of systemic forms of power, which 

“work through the routine, ongoing practices of organizations” (Lawrence et al., 2001, p. 629]. 

Thus, the power as a productive force / systemic power viewpoint embraces a “power to” 

perspective that highlights the capacity of power to cause or facilitate change. Examples include 

the power to access information, programs put in place to facilitate social change (Clegg et al., 

2006; Cobb, 1984; Lawrence et al., 2012), or the power inherent in an IS that provides encoded 

decision paths to knowledge workers, thereby guiding them through a limited range of actions 

(Lawrence et al., 2005). According to this perspective, systemic power (“power to”) is considered 

an integral part of social relationships (Clegg et al., 2006; Kärreman, 2010; Lawrence et al., 2012; 

Simeonova, 2018), enabling social agents to act in specific ways (Kärreman, 2010; Kärreman and 

Alvesson, 2009). However, agents who establish systemic forms of power need to be aware of 

potentially unintentional outcomes, as the long-term impacts of chosen systems and practices often 

elude their control (Lawrence et al., 2001).  

However, a thorough appreciation of the nature of power is limited without an 

understanding of the interaction between both modes of power. While Cobb, (1984, p. 484) 

highlights that executing power (i.e., episodic power) critically depends on pre-existing conditions 

(i.e., systemic power), others have argued that both modes of power operate in circuits: the exercise 

of episodic power forms the basis for systemic power to operate, which in turn establishes the 

required legitimacy for agents to exercise episodic power (Clegg, 1989; Lawrence et al., 2012). 

Those insights are reflected in research that explores the interplay of systemic and episodic power 
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in the context of organizational learning (Lawrence et al., 2005) and radical transformations within 

professional service firms (Lawrence et al., 2012), and form the basis of our analysis. Figure 1 

illustrates the relationship between episodic and systemic power. 

[INSERT FIGURE 1 ABOUT HERE] 

From an organizational perspective, systemic forms of power include technological 

systems (Noble, 1984; Shaiken, 1984) that favor certain groups. According to Lawrence et al., 

systemic power, which can help explain the dynamics of organizational change (Lawrence et al., 

2005), takes two distinct forms: (1) “discipline,” which, through its impact on identity, affects 

cost–benefit perceptions associated with individuals’ choices; and (2) “domination,” which 

operates through variations of the possibilities available to individuals, frequently through 

“physical and social technologies that provide the context for action” (Lawrence, 2008, p. 178). 

Domination is defined by Lawrence et al., (2001, p. 637) as “forms of power that support 

institutionalization processes through systems of organized, routine practices that do not require 

agency or choice on the part of those targeted.” While systematic discrimination against specific 

groups reflects a rather obvious form of (institutionalized) domination, more subtle means of 

domination do exist—for example, governmental use of quantitative descriptors and statistical 

techniques to label and characterize organizations (Lawrence et al., 2001).4 Such “actuarial 

practices” construct target organizations as objects, or pieces of information, the properties of 

which can be accommodated or exploited (Lawrence et al., 2001).  

2.2 Algorithmic decision-making 

As technologies may be used to support and rationalize organizational processes and their 

social implications (Cecez-Kecmanovic, 1994; Cecez-Kecmanovic et al., 2002), researchers have 

 
4 For additional background on how statistical science is used by auditors to rationalize discriminatory testing see 
Power (1999). 
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called for investigations of information technology’s effects on society (Sutton, 1993; Sutton et 

al., 2018; Trauth and Howcroft, 2006). One such technology is the set of algorithms used to 

support, or even completely automate, human decision-making processes (Arnold and Sutton, 

1998; Rikhardsson and Yigitbasioglu, 2018; Sutton et al., 2016). Consistent with Newell & 

Marabelli (2015), we define algorithmic decision-making as an automated, structured method of 

identifying patterns within large datasets that are used for decision-making purposes.  

Incorporating data analytics into audits can identify the highest risk data for further 

investigation. Examining highest risk areas can facilitate more efficient and effective audits by 

enabling auditors to reallocate time spent on labor intensive tasks to judgment intensive tasks 

(Agnew, 2016; AICPA, 2015; Brown-Liburd et al., 2015; Raphael, 2017). Moreover, while data 

analytics may permit centralized expertise to be disseminated to lower level auditors (Boland et 

al., 2019; Dowling, 2009; Dowling and Leech, 2014), they may have unintended consequences, 

such as causing lower level auditors to insufficiently consider issues beyond identified information 

(Arnold and Sutton, 1998; Seow, 2011). Although data analytics are able to identify high risk areas 

from data analyzed, these high risk areas may merely represent false positives (Vasarhelyi et al., 

2015; Yoon et al., 2015). Not surprisingly, the rapidly growing reliance on algorithmic decision-

making by private and public organizations (Galliers et al., 2017; Kamiran et al., 2013; 

Kirkpatrick, 2016; Newell and Marabelli, 2015) raises concern with researchers about unintended 

outcomes (Sutton, 1993; Sutton et al., 2016; Trauth et al., 2018; Zarsky, 2016).  

Discriminatory outcomes can be the result of algorithmic bias, which “occurs when the 

machine learning models reproduce the intentional and unconscious biases of humans making 

decisions about collecting data, identifying data to be used in algorithms, and deciding how the 

data is to be used in the algorithm” (Trauth et al., 2018, p. 3). Human error or bias in capturing 
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and/or measuring data that lead to the perception that certain groups of individuals (e.g., ethnic 

minorities) are disproportionately associated with some forms of undesirable data is often the root 

cause of data inequality (O’Neil, 2016; Zarsky, 2016). Researchers have thus cautioned against 

applying algorithmic decision-making to judgment tasks where algorithmic opacity (Burrell, 2016) 

prevents individuals who use these systems from comprehending how the algorithm arrived at its 

decision (Arnold and Sutton, 1998; Rikhardsson and Yigitbasioglu, 2018; Sutton et al., 2018). 

However, even if humans are kept in the loop during the algorithmic decision-making process (and 

the algorithm’s evolution), significant risks remain—research suggests that humans are rather 

ineffective at overriding automated decisions (Goddard et al., 2014; Markus, 2017). 

As discussed earlier, algorithmic decision-making enables actors to justify their actions, 

even when those actions are inappropriate (i.e., discriminatory) (Newell and Marabelli, 2015). 

Those findings seem less surprising when viewed in light of social psychology research. While 

decision-aid users tend to follow decision-aid recommendations passively (Glover et al., 1997), 

psychology studies show that individuals may rationalize unethical decisions by displacing 

responsibility (Bandura, 1999, 1991; Bandura et al., 2001) to another individual or to a 

technological artifact (Nissenbaum, 1996). Thus, data analytics tools can allow actors in a position 

of power over others to justify their actions based solely on the output of an algorithm, regardless 

of whether those actions seem appropriate (i.e., ethical) under the specific circumstances. 

Therefore, we ask the following research question: 

RQ: Can algorithmic decision-making enabled by data analytics result in abuse of power 

and/or shifting power dynamics? 

3. RESEARCH METHOD 

The present study is situated in the context of the private/public sector partnership 
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embodied by the U.S. healthcare system. Within the U.S. healthcare system, providers (e.g., 

hospitals, home health agencies, nursing homes, physician offices) generate revenue by providing 

services then submitting reimbursement requests to a variety of payers, including government 

agencies (e.g., Medicare and Medicaid) and insurance companies (e.g., Aetna and 

UnitedHealthcare). The dollar amount submitted for a reimbursement request is calculated using 

charge codes. Charge codes are made up of unique billable activities and are impacted by services 

provided (such as time in an operating room) (Balakrishnan et al., 2018). Reimbursement requests 

are subject to scrutiny from reimbursement entities for a variety of factors including fraud. 

Healthcare fraud has a significant societal cost (van Capelleveen et al., 2016): in the 2018 fiscal 

year,  the U.S. Federal Government won or negotiated over $2.3 billion in healthcare fraud 

judgments and settlements (DHHS & DOJ, 2019). Thus, effective data analytics have the potential 

to significantly reduce the cost of healthcare fraud. CMS created and implemented the FPS data 

analytic tool to help identify Medicare fraud. With its introduction, reliance on algorithmic 

decision-making by government auditors was explicitly dictated by the U.S. Federal Government.  

To assist with on-site forensic analysis (i.e., a “government audit”), CMS outsources 

inspectorial powers (cf. Power, 1999), i.e., audit responsibilities, to teams of auditors, specifically 

Zone Program Integrity Contractor (ZPIC) firms (CMS, 2007). Once the data analytics identify an 

outlier, a ZPIC auditor is assigned to examine the outlier and conduct a fraud audit of the healthcare 

provider to identify a possible pattern of fraudulent claim submissions (DHHS, 2012).  

The development and implementation of the FPS highlight how technology can 

purportedly be used to fight healthcare fraud. The FPS deploys four types of data analytic models 

to identify potentially fraudulent activities within the Medicare program. The first is a “rules-

based” model that uses defined criteria or pre-established rules (Chiu and Jans, 2019; Jans, 2019; 



 
 

13 
 

Jans et al., 2014, 2013, 2010) to flag fraudulent claims and behaviors, such as claims billed using 

a Medicare identification number that has been previously reported as stolen. The second FPS 

model is an “anomaly” model that detects individual and aggregated abnormal metrics (i.e., 

ratios) compared with a peer group in the current period—for example, identifying a provider 

that bills more services in a day than 99% of providers in the same region. The third FPS model 

is a “predictive” model that uses patterns associated with previously detected frauds to identify 

similar patterns in the current period. The fourth FPS model is a “network” model that examines 

links between actors. A network model may be used to identify providers linked to known bad 

actor, such as through a common address or phone number (DHHS, 2014; Jans et al., 2014).  

Four full years of FPS operation have been publicly reported. The reports describe the 

results of the FPS approach to fraud detection as a major success based on consistently increasing 

ROI, from 3.3:1 in 2012 to 11.5:1 in 2015 (CMS, 2015; DHHS, 2012, 2014, 2015). Although 

positive and increasing ROIs are reported in the Reports to Congress (DHHS, 2012, 2014, 2015), 

examination of only actual savings revealed ROIs of 0.51:1, 0.57:1, 0.88:1, and 1.08:1 from 2012 

to 2015.5 Thus, savings did not exceed costs until the fourth year, suggesting that ZPIC auditor 

activity was not initially cost-effective. Given the purported success of ZPIC Medicare fraud audits 

(DHHS, 2012, 2014), subcontractor activity has expanded to Medicaid. The creation of Unified 

Program Integrity Contractors consolidated the ZPIC audit responsiblities with their Medicaid 

counterparts, yet all contracts were awarded to already utilized ZPIC firms (CMS, 2018).  

It should be noted that this expansion of the ZPIC programs are consistent with alleged 

conflicting motivations for the auditor. While audits are viewed as a remedy for distrust, they can 

 
5 ROI is calculated based on total estimated savings (actual savings plus projected savings) divided by total 
estimated costs (development contractor costs, modeling costs, employee salaries and benefits, and investigation 
costs) (CMS, 2015; DHHS, 2012, 2014, 2015). 
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also be used to sow distrust where the solution to these pathologies of distrust is yet more and 

better auditing (Power, 1999, p. 136-7). The auditors are the guardians of distrust, which Power 

(p. 137) argues is “The Audit Society” in a nutshell. 

3.1. METHODOLOGY: A POSITIVIST CROSS-SECTIONAL CASE STUDY 

We adopted a positivist case-study approach for this study, as it validates theory and 

examines relationships among constructs (i.e., power, auditing and AIS) (Sarker et al., 2018b). 

Using qualitative methods is often a preferable research method for examining emerging 

phenomena in a natural setting (Benbasat et al., 1987; Eisenhardt, 1989; Power and Gendron, 2015; 

Sutton et al., 2011); for example, “limited research on outlier techniques in health care fraud … in 

which experiences of actors and context are important (Benbasat et al., 1987; Yin, 2009)” (van 

Capelleveen et al., 2016, 21). As organizations are targeted for audit following application of a 

variety of data analytic methods, and healthcare providers’ on-site audit experiences are likely to 

differ, a cross-sectional case study was selected as the most appropriate method for this research 

(Benbasat et al., 1987). Semi-structured interviews were utilized to collect data on topics of interest 

related to respondents’ firsthand accounts of being subject to a government audit; however, these 

interviews also permitted the interviewer to be open and flexible to exploring new insights 

presented during the interview (Miller and Crabtree, 1994). See Appendix A for the full protocol. 

3.1.1 Data collection 

We established contact with individuals employed by healthcare providers subject to audit 

through various sources, including public accounting firms, articles in publicly available sources, 

and state and subindustry healthcare organizations and conferences. We targeted respondents who 

could provide direct first-hand knowledge and insight into our research question (Malsch and 

Salterio, 2016)—specifically, individuals employed by providers subject to the government fraud 
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audits, and thus possessing firsthand knowledge of those audits.  

We interviewed 40 individuals from across the U.S. The respondents were primarily C-

level executives (or equivalent) or owners of healthcare providers; the remaining respondents were 

high-ranking clinical personnel, including two administrators (similar to office managers), a 

consultant, two directors, and a manager.6 Respondents were located in six of the seven U.S. 

geographic zones, covering audits by three of the four ZPIC firms.7 There was substantial diversity 

among the respondents (see Table 1). We noted no significant differences between different 

subgroups (i.e., industry type or location) during our analysis. 

[INSERT TABLE 1 ABOUT HERE] 

The interviews lasted from 31 to 118 minutes and were conducted between March 2015 

and May 2019. They were held in respondents’ offices, by phone, or in a public location. They 

were recorded and fully transcribed by one of the researchers or a graduate research assistant.8  

3.1.2 Data analysis 

One of the researchers pilot-coded the initial interviews by examining each sentence and 

assigning a descriptive label to the content conveyed within it based on an initial set of themes 

focusing on use of audit data analytics. As additional interviews were conducted and transcribed, 

the researcher iteratively coded all the interviews by analyzing the data in sequence on a line-by-

 
6 Although the directors and manager were not in the “C-suite,” they were all employed by organizations of 
significant size and capacity. Healthcare fraud is particularly prevalent in the home health industry (DHHS & DOJ, 
2019; OIG, 2016), therefore it is not surprising that home health providers are targeted by the government auditors 
and comprise a significant portion of our sample. Prior research expressed the importance of acknowledging the 
researchers relationship to respondents and organizations (Pratt, 2009). One of the authors previously worked in the 
healthcare practice of a national professional service firm for approximately two and a half years. None of the 
authors had a pre-existing relationship with any of the respondents nor organizations prior to the initiation of this 
study. 
7 The four ZPIC firms are NCI Advancemed, Health Integrity (now Qlarant), Safeguard Services, and Cahaba 
Safeguard Administrators.  
8 One respondent declined to be recorded. During the interview, the interviewer took handwritten notes and captured 
direct quotations whenever possible. 
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line basis, beginning with the first interview. This ensured that increased attention was not given 

to certain respondents (Miles and Huberman, 1994). During the coding process, we remained open 

to the emergence of other concepts and relationships and refined the coding scheme as necessary 

(Sarker et al., 2018b). During this process, power relationships emerged as a theme discussed by 

respondents. During the coding process, several subcodes were identified. Commonalities among 

subcodes were identified and subcodes centering on similar topics were collapsed into codes.  

Data saturation—the point when additional interviews are neither presenting contradicting 

information nor adding any significant new information (Malsch and Salterio, 2016; Rahaman et 

al., 2010; Sutton et al., 2011)—was achieved. We took three main measures to enhance the 

accuracy, reliability, validity, trustworthiness, and completeness of our findings. First, we 

triangulated interview data (Dowling and Leech, 2014; Kaplan and Duchon, 1988; Salterio and 

Denham, 1997; Yin, 2009) with archival documents, such as respondents’ communication with 

the government auditors (primarily e-mails and court documents) and publicly available 

information sources, such as practitioner websites (i.e., those of attorneys and consultants). 

Second, a graduate assistant was provided the coding scheme and independently coded all 

interviews. The assistant coded one transcript and then met with the researcher to discuss 

discrepancies before proceeding to code remaining transcripts (all discrepancies were resolved). 

Third, we provided respondents earlier drafts of this study (Guénin-Paracini et al., 2014; Malsch 

and Salterio, 2016; Trauth and Jessup, 2000) and no concerns regarding content were expressed.  

4. FINDINGS 

4.1 Use of data analytics 

As respondents predominantly portrayed the ZPIC auditors (henceforth “government 

auditors”) in a negative light, we considered whether this negative view was merely attributable to 
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respondent bias from being subject to a government audit or was specific to the government 

auditors in this study. We examined how respondents discussed their audits with other government 

agencies (i.e., Department of Justice Office of the Inspector General). We identified a clear 

distinction in their descriptions, noting that other auditors were described in an overall positive 

manner. Respondents even expressed support for the intended purpose of the government auditors 

(to detect Medicare fraud) and expressed their satisfaction with seeing fraudulent providers closed 

down. This demonstrates that respondents did not highlight government auditors’ abuse of power 

and excessive reliance on algorithmic decision-making merely because they were subject to an 

audit; rather, they identified these phenomena only for the actions of these government auditors.  

Our examination of public documents revealed the government auditors’ success in 

leveraging data analytics to identify Medicare fraud. For example, the government auditors 

identified that WakeMed hospitals had a large numbers of patients classified as inpatients 

(indicating overnight admittance) with zero night stays (indicating no overnight admittance) (U.S. 

District Court for the Eastern District of North Carolina, 2013). Another example is the auditors’ 

identification of Medistat’s abnormally high home-health referrals (Health Integrity LLC, 2012). 

Respondents discussed the benefits of data analytics within their own organization and 

acknowledged similar success stories and the benefits of government auditors:  

I think the [government auditors’] process when it originally started did a good job of 
eliminating the bad guys and the fraudsters … it’s a good method, they’ve caught some 
bad guys, but there needs to be other processes to reconcile the injustices … [government 
auditor] was VERY successful in knocking out a bunch of the bad guys, very successful. 
They served their purpose, but they kind of dragged it on too long, they’re digging too 
deep. (Respondent 15, Chief Executive Officer [CEO]) 

Despite CMS undertaking fraud detection initiatives since the late 1990s,9 one respondent 

 
9 See the annual “Health Care Fraud and Abuse Control Program” reports published by the Department of Health 
and Human Services and Department of Justice since 1997. 
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pointed out that providers have only recently been financially penalized by CMS based solely on 

the outcome of statistical analysis. Concerns with the government auditors’ selection of statistical 

methods was a recurring theme among respondents. For example, when the data analytics 

identified a statistical outlier, that outlier might not have necessarily indicated wrongdoing:  

[J]ust to be presumed guilty by a statistical analytic, has never been done before … every 
account that was, or every bill that was pulled was denied 100 cents on the dollar, denied, 
because statistically it didn’t make sense to somebody. … There’s no concept of an average 
family because the average family has one and three quarter kids, so it doesn’t exist. 
Statistically you can have an outlier, but that doesn’t mean you did anything wrong. 
(Respondent 8, Financial Director)  

As the above quotation indicates, the government auditors seemed dismissive of potential 

FPS shortcomings and prone to rely on risks identified by the data analytics without sufficient 

scrutiny. Respondents’ frustration with the government auditors’ homogenized and ineffective 

approach to identifying true outliers was exacerbated by a perceived lack of openness toward 

gaining a deeper understanding of the peculiarities of the organization under investigation. 

Statistical deviations from generic expectations may have straightforward explanations that 

respondents would have liked to provide, had they been given the opportunity: 

[H]ad they [the government auditors] called the provider up and said, “You know this is 
what we’re seeing in your data” or “This is the complaint or you know, can you help us 
understand” there’s an actual explanation for what’s happening. … It’s not necessarily 
indicative of fraud. (Respondent 39, Chief Compliance Officer [CCO]) 

Several respondents noted that anomaly models (i.e., high or low amounts) spurred their 

audit. For example, one hospice in the sample was selected for audit due to its patients living too 

long, as reflected in unusually long Length of Stays (LOS).10 While a long average LOS at a 

hospice may be an indicator of fraud (i.e., treating non-terminally ill patients for more than 180 

 
10 Hospice providers seek to comfort those expected to pass away within 180 days. The LOS is the number of days 
the patient received care. 
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days), high LOS may also be the result of providing high-quality care to patients. A hospice 

employee explained that professional judgments used to make recommendations for hospice care 

are not always accurate. Putting an individual in hospice care may actually improve that patient’s 

health. Thus, anomaly models may identify hospices with a high LOS that is attributable to 

providing high-quality care, not fraud: 

[I]f whatever terminal disease or condition they’re suffering from … runs its normal course 
would you expect this patient to pass away within the next six months. … sometimes it 
doesn’t run its normal course. Sometimes it takes a year or longer. … We go in, we get 
them on their meds. … We make sure they got oxygen if they need it … We watch their 
diet. We educate them on those kinds of things. We get a clinical therapist in there … 
sometimes they start to … improve. (Respondent 4, Chief Financial Officer [CFO])  

The implications of such misinterpretation of data analytics can have profound effects on 

the provision of healthcare services. A hospice in the sample was forced to refuse treatment to 

certain patients due to the government auditor’s accusation that its average LOS was indicative of 

fraud. One respondent discussed how prolonging patients’ lives initiated an audit: 

The patients for the Hospice Medicare benefit is six months or less on a terminal prognosis. 
Well we had a lot of patients that were over that 180-day mark, and that sparked our 
[government audit]. (Respondent 3, CEO) 

Another respondent described being identified by an anomaly model because their 

organization had lower costs than similar providers in their region. This CEO expressed frustration 

with being targeted for having lower expenses than other providers in the area, arguing that their 

provider was saving the government money. While it seems intuitive that data analytics are used 

to identify providers with disproportionately high expenses, and thus those that are more likely to 

engage in fraudulent activities, the identification and audit of providers with disproportionately 

low expenses may merely target those exhibiting best practices:  

I just didn’t feel it was good business practice, having to spend more money to get more 
money or just trying to grow with volume and spend money … my utilization was always 
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low. … claims data showed in one of the counties that I served, showed me as the lowest 
utilizer of services in the county. The average length of stay in my county was [≈5.5] 
episodes, so we’re talking [≈340] days. My average length of stay was [≈1.1 episodes]. So, 
my average length of stay was close to or less than [≈80] days. When you add the dollar 
amounts attached to that, I could have saved the government like a hundred million dollars 
in one year in one county. (Respondent 12, CEO)  

Another CEO stated that their government audit was initiated by disproportionately high 

revenue growth compared with alleged nationwide industry averages. This respondent then 

explained that their large increase in revenue was attributable to their organization being a startup 

that only operated for part of its first year. Accordingly, revenue generation was limited to only 

that part of the first year, whereas revenue was generated throughout the second year:  

[Government auditor] told us that he had data in front of him and he was very detailed with 
the numbers. He knew that our revenue for [year 1] was around $270,000 and that our 
revenue for [year 2] was close to $2 million dollars and that’s almost … a 10 times growth, 
and could I explain that? … we couldn’t start billing Medicare until November … I mean 
we have about four months of operations … in [year 1], and I had one marketer going out 
and getting referrals as opposed to three marketers in [year 2]. … that’s why we grew at 
the rate we did. And he said that that was way above the national average of growth in the 
Medicare home care industry. And I said, “Well what is that average? I would like to know” 
and he goes, “Well … there’s nothing published, but that’s just higher than expected.” 
(Respondent 34, CEO) 

In addition to anomaly models, respondents also discussed the use of network analytics by 

the government auditors. Respondents noted that physicians unrelated to their organization had 

been identified by the government auditors as engaging in unusual billing practices. The services 

delivered by the respondents’ organizations to patients referred from those physicians were 

therefore not reimbursed. Thus, in spite of the referring physician, rather than the organization 

under the government audit, being suspected of engaging in questionable practices, the 

organization receiving the referral and providing the treatment faced the consequences in the form 

of reduced cash flows. Several respondents noted that the government auditors targeted their 

organization solely based on its indirect association (via referrals) with physicians suspected of 
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unusual billing practices. One respondent recalled this ‘guilt by association’ experience: 

[N]o home healthcare billing … will be paid with this physician’s NPI [National Provider 
Identifier] attached to the claim, so no one will take care of that patient. … [government 
auditor] says, “Listen lady, it’s not about you, it’s about the doctors and as long as you 
continue to take care of this guy’s patients, you’re not gonna get paid.” (Respondent 28, 
Administrator) 

The third data analytical model identified by respondents as being used by the government 

auditors was the rules-based model, which applies established flags for potentially fraudulent data 

values in certain data fields. The rules-based model identifies both physicians and patients 

suspected of engaging in fraudulent activities and blacklists them. The blacklisted actors identified 

through the rules-based models become the basis for generating network models, which focus on 

the actors identified by the rules-based model as likely tied to fraudulent claims. One respondent 

explained that when a patient is identified by the rules-based model, services provided to them will 

not be reimbursed to the provider, which may result in providers refusing to treat the patient: 

[The patient’s] Medicare is compromised. So she cannot use home-health services … She 
still has no Medicare and this lady needs the services. … Nobody can touch her. … They 
[the government auditors] are flagging patients. (Respondent 30, Owner) 

The algorithms underlying the three data analytic models used to identify potential 

healthcare fraud differ in their foci. Results show anomaly models are used to identify providers 

with abnormally high service treatment periods (based on LOS) and those with unusually low 

expenses; network models are used to identify patients associated with questionable physicians; 

and rules-based models identify specific physicians/patients associated with potential fraud. 

4.2 Abuse of power 

Abuse of power also emerged from our analysis as consequences of algorithmic decision-
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making.11 Participants lamented about the government auditors constraining cash flows, requesting 

documentation beyond their jurisdiction and employing intimidation tactics. Subsequently, 

participants discussed how these actions result in consolidation of power within the industry (see 

section 4.3 below). The ability to disrupt Medicare reimbursement (DHHS, 2012) creates a 

resource-dependency relationship between the healthcare providers and government auditors that 

can reshape providers’ service provision. For example, if a provider derives half of their earnings 

from Medicare, the government auditors can eliminate half of the provider’s earnings. A 

respondent noted that the government auditors exercised their ability to constrain Medicare 

reimbursement, and gave additional evidence of the government auditors intentionally withholding 

critical information and abusing their power:  

[T]hey put us on 100% prepayment review, just because they can, and they tell me “We 
can put you on there for four years, we can have you be on there forever.” ... they had never 
given us a sampling of the 30 initial reviews which you’re supposed to by statute. 
(Respondent 10, Owner)  

However, the denial of Medicare reimbursements is not limited to individual provider 

locations deemed suspicious. The government auditors can increase the financial punishment of a 

suspected organization by extending Medicare reimbursement constraints to all of the provider’s 

locations nationwide. It is therefore not surprising that this resource dependency resulted in 

respondents noting that the government auditors abused their power throughout the audit process: 

[T]hese contractors are running rampant and they’re breaking the law … There’s a lot of 
power at the ZPIC level right now, and that needs to be balanced … What is currently 
happening will send ripples through our healthcare system for many years to come. … It 
is very discouraging to downright criminal the abuse of power that we are currently seeing 
from the ZPICs and other entities that are letting this happen … It is a battle that you cannot 
win because by design the rules applied were never drafted to benefit the patient or 

 
11 We use the term “emerge” to represent properties that are not specified by the algorithmic decision-making 
literature, but are revealed by our analysis to be salient to respondents’ government audit experiences. 
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provider. (Respondent 14, CFO) 

Although the government auditors’ jurisdiction has expanded to include Medicaid (CMS, 

2018), most respondents were interviewed regarding government audits prior to this expansion. 

One respondent interviewed before the expansion discussed the government auditors’ attempted 

exercise of power by requesting documentation beyond their jurisdiction: 

[T]he letter originally requested Medicare and Medicaid records, and [attorney] stated that 
they didn’t have authority to request the Medicaid records. (Respondent 16, CCO)  

Moreover, respondents noted that intimidation tactics were a standard feature of the 

government auditors’ modus operandi—for example, auditors showed up armed at healthcare 

facilities (Moore Stephens Lovelace, 2013). One respondent reported that the government auditors 

interviewed a patient at home and verbally abused them to the extent that the patient called police. 

A review of several archival documents revealed that the government auditors included the CMS 

logo on their communications with organizations being audited. An agency owner who shared 

others’ awareness of such intimidation practices articulated the perceived purpose of such tactics: 

I think they just use the gestapo tactic to scare people into writing them checks. Showing 
up like you know, they might as well [have] had ski masks and machine guns. Because 
that’s how they came in … like stormtroopers. (Respondent 1, Owner) 

4.3 Consolidation of power 

Employees from over three quarters of the organizations interviewed noted that they were 

aware of several providers who had declared bankruptcy during their government audits, or stated 

that bankruptcy was a salient fear during their own government audit. Respondents explained that 

subsequent to a smaller provider declaring bankruptcy, larger providers gained the upper hand in 

the struggle for market share. Consistent with these explanations, the providers in the sample that 

declared bankruptcy or sold their company subsequent to their government audits were all small 
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or family-owned businesses: 

[T]hey know that they are really putting us in a situation, and they have that power. … You 
give power to somebody … to close you down and take everything away. (Respondent 30, 
Owner)  

One respondent explained how larger providers are able to sustain operations during their 

government audit. While Medicare providers must have a registered, preapproved identifier to 

receive Medicare reimbursement, larger providers tend to have multiple identifiers. This 

respondent discussed how larger providers are able to shift reimbursement requests to identifiers 

not under a government audit; however, smaller providers are unable to do so, as they only have 

one identifier and lack the financial capital to obtain a new one:  

[Attorney] said, so this strategy for people like you who have the resources to take action: 
we advise them to turn off the lights, roll up the carpet, take the same amount of money 
they’re going to pay lawyers and consultants buy a brand new, clean Medicare number. 
Transfer all those patients over to that one. Throw the ZPIC letter in the trash and just go 
right on down the road. … It’s a strategy that is deployed by the larger companies who 
have those resources and [company #1] does it, [company #2] does it, [company #3] does 
it, [company #4 has] done it. … there’s a lot of companies [that have] done it … They have 
a bank of provider numbers. And so when one gets a dirty … they just close it down. They 
take the patient population, move them to a new one. … The barrier is cash. (Respondent 
40, CEO) 

Respondents discussed how the government auditors’ actions have a greater impact on 

smaller providers than on larger providers. The consolidation of market share and power from 

smaller providers to larger providers was further highlighted by one respondent:  

[I]t’s the big guys that are being left … the big players that have you know that are publicly 
traded, they have bottomless pockets, can throw money at that and survive until the 
pendulum sways back. … The era of the smaller mom and pops’ home-health agency is 
going away … there’s [about 160] agencies in [city] … they’re not … shutting down 
necessarily, they are being gobbled up by the big guys, whether they get sold or acquired, 
typically is what happens. There’s been shut downs, [government auditors] have shut down 
probably about half a dozen that I can think of in this area … This is the whole process 
behind Medicare’s madness … they can’t control 12,600 Medicare agencies nationwide. 
They can control a couple hundred, and that’s what they want. They want the big providers 
to take over, and then they can control those guys. … they have even said that outside of 
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microphones, our association leaders have heard this from the Medicare people …“You 
have too many agencies, we need to get rid of a bunch.” And so, I believe that’s part of the 
[new government audit] program. (Respondent 36, Owner) 

With consolidation of market share, fewer specialized niche providers will be available for 

the general public to choose from for healthcare services: 

I’m not in [big city] … I’m not in a large metropolitan statistical area. There are different 
things that we have to deal with, and typically they add something to the formulary to look 
at those rural providers, and look at those things, but it’s going to be very sad when we take 
a vanilla approach to medicine. (Respondent 10, Owner)  

5. DISCUSSION 

In this study, we examine how government-adopted audit data analytic tools promote abuse 

of power by auditors and initiate processes encouraging industry-wide normalization of behavior. 

While prior research identifies discriminatory threats caused by the deployment of algorithmic 

decision-making, the effects of algorithmic decision-making on inherently imbalanced power 

relationships, such as those explored in this research, have received limited attention. Our study 

addresses concerns regarding the social and ethical implications of algorithmic decision-making 

(Newell and Marabelli, 2015; Sutton, 1993; Sutton et al., 2018, 2016). Our results demonstrate 

that false positives are used by decision-makers to justify taking action (Newell and Marabelli, 

2015), at times without a comprehensive understanding of what the outliers represent (Mayer-

Schonberger and Cukier, 2013). For specialized industries, such as healthcare (Cassel and Reuben, 

2011; van Capelleveen et al. 2016), consideration should be given to critically evaluating the 

output of data analytic tools and technology driven fraud detection initiatives seeking to normalize 

behavior may not be appropriate (Sargiacomo et al., 2015; Sharma and Lawrence, 2015). As risks 

identified may merely represent false positives, algorithmic decision-making can result in 

suboptimal outcomes when blindly followed by decision-makers (Arnold and Sutton, 1998).  
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5.1 Power 

As previously discussed, the abuse of power emerged as a theme from our data analysis. 

Algorithmic decision-making is an integral part of CMS’ establishment of systemic power (“power 

to”) for its privatized government auditors. The outputs of the data analytic system give the 

auditors the right to enter the organization, demand documentary evidence and interviews, and, 

more importantly, to use the data analytic tool as the sole basis necessary to suspend payments to 

the organization. The use of statistical outputs to characterize healthcare providers on behalf of the 

government reflects a subtle form of institutionalized domination where targeted practitioners are 

constructed as objects (Lawrence et al., 2001). In essence, the auditors are given the “power to” 

freely audit, but also to freely impose penalties upon the practitioners being audited. The data 

analytic outputs—statistical outcomes—are frequently the only evidence required to suspend a 

provider’s payments. This power to audit and penalize creates an episodic power relationship 

between the auditors and the provider. The auditor has “power over” the provider and appears to 

freely use this power in the relationship. As is not unusual in such relationships, we see perceived 

abuses of power arise during audits, with the provider often feeling victimized. 

Auditors holding a position of power have the ability to engage in actions that influence 

the actions of less powerful auditees. Such power enables powerful actors to repress, censor, and 

constrain their subjects (Foucault, 1983). The government auditors in this study are in a position 

of power to engage in actions affecting the healthcare providers under audit, as highlighted by their 

ability to recommend providers’ temporary and permanent exclusion from Medicare 

reimbursement (DHHS, 2012). Such resource-dependency relationships enable actors in power to 

exert unethical demands on their less powerful subjects (Marmor and Morone, 1980; Palmer, 

2012), including threatening an indefinite reimbursement suspension, asking for records beyond 
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their jurisdiction and employing gestapo-like tactics. As this study is set in the healthcare industry, 

the implications of the government auditors’ abuse of power may have widespread societal 

implications, which in some cases may result in loss of life. 

Power is legitimized by recognition from a legitimate authority (French and Raven, 1959). 

As governments are viewed as legitimate actors (French and Raven, 1959), CMS’ acceptance of 

the government auditors’ recommendation to constrain Medicare cash flow legitimizes the 

government auditors’ power. Trust placed by CMS in government auditors’ recommendations is 

consistent with prior research suggesting perceptions of competence on the part of (government) 

agents who deploy a new technology reinforces the trust placed in the technology itself and thus 

reduces perceptions of power abuse (Avgerou, 2013)—at least from the perspective of the CMS.  

The ability of the government auditors to constrain cash flows represents power as a 

restraining force (episodic power via power “over” another, as discussed in prior research 

(Lawrence et al., 2012), as providers must act in accordance with government auditors’ desires. 

Episodic power is exercised by actors engaging in self-interested behavior; in the government 

auditors’ case, this is shown by the desire to win Medicaid contracts (CMS, 2018). While the data 

analytic models used by government auditors differ with respect to the type of data flagged by the 

underlying algorithm, they all trigger instances of the domination form of systemic power: the 

algorithmic decisions rendered by these models limit the alternatives available to government 

auditors, thereby providing additional legitimacy for restraining providers’ actions. Consistent 

with accountants overlooking quality of care delivered by healthcare providers (Pflueger, 2016) 

and government agencies using quantitative descriptors and statistics to label and characterize 

subject organizations (Lawrence et al., 2001), the FPS represents a technology enabled tool using 

these characterizations and in turn enables government auditors to exercise and establish power 



 
 

28 
 

over healthcare providers. That is, government auditors draw on the FPS “to provide meaning, to 

exercise power, and to legitimize actions” (Walsham, 2002, p. 935).  

Yet, respondents expressed concerns over the government auditors’ mischaracterization of 

system descriptors and statistics (i.e., false positives)—e.g., when an organization was identified 

for a government audit due to exhibiting best practices reflected in particularly low expenses. 

Consistent with Foucault (Foucault, 1977), a respondent expressed the desire to avoid being 

labeled as “deviant” in the future. Avoiding this label would entail adhering to societal norms, 

which would, in this scenario, result in incurring additional costs. As a consequence, government 

resources would be diverted away from education, other social programs, or auditing outliers truly 

indicative of fraud. This finding is particularly troublesome, since the suspected referral source 

may itself become a victim of unjustified audit and administrative action, as discussed in the 

context of false positives. Consequently, instances of episodic power have the potential to form 

the basis for systemic power to operate, thereby establishing the required legitimacy for 

government auditors to exercise episodic power. As the results demonstrate, the government 

auditors’ range of action was limited by a technology enabled data analytic tool containing the 

domination form of systemic power.  

Systemic power entails power to access information (Lawrence et al., 2012). The results 

demonstrate that the government auditors often do not permit providers to offer simple yet 

important explanations; this constitutes a limitation of the providers’ actions via a discrete act by 

a self-motivated actor (Lawrence et al., 2001). While some respondents discussed the lack of 

opportunity to provide an explanation for an apparent anomaly identified by the data analytics, 

even when respondents were able to provide an explanation, they were denied a satisfactory 

response by the government auditors. This finding is consistent with Power (1999) who notes that 



 
 

29 
 

the perceived legitimacy of auditors’ actions requires that some operational details be kept secret.  

By keeping information secret that would have allowed the provider to judge the need for more 

detailed explanations, the government auditors also limited the provider’s ability to defend itself 

against accusations based on data analytics.  

Overall, this abuse of power is part of a broader audit system, where the rules and processes 

governing the auditor-auditee relationship legitimizes the use of technology and algorithmic-

decision making. We offer caution to blindly trusting technology in the auditor-auditee context. 

More effective auditing systems can be achieved by implementing measures to decrease abuse of 

power through modifying algorithms, and more effective auditor training (including more effective 

false positive identification).  

5.2 Consolidation of power 

Episodic power entails an actor’s ability to limit others’ decision-making alternatives 

(Lawrence et al., 2005). In this study, episodic power is highlighted by the government auditors’ 

ability to constrain providers’ cash flow (DHHS, 2012). Respondents discussed how the 

government auditors’ actions demonstrated episodic power by constraining their organization’s 

ability to operate and forcing bankruptcy declaration. Additionally, the exercise of systemic power 

enables change, and both types of power operate in circuits with each other (Clegg, 1989; 

Lawrence et al., 2012). Such change attributable to the government auditors’ actions can be seen 

in the consolidation of power toward larger providers within the healthcare industry.  

The exercise of episodic power operating circularly with systemic power is a result of the 

government auditors’ actions. This circular relationship is shown by the government auditors 

exercising their power (episodic power) to enable change (systemic power) by consolidating power 

within the healthcare industry toward larger providers via the reduction in the number of smaller 
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providers, a move towards corporate oligopoly. This circular relationship provides additional 

evidence of certain groups (i.e., larger providers) receiving favorable treatment as a result of actors 

exercising their power. Exercising power can include use of technological systems (Noble, 1984; 

Shaiken, 1984). New technologies provide favorable treatment to certain actors by serving certain 

interests (Cecez-Kecmanovic et al., 2008), shifting power distributions (Joe-Wong and Sen, 2018), 

and strengthening existing social and control structures (Cecez-Kecmanovic, 2011). Despite the 

argument that technology should improve quality of life for all (Porra and Hirschheim, 2007), the 

results of this study suggest that recent changes to conducting government audits—most notably, 

the introduction of actuarial practices (Lawrence et al., 2001) enabled by data analytics—highlight 

the use of systemic power and have led to an establishment of a system that favors certain actors.  

Industry-specific factors create an abundance of specialization within the healthcare 

industry (Cassel and Reuben, 2011; Mashaw and Marmor, 1994; van Capelleveen et al., 2016), 

rendering the adoption of a one-size-fits-all fraud-detection approach inadvisable (SAS, 2014). 

Specialization in the healthcare industry advances knowledge to improve society as a whole 

(Mashaw and Marmor, 1994). Therefore, normalization initiatives may not be appropriate 

(Sargiacomo et al., 2015; Sharma and Lawrence, 2015)  and cause providers not to specialize, 

which ultimately hinders the advancement of knowledge and the provision of innovative 

healthcare.12 Such normalization initiatives provide another example of government technology 

having unintended negative societal effects (Marjanovic and Cecez-Kecmanovic, 2017). The 

results of this study highlight how a government-endorsed audit data analytic tool consolidates 

power in an industry toward larger organizations by allowing them to capture market share from 

 
12 This is consistent with prior research demonstrating that healthcare providers change operations (i.e., patient mix) 
and financial reporting in response to government regulation(Blanchard et al., 1986; Eldenburg et al., 2017; 
Eldenburg and Kallapur, 1997; Eldenburg and Soderstrom, 1996; Holzhacker et al., 2015; Kallapur and Eldenburg, 
2005; Koreff et al., 2020; Krishnan and Yetman, 2011). 
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smaller organizations that have been driven out of business. Respondents stated that the 

elimination of smaller niche providers is an intentional initiative that takes place to the detriment 

of patients. The consolidation of power to larger providers, moving towards corporate oligopoly, 

as a result of the government auditors’ actions suggests that smaller providers may attempt two 

courses of action when subject to government audits: (1) expand in size to survive, or (2) declare 

bankruptcy; the second action appears more prevalent. Results demonstrate that larger 

organizations are better able to continue operations during a government audit than smaller 

providers due to greater financial resources (cash). This allows the larger providers to capture more 

power, via market share, from the smaller bankrupted providers.  

Providers may specialize to meet the needs of their target population, since application of 

generic healthcare services nationwide is unlikely to result in optimal outcomes for patients—for 

example, the elderly, low-income individuals, and low-education individuals all differ in their 

healthcare needs (Marmor and Morone, 1980). Thus, even providers delivering high-quality 

services to their local or niche market, such as markets outside of a large city, may be identified as 

a statistical outlier by the data analytics and become the target of government auditors. As success 

of tools such as the FPS are contingent upon the calculation of benefits (Cecez-Kecmanovic et al., 

2014), it is important to not only focus on technical aspects when deploying such new technologies, 

as access to care issues are not included in the ROI calculations presented in Reports to Congress. 

Although systematic governmental discrimination against specific groups would likely be met with 

unfavorable public opinion, governments may use quantitative descriptions and statistical 

techniques to characterize organizations (Lawrence et al., 2001). The ability of auditors to suspend 

Medicare payments to the provider can financially cripple that provider. Documentary and 

interview evidence indicates smaller providers that are more susceptible to the auditors’ power 
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often either cease operating or merge with other organizations. In some cases, this can leave 

regions of the country without certain medical options, as a provider that has ceased operations 

may have been the only provider of certain services within a specific geographic region.  

Overall, the intertwined power relationship initiates social change via reshaping the 

industry landscape. The only means to counter auditors’ “power over” providers is to consolidate 

enough to create a smaller set of large organizations with the power to fight back against auditors’ 

penalties. This often requires sufficient funds to weather years of payment suspension until court 

resolution is attained, or sufficient financial resources to restart as a different provider registrant. 

It is not unusual in these cases for penalties to be reduced by 95–100%, but the provider must stay 

in business long enough to attain judicial remedy. 

There is evidence that this consolidation of medical organizations is actually a goal of 

CMS, as the professional organization representing smaller providers cites Medicare personnel 

saying that consolidation is desired so they can do business with only a small set of providers, 

thereby achieving efficiencies. With some political pressures also in place to curtail Medicare 

expenditures and services, eliminating service provision in some geographic regions may not 

necessarily be considered a negative by some constituencies. These social outcomes should be 

considered in future research focused on government use of algorithmic decision-making. Taken 

together, our results answer the research question by demonstrating that algorithmic decision-

making can result in abuse of power while also shifting power dynamics of an entire industry. 

5.3 Implications for research and practice 

Amid the broad claims of success for the data analytic models adopted by CMS to identify 

fraud in Medicare claims, this study sought to provide data on the role of power in the deployment, 

utilization, and impact of information technology within government entities, an area lacking 
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attention in the literature (Jasperson et al., 2002). Of particular interest was attaining an 

understanding of how algorithmic decision-making via data analytic tools is utilized in practice 

and how this utilization affects systemic power and its relationship with social change (Clegg, 

1989; Lawrence et al., 2005, 2001). In seeking empirical data to enhance our understanding of the 

intertwined phenomena, we address a concern over the predominance of theoretical-based analyses 

left wanting in empirical substance (Lawrence et al., 2012). 

Recent concerns over algorithmic decision-making have largely been raised over built-in 

bias (Trauth et al., 2018). The literature’s focus on bias generally concentrates on race, gender, 

social standing, or socioeconomic status (Kamiran et al., 2013; Trauth et al., 2018; Zarsky, 2016). 

Our empirical data contributes to the literature by identifying a different type of bias built into 

CMS’ data analytics: inherent bias for standardization and efficiency of practice with little regard 

for specialization, quality differentiation, and effectiveness (Cullinan et al., 2010). We find data 

analytic tools identify cost leaders, specialized practices for care, unusual success in treatment, 

and prolonged patient life through quality care as outliers using non-standardized practices and not 

focusing solely on moving the patient in and out of care. These outliers are viewed as equal levels 

of fraudulent behavior to practitioners providing false claims or running unnecessary tests, and 

they appear to be penalized similarly. More conceptually, our findings identify how bias arises 

from data analytic use on heterogeneous populations to assess operational performance.  

Our results also provide future research with a better understanding of the transformation 

of power dynamics within an important social setting (i.e., the healthcare industry) as a result of 

algorithmic decision-making. Data analytic models can provide legitimacy, and in turn power, to 

those empowered to interpret and use the models. Some of our respondents alleged that 

government entities with the ability to empower those armed with data analytics may be 
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subversively transforming power relationships without overtly having to be accountable—in this 

case, benefiting larger corporate providers and disadvantaging small- and medium-sized 

enterprises. Investigating these issues is important, as advanced technologies are increasingly used 

to justify decisions (Newell and Marabelli, 2015) and disseminate expertise (Dowling and Leech, 

2014, 2007) in settings where the long-term ramifications of relying on data analytics are ill-

understood (Arnold and Sutton, 1998; Grover et al., 2018; Sutton, 1993; Sutton et al., 2018, 2016).  

Accordingly, our research also has implications for practice on several levels. Research on 

the use of big data and analytics by governmental entities is only beginning to unfold. 

Governmental entities and their stakeholders (including citizens) need to understand how data and 

analytics can be used to affect societal relationships. We help address the sparsity of studies that 

have challenged the decisions made by government agencies based on algorithmic decision-

making or considered the associated social and ethical implications (Newell and Marabelli, 2015; 

Sutton, 1993; Sutton et al., 2018, 2016). By investigating the potential shift in power dynamics 

attributable to analytic tools used by agents tasked to monitor regulatory compliance, the present 

research sheds light on recently adopted data analytic applications. This investigation is important, 

as research shows a power imbalance may enable those imbued with power to engage in amoral 

practices with potentially adverse social outcomes (Marmor and Morone, 1980; Palmer, 2012).  

Our study also has implications for practice more generally, as organizations implement 

data analytics for monitoring use. First, despite the perception that data analytics will benefit 

organizations, we highlight the importance of human interaction with data analytic systems to 

effectively apply such smart technologies (Hancock, 2014). Practitioners in other areas, such as 

financial fraud, have implemented guidelines for using human brainstorming groups to evaluate 

potential fraud-source scenarios (Lynch et al., 2009). In the fraud arena investigated in this study, 
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the government auditors may benefit from using brainstorming techniques to consider why data 

analytics have identified a concern before acting upon them. This could alleviate the common 

automation bias that leads to overreaction to system alerts (Skitka et al., 1999). Such behavioral 

supplements to data analytic tools should be more broadly explored (Asatiani et al., 2019).  

Further, organizations of all types must be aware of how algorithmic decision-making may 

be misused to create powerful actors more interested in a personal goal, despite their actions 

potentially being to the detriment of the organization. Significant data analytic tools should be 

reviewed on a regular basis to understand the effectiveness of their use. In such reviews, entities 

should incorporate input from a variety of stakeholders to ensure that necessary, yet uncommon, 

processes and services are not being impaired by the implementation of analytics.  

7. CONCLUSION 

Respondents raised several concerns associated with the use of the data analytics and 

consequent actions by government auditors. Our results provide evidence of rules-based, anomaly, 

and network models being used to initiate audits, even though these models yield false positives. 

Further, even when a false positive is identified, a process is initiated that enables the government 

auditors to wield the power bestowed upon them against organizations they are auditing, ultimately 

affecting power dynamics within the healthcare industry.  

Our research lends support to the argument receiving limited attention in the literature: that 

data analytics can have unintended and negative consequences (Arnold and Sutton, 1998; Sutton 

et al., 2018, 2016; Zhou et al., 2018). With a focus on data analytics in an audit setting, our study 

more broadly contributes to the literature examining dysfunctional side-effects of audits (see 

Power, 1999). We answer the research question posed and demonstrate that the use of data 

analytics can promote algorithmic decision-making, resulting in the abuse and consolidation of 
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power. As is generally found during in-depth field studies, the relationships are complex and 

intertwined. The empirical findings support earlier theorizations that systemic and episodic power 

operate in circuits, whereby each mode of power is strengthened by the other (Clegg, 1989; 

Lawrence et al., 2012), leading to organizational transformation and social change (Lawrence et 

al., 2012, 2005). Some evidence in our context suggests that the governmental entity involved, the 

legitimizing actor (French and Raven, 1959), effectively utilizes the assignment of systemic 

(“power to”) and episodic (“power over”) power against entities under its control to effect social 

change that, politically, could not be instituted directly by the governmental entity. This 

establishment of power relationships is greatly enhanced by the use of algorithmic decision-

making (Newell and Marabelli, 2015), where the data analytics are incapable of being questioned, 

as opposed to the human decision-makers they replace. 

Overall, our research provides evidence of how systemic and episodic power work in 

circuits to affect social change. It also highlights how algorithmic decision-making in the form of 

advanced data analytics can be a powerful force in enabling “power to” and effecting “power over” 

relationships. This effect of algorithmic decision-making is of particular importance considering 

the extensive use of data analytics in contemporary organizations, and should be further examined 

in future research to understand the bounds and magnitude of such effects. 

Our research also adds to the understanding of how data analytics can reinforce and even 

strengthen the pressures of “The Audit Society” (Power, 1999, p. 96). Power notes that there are 

two extreme possibilities that represent different kinds of audit failure, but that neither is likely to 

manifest itself in a pure form. First, the audit process could become a world of its own, creating 

auditable images of performance decoupled from the focus of the auditees’ service mission which 

is the intended subject of audit. We see such an isolated world arising from algorithmic decision 
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making. Second, the audit world spills over and actually defines auditees’ organizational activity, 

effectively colonizing organizations through the audit and redefining organizational values. The 

audit can be viewed as a failure due to its side effects actually undermining performance—in this 

case encouraging industry-wide normalization of behavior. Thus, we see how algorithmic 

decision-making creates circuits of power that actually lead to both types of failure presenting 

themselves in essentially pure form. Beyond these macro-foundations that have been examined in 

isolation across many research studies on the ‘Audit Society’, our findings also contribute to the 

emerging discourse on the micro-processes that create the ‘Audit Society’ from the bottom up 

(Power 2021). Indeed, our findings suggest that data analytics, and the algorithmic decision 

making associated with these audit procedures, accelerate the interpretation of deviations in audit 

trails as clear indications of fraud. These findings provide insights into the organic creation of 

organizational factivity via audit trails that warrant further investigation in future research. 

7.1 Limitations 

As with any research study, ours is subject to limitations. We considered the potential that 

respondents in this study were discussing the government auditors’ algorithmic decision-making 

and abuse of power as a mechanism to justify their difficult audit experiences. We are comforted 

that the findings reported are specific to the government auditors in this study, as respondents 

discussed audits from other government auditors in a consistently positive light. These insights 

suggest that the algorithmic decision-making and abuse of power are not merely attributable to 

being under an audit, but are rather confined to being subject to a fraud audit by the specific 

auditors in this study.  

Despite repeated Freedom of Information Act requests, we were never able to get CMS to 

disclose the basis for the algorithms underlying the FPS data analytics, including the degree to 
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which artificial intelligence (AI) may or may not have been applied to facilitate data analytic 

analysis. On the surface, the analytics do not look that sophisticated and government auditors seem 

to understand the nature of the issues being raised by the analytic. Certainly the government 

auditors exhibit traits of technology dominance that are consistent with AI-based systems (Arnold 

and Sutton 1998). Nonetheless, we are unable to assess whether the dominance issues identified 

in this study might be exacerbated by the use of more advanced AI-based analytics including those 

that identify problems without being able to explain the basis for the identified fraud issue (Sutton 

et al. 2018; 2016). Future research should explore the differential effects of more advanced AI-

based analytics by auditors as these become more prevalent in audits.   
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Figure 1 

 
 
  

 

 

 

 

 

Note: Figure 1 illustrates how  instances of episodic power have the potential to form the basis for 
systemic power to operate, thereby establishing the required legitimacy for government auditors to 
exercise episodic power (Clegg, 1989; Lawrence et al., 2012). Episodic and systemic power strengthen 
one another (e.g., Clegg, 1989), leading to social change (Lawrence et al., 2012, 2005).  
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Table 1 – Interviewee details 

# Job title Subindustry 
Hot spot 
region1 

Non-
profit Fines2 

ZPIC came 
on site6 

1 Owner SNF3 Yes No Yes Yes 

2 Manager in the revenue cycle Hospital No Yes No No 

3 CEO Hospice Yes Yes Yes Yes 

4 CFO Hospice Yes Yes N/A4 N/A4 

5 CEO Hospice No Yes No No 

6 Nurse consultant Home Health No No Yes Yes 

7 Director in care management department Hospital No Yes No No 

8 Financial Director (CFO equivalent) SNF3 Yes Yes Yes Yes 

9 Clinical Care Coordinator Home Health Yes No Yes No 

10 Owner Home Health No No Yes Yes 

11 Executive Director Home Health No No Yes Yes 

12 CEO Home Health No No Yes Yes 

13 Administrator Dr. Office No No Yes Yes 

14 CFO Home Health Yes No Yes No 

15 CEO Home Health No No Yes Yes 

16 Chief Compliance Officer Home Health Yes No Yes Yes 

17 Director of Nursing  Home Health Yes No Yes No 

18 Owner Dr. Office No No Yes No 

19 Chief Operating Officer DME5 No No Yes Yes 

20 CEO DME5 No No Yes Yes 

21 Clinical administrator Home Health No No Yes Yes 

22 CEO Home Health No No Yes Yes 

23 Director in the revenue cycle Hospital No Yes No No 

24 Director of Compliance Home Health No No Yes Yes 

25 Director of Nursing  Home Health Yes No Yes Yes 

26 Chief Compliance Officer DME5 No No Yes Yes 

27 President Home Health No No Yes Yes 

28 Administrator Home Health Yes No Yes Yes 

29 Owner DME5 Yes No Yes Yes 

30 Owner Home Health Yes No Yes No 

31 Chief Operating Officer Home Health No No No No 

32 CEO Home Health No No No Yes 

33 Agency director Home Health No Yes Yes Yes 

34 CEO Home Health No No Yes Yes 

35 Director of Clinical services Home Health Yes No Yes No 

36 Owner Home Health No No Yes No 

37 President Home Health Yes No Yes No 

38 CEO Home Health Yes No Yes No 

39 Compliance Officer Hospice No No Yes Yes 

40 CEO Home Health No Yes No No 



 
 

49 
 

1 – Hot Spot Region refers to if the provider has at least one location in one of the nine designated hot spots for 
Medicare Fraud (DHHS, 2012) 
2 – This column indicates if the ZPICs levied fines on the interviewee’s employer.  All fines were related to 
documentation, none were fraud related 
3 – SNF represents a Skilled Nursing Facility, commonly referred to as a nursing home 
4 – During the interview, the interviewee revealed that they did not undergo a ZPIC audit. We proceeded with the 
interview to understand their perceptions of the threat and nature of the audits as they prepare for the future possibility 
and likelihood of an audit.   
5 – DME represents a Durable Medical Equipment company 
6 – This column indicates if a ZPIC had a physical presence at the respondent’s organization’s location at any point 
during the audit. 
 
Note: More than one individual from some of the providers were interviewed.  In total, employees from more than 
25 organizations were interviewed. 
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Appendix A – Interview Protocol 

Background of respondents: 
1. Please tell me about your job, what you do and what your responsibilities are. 
2. What has been your background leading up this point? How did you get to your current 

job? 
3. What is your current title? May I have a business card? 
4. How long have you been in this position? 

 
Control items: 

1. Can you tell me about what kind of provider you are? (ex: hospital, SNF, physician’s 
office) 

2. How many beds do you have? What is the breakdown between SNF, NF, ALF, IL, etc. 
3. What county and state are you located in?  
4. Is the organization a Non-profit or For-profit provider? 
5. Can you talk to me about the level of competition you face in your operating area. 

(occupancy rates, payer mix, referrals, etc.). 
 
ZPIC Audits: 

1. Can you tell me what you know or have heard about ZPIC audits? 
2. Can you tell me how and if you changed your activities (corporate compliance, education 

and training provided to staff) to prepare for them? Are you preparing differently from 
previous investigations? 

3. Can you describe the ZPIC audit(s) experience? (the number of audits, if you received 
any advance notice, the number of auditors, how long the process was, resources used) 

4. Can you tell me how long were they on site for? How much of your time did they 
require? How did you deal with their requests? 

5. Can you tell me what the timeframe was from notice of the ZPIC audit until they showed 
up and until any issues were resolved? How does this compare to previous 
investigations? 

6. How would you characterize your discussion with the ZPIC auditors? Can you tell me 
how the ZPICs treated your employees? Were they demanding, accommodating or 
considerate of your time? 

7. Can you tell me if and how you have responded to the ZPIC investigation? Have you 
done anything differently after the fact? What did you and your colleagues learn from this 
experience? 

8. Can you tell me what you think the likelihood is of them returning? 
9. What were the primary issues that the ZPICs brought up? What were their primary 

findings? Can I see one of the documents that you received? (***Remind the 
organization to redact resident identifying information***) 

10. Can you tell me if you faced any penalties or fines? If so what were they?  
11. Can you tell me about the most challenging part of the audit and why it was so 

challenging? 
12. Can you tell me what documents do they usually look at? Can I see one that you were 

cited on? 
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13. Can you tell me to whom do they communicate their findings to? Is it a formal report? 
Who receives the report? Are there different versions. Would you share any of the 
documents with me? 
 

Societal impact: 
1. Have you experienced any unexpected to unanticipated consequences from the ZPIC 

audit? 
2. Has the ZPIC audit impacted the individuals/communities you serve?  
3. Did the quality of care change during and after the ZPIC audit?  
4. What do you think would happen to the elderly in your region if you went out of 

business? 
5. Did the ZPIC audit put any financial hardship on your organization? Do you think a ZPIC 

audit could result in bankruptcy?   
6. What do you think most of your patients would do if your organization did not exist? 

What other HC options are available to the community? How could the community be 
impacted by this lack of service? 

 
Data Analytics: 

1. Do you have any insight what initiated your ZPIC investigation? 
a. Do you have any insight what the data analytics identified? 
b. Have auditors used data analytics like this before? 

2. Do you have any insight why the government is using data analytics?  What are your 
thoughts on the ZPICs purpose? 

 
 
Third parties influencing a change in behavior: 

1. Did any third parties (external auditors, attorneys, consultants, etc.) give you any notice 
or warnings about the ZPICs? 

2. Did third parties (external auditors, attorneys, consultants, etc.) help you prepare for the 
ZPICs? Did they provide any advice or counsel for preparation? 

3. Did third parties (external auditors, attorneys, consultants, etc.) help you respond to the 
ZPICs? Did they provide any advice or counsel for response? 

4. How would you have liked third parties (external auditors, attorneys, consultants, etc.) to 
have helped you prepare and respond to the ZPICs? 

 
Leverage, negotiation: 

1. Do you have any ability to negotiate with the ZPIC auditors? How does this compare to 
previous fraud investigators? 

2. How would you describe the relationship with your external auditor?  
3. How would you describe the relationship with your ZPIC auditor, and previous fraud 

investigators? 
4. Have any other auditors used data analytics?  How did that compare to the ZPICs use of 

data analytics? 
5. Does your relationship with the ZPICs differ from previous health care auditors? 

a. After being in the industry for several years, do you think the average provider 
(not you, someone else) could exert leverage on the ZPICs?  
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