Trinity University Digital Commons @ Trinity

Understanding by Design: Complete Collection

Understanding by Design

Summer 6-2015

The Basics: Geometric Structure

Danielle Kendrick *Trinity University*

Follow this and additional works at: http://digitalcommons.trinity.edu/educ_understandings

Repository Citation

Kendrick, Danielle, "The Basics: Geometric Structure" (2015). Understanding by Design: Complete Collection. 311. http://digitalcommons.trinity.edu/educ_understandings/311

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): . For information about the series, including permissions, please contact the administrator: jcostanz@trinity.edu.

Stage 1 – Desired Results					
		Transfer			
	Stud Cre uni	Transient Students will independently use their learning to Create an image that uses each of the vocabulary terms learned during the unit. Meaning Understandings Essential Questions			
Established Goals (e.g., standards) G4A. distinguish between undefined terms, definitions, postulates, conjectures, and theorems; G4C. verify that a conjecture is false using a counterexample G4D. compare geometric relationships between Euclidean		<i>Ients will understand that</i> cometric models are used to eract with and study the physical rld. cometric structures aid problem <i>v</i> ing by making abstract concepts accrete.	-How and why are geometric shapes used to model the physical world? -How are geometric structures used to solve problems?		
including parallel line	s and the sum	Acq	uisition		
or the angles in a triangle. G5A. investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for		lents will know b: del	-Constructions: (using a compass and ruler) Congruent segments Congruent angles		
triangle congruence, special		efined term nition idean i Euclidean erical	 Segment bisector Angle bisector Name points, lines, line segments, planes, and 		
circles choosing from a variety of tools; -po G5B. construct congruent -line segments, congruent angles, a -pla segment bisector, an angle bisector, perpendicular lines, the -An perpendicular bisector of a line -ray segment, and a line parallel to a -acc		nt ment le te use	rays using appropriate symbolic notation -Name points, lines, line segments, planes, and rays verbally using appropriate academic language. -use the segment and angle addition postulates to solve for missing measurements.		
given line through a point not on a line using a compass and a straightedge; G5C. use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric colationching; -Poc		iplementary plementary ctor le bisector ment bisector point ance tulate			
-Segr collir then -Ang D in t		ment Addition Postulate- If A, B, and C are near such that B is between A and C, AB+ BC=AC. le Addition Postulate- Given <abc point<br="" with="">the interior, m<abd+m<dbc=m<abc< th=""><th></th></abd+m<dbc=m<abc<></abc>			
	Stage 2 – Evidence				
CODE (M or T)	Evaluative Criteria				

	(for rubric)				
Т	See Rubric	Performance Task(s) Students will demonstrate meaning-making and transfer by drawing an image incorporating at least one example of each of the vocabulary terms OR choosing a magazine image and identifying at least one example of each of the vocabulary terms in it. Other Evidence (e.g., formative) Daily exit tickets Weekly Quiz Informal checks for understanding			
		Stage 3 – Learning Plan			
CODE		Pre-Assessment			
(A, M, T)	How w	ill you check students' prior knowledge, skill levels, and poten	tial misconceptions?		
() / /	Written Pre-ass	essment in the form of the exam.			
	Learning Activit	ties	Progress Monitoring		
			(e.g., formative data)		
	Day 1: Intro to	Geometry and Symmetry			
A/M	Objective: SWBAT explain why we study geometry. SWBAT identify rotational and reflectional symmetry in a given image. M Essential Question: How and why are geometric shapes used to model the physical world?		Exit ticket Create your own symmetry drawing		
	Do now: Do No Lesson: We will class. Art and N art. Students wi activity. Exit: 5 question	ow: Symmetry complete the Symmetry notes together as a lath connect: Students will identify symmetry in ill complete the "Create your own symmetry" exit ticket			
	Day 2: Basic ter	ms of Geometry			
	Objective: SWB using appropria Essential Ouest	AT identify and name basic geometry objects te academic vocabulary and notation. ion: How and why are geometric shapes used to			
	model the phys	ical world?	Exit ticket		
А	Do now: Studer them complete of Geometry No				

	Lesson: We will complete the Basic Terms of Geometry Notes. Students will be given play-doh so that they can model each term as we proceed through the notes. Students understanding and retention will be checked at the end of the vocab using the play-doh to play "Simon Says".		
	Exit: 5 question exit ticket.		
	Day 3: Intro to Geometric Constructions		
	Objective: SWBAT construct congruent segments and angles using a compass and straight edge.	Exit ticket	
A/M	Essential Question: How and why are geometric shapes used to model the physical world?		
	Do now: In order to familiarize students with the new materials, have students draw a picture using the ruler, compass, and a pencil. After approx. 3 minutes of free drawing have students share their picture with a partner for about a minute. Ask several students to share their picture with the class. Ask students to name the tools and ask if they know what they are used for in geometry class.		
	Lesson: Name each tool and explain how to use them correctly. Have the students draw a couple of practice arcs with the compass. Give several minutes to do this since kids tend to struggle a lot to use plastic compasses without changing the radius. As a class, complete the Introduction to Constructions notes. Have students construct several segments and angles on their own.		
	Exit: 2 question exit ticket (construct one segment and one angle.) Notes may be used.		
	Day 4: Distance formula		
A	Objective: SWBAT apply the distance formula to calculate the distance between two points on a coordinate grid.		
	Essential Question: How are geometric structures used to solve problems?	Exit ticket	
	Do now: Students will complete the Do Now: Distance handout.		
	Lesson: Segue from the Do Now to the lesson by deriving the distance formula from Pythagorean theorem. [Connection to prior knowledge: students learned Pythagorean theorem in algebra]. Completion of the Distance problem Notes and Guided practice.		

	Students will complete the distance formula independent	
	students will complete the distance formula independent	
	practice problem in their interactive notebooks.	
	Exit: E quastion axit tickat	
	Exit. 5 question exit ticket	
	Day E. Midnaint formula	
	Day 5: Midpoint formula	
	Objective: SWRAT apply the midneint formula to find the	
	midpoint of a line segment given the end points	
	SW/PAT apply the midpoint formula to find an ordnoint of a	Evit tickot
	segment given the other endpoint and the midpoint of a	
	segment given the other endpoint and the midpoint.	
	Essential Question: How are geometric structures used to solve	
	problems?	
А		
	Do now: Students will complete the Do Now: Distance and	
	Midpoint I.	
	Lesson: The Do Now will ask the students to find the middle of a	
	given line segment. Students will share their methods for finding	
	the middle. We will complete the Midpoint Notes in our INBs.	
	As a class, we will complete several practice problems. After the	
	guided practice students will complete several practice	
	problems on their own.	
	Exit: 5 question exit ticket.	
	Day 6: Practice and Quiz	
	Objective: SWBAT apply the distance formula to calculate the	
	distance between two points on a coordinate grid.	
	SWBAT apply the indpoint formula to find the indpoint of a line	
٨	Segment given the end points.	Quiz
A	segment given the other endpoint and the midpoint of a	Scavenger hunt
	segment given the other endpoint and the inidpoint.	
	Essential Question: How are geometric structures used to solve	
	problems?	
	Do now: Do Now: Distance and Midpoint II	
	·	
	Lesson: Distance and Midpoint scavenger hunt. Students may	
	work with a partner or individually. When they finish I will check	
	for accuracy and work.	
	Exit: Distance and Midpoint Formula Quiz	
	Day 7: Segment Addition	

	Objective: SWBAT apply the segment addition postulate to set up and solve algebraic expressions in order to find missing lengths.	
	Essential Question: How are geometric structures used to solve problems?	
	Do now: Do Now: Segment Addition. During his time we will discuss what a postulate is.	Exit ticket
A/M	Lesson: Students will be given the segment addition activity segment cards and the recording sheet. We will do several practice problems together in order to discover the postulate. Students will write the postulate independently and then we will share with the group. As a class, we will complete the guided practice, taking care to insure that we are using the correct notation. (Pay particular attention to the difference between the segment name and the segment measure.)	
	Exit: 5 question exit ticket	
	Day 8: Angle Intro and Vocab	
	Objective: SWBAT identify an angle and special angle pairs. (Not formed by parallel lines). SWBAT use special angle pairs to set up and solve algebraic equations to find missing measurements.	
A/M	Essential Question: How are geometric structures used to solve problems?	Exit ticket
	Do now: Angle Vocab Pre-assessment	
	Lesson: As a class, we will complete the special angle pairs notes and angle aerobics. To check for understanding we will play a kind of angle aerobics Simon says game.	
	Exit: 5 question exit ticket	
	Day 9: Angle Addition Postulate	
	Objective: SWBAT apply the angle addition postulate to set up and solve algebraic equations to find missing angle measurements.	
	Essential Question: How are geometric structures used to solve problems?	
	Do now: Do Now: Angle Addition	Evit ticket
A	Lesson: We will examine the angle addition flipchart. [Last year, students struggled with deciding which parts were being added and which parts were the whole.] As a class, we will complete	

	the angle addition postulate notes and guided practice in pairs. Then students will complete the independent practice individually.	
	Day 10: Segment and Angle Addition Postulate	
A	and solve algebraic equations to find missing angle	
	measurements. SWBAT apply the segment addition postulate to set up and solve algebraic expressions in order to find missing lengths.	Quiz Dry erase board work
	Essential Question: How are geometric structures used to solve problems?	
	Do Now: Do Now: Segment and Angle Addition	
	Lesson: Segment and Angle Addition Jeopardy. Students will be split into groups of 4. All work will be done on personal dry erase boards.	
	Exit: Segment and Angle Addition Postulate quiz	
	Day 11: Angle bisectors and Constructions	
	Objective: SWBAT construct an angle bisector using a compass and straight edge.	
A	Essential Question: How are geometric structures used to solve problems?	Exit ticket
	Do now: Do Now: Angle Bisector	
	Lesson: As a class, we will complete the Angle Bisector Construction Notes. Students will have the opportunity to practice on their own.	
	Exit: Angle Bisector Construction (1 problem)	
т	Day 12-13 Project work days. Students will be introduced to the project and will have 2 days to work in class. Student who finish early should work on the written unit review.	Create an image Project
	Day 12: Review	
M/T	Objective: SWBAT apply all postulates and formulas learned throughout the unit to solve for missing angle and side measures.	Test Review

Essential Question: How are geometric structure problems?	s used to solve
Do now: 5 question quick review.	
Lesson: Review game	
Exit: Unit reflection.	
Day 13: Test Day Students will take the written Unit exam.	Exam

Unit 1 Project – DUE :

Objective: SWBAT create an image using each of the vocabulary terms presented in our first unit.

Task:

You will draw an image incorporating at least one example of each of the following vocabulary terms OR you will choose a magazine image and identify at least one example of each of the vocabulary terms in it. Highlight and number each vocabulary term shown in your image, and, on the chart provided, label the vocabulary term corresponding to the number (see teacher's example). You will also explain in a complete sentence, using appropriate notation and academic language, why your example fits the definition of each term.

Vocabulary terms:

- o Linear pair
- o Complementary angles
- o Supplementary angles
- o Vertical angles
- o Adjacent angles
- o Midpoint
- o Acute angle
- o Right angle
- o Obtuse angle
- o Collinear points
- o Parallel lines
- o Perpendicular lines
- o Opposite rays

*All objects should be labeled with the appropriate geometric notation and measurements (including units).

CFS:

I will know that I have been successful if:

- $\hfill\square$ I included at least one example of each vocabulary term in my image.
- □ I labeled all side lengths and angle measures are recorded on my image including appropriate units.
- □ I numbered and highlighted each term in my image.
- \Box I recorded the numbers and term names on the chart.
- □ I provided a defense for each term on my chart using appropriate academic vocabulary and notation.

CFS Status (circle one): MET or NOT YET

Self-Assessment:

- 1. Did you meet all parts of our criteria for success? If not, please explain why you were unable to be successful on this assignment.
- 2. Are there any vocabulary terms that you are still uncomfortable with? If yes, which one(s)?

Vocab. Terms	#	Rationale
Linear Pair		
Complementary Angles		
Supplementary Angles		
Vertical Angles		
Adjacent Angles		
Midpoint		
Acute angle		
Right angle		
Obtuse angle		
Collinear points		
Parallel lines		
Perpendicular lines		
Opposite rays		

Rubric:

	4	3	2	1	0
Presence of	All 13 vocabulary	At least 10	At least 7	At least 4	3 or fewer
Vocab.	terms are	vocabulary terms	vocabulary terms	vocabulary terms	vocabulary terms
Terms	represented in the	are represented in	are represented in	are represented in	are represented in
	image. All	the image. All	the image. All	the image. All	the image. All
	examples are				
	numbered and				
	highlighted with				
	measurements	measurements	measurements	measurements	measurements
	included where				
	appropriate.	appropriate.	appropriate.	appropriate.	appropriate.
Rationale:	There is a rationale				
Completion	provided for all 13	provided for at	provided for at	provided for at	provided 3 or
-	examples of the	least 10 examples	least 7 examples of	least 4 examples of	fewer examples of
	vocabulary terms.	of the vocabulary	the vocabulary	the vocabulary	the vocabulary
		terms.	terms.	terms.	terms.
Rationale:	All 13 rationales	At least 10	At least 7	At least 4	3 or fewer
Accuracy	are in the form of a	rationales are in	rationales are in	rationales are in	rationales are in
-	complete sentence	the form of a			
	using accurate	complete sentence	complete sentence	complete sentence	complete sentence
	academic	using accurate	using accurate	using accurate	using accurate
	vocabulary and	academic	academic	academic	academic
	appropriate	vocabulary and	vocabulary and	vocabulary and	vocabulary and
	mathematical	appropriate	appropriate	appropriate	appropriate
	notation.	mathematical	mathematical	mathematical	mathematical
		notation	notation	notation	notation
Image:	All 13 examples	At least 10	At least 7	At least 4	3 or fewer
Completion	are artistically	examples are	examples are	examples are	examples are
	incorporated into	artistically	artistically	artistically	artistically
	the image.	incorporated into	incorporated into	incorporated into	incorporated into
		the image.	the image.	the image.	the image.
Neatness	All objects are	Most objects are	Some objects are	Some objects are	Objects are not
	drawn neatly using				
	a compass and a				
	straight edge				
	where appropriate.				
	There are 0 stray	There are 3 or	There are 5 or	There are many	There are
	marks.	fewer stray marks.	fewer stray marks.	stray marks.	numerous stray
					marks.

Score: ____/ 20 points