Trinity University Digital Commons @ Trinity

Understanding by Design: Complete Collection

Understanding by Design

2015

Artist as Chemist [10th grade]

Bonnie Brawner bbrawn@neisd.net

Follow this and additional works at: http://digitalcommons.trinity.edu/educ_understandings Part of the <u>Education Commons</u>

Repository Citation

Brawner, Bonnie, "Artist as Chemist [10th grade]" (2015). *Understanding by Design: Complete Collection*. 317. http://digitalcommons.trinity.edu/educ_understandings/317

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): bbrawn@neisd.net. For information about the series, including permissions, please contact the administrator: jcostanz@trinity.edu.

UNDERSTANDING BY DESIGN

Unit Cover Page

Unit Title: **Artist as Chemist (adapted from** "Artist as Chemist." <u>Active Chemistry.</u> New York: It's About Time, 2003.)

Grade Level: 10th

Subject/Topic Area(s): Chemistry

Designed By: Bonnie Brawner

Time Frame: 7-9 weeks

School District: Northeast Independent School District

School: International School of the Americas

School Address and Phone: 1400 Jackson Keller, San Antonio, Texas 78213 210-356-0900

Brief Summary of Unit (Including curricular context and unit goals):

The purpose of this unit is for students to experience the interdisciplinary nature of chemistry and science by having them create a work of art using processes and/or concepts learned in class. Each student will create their own art piece which incorporates at least 7 chemical processes. At least 4 of them must be concepts learned in class. The theme of the project is "My Personal Identity." Accompanying the physical project will be a "How-To" paper which explains at least 7 of the chemical processes used to create the art piece. Also, accompanying the project will be a paper explaining the theme – how the project relates to themselves.

This unit should be introduced at the beginning of the year, although it is meant to be completed sometime during the last nine weeks of the academic year. At this time share the rubric and project specifications with the students. Periodically throughout the year, check in with students on project ideas, or how a particular topic of study might relate to the project.

This unit will be very laboratory intensive, and could include 5-8 laboratory activities. It will also cover a variety of chemistry topics, including: acids and bases, solvents, solutions and solubility, reaction types, chemical bonding, and polarity.

Artist as Chemist - UbD

Adapted from "Artist as Chemist." <u>Active Chemistry.</u> New York: It's About Time, 2003.

Stage 1 – Desired Results					
Established Goals (e.g.,	Transfer				
(C.7) Science concepts. The	Students will independently use their learning to				
student knows how atoms	explain chemical concepts involved in a non-chemistry discipline				
covalent bonds. The student	explain chemical concepts involved in creating a work of art				
is expected to (D) describe the nature of	incorporate chemistry knowledge and lab skills into creating a work of art				
metallic bonding and apply					
properties such as thermal	Meaning				
malleability, and ductility;	Understandings	Essential Questions			
Supporting Standard	Students will understand that	- How can chemistry knowledge, principles and			
(C.10) Science concepts. The	- Chemistry has practical applications	skills be used to create a work of art?			
student understands and can	that extend across content areas.	 What are the relationships between chemistry and art? 			
that influence the behavior of	- Knowing and applying chemistry concents can improve our lives in				
solutions. The student is expected to	other areas/discipline				
(B) develop and use general rules regarding solubility	- Artists can use chemistry knowledge				
through investigations with	to create, preserve and protect art				
Standard	Acquisition				
(G) define acids and bases and distinguish between	Knowledge	Skills			
Arrhenius and Bronsted-	Students will know	Students will be able to			
Lowry definitions and predict products in acid-base	- how acid rain occurs and equations	- develop a piece of art and explain the			
reactions that form water;	that show formation of acid rain	chemistry behind it			
(H) understand and	 the definition for acids and bases and the difference between strong and 	 recognize and name strong acids and strong bases 			
reactions, precipitation	weak acids and bases	-calculate pH, pOH, [H+], [OH-]			
reactions, and oxidation- reduction reactions:	-Arrhenius and Bronsted-Lowry	- predict products for single replacement			
Readiness Standard	definitions of acids and bases	reactions (redox), precipitation reactions and			
(I) define pH and use the hydrogen or hydroxide ion	-definition of valence electrons	neutralization reactions			
concentrations to calculate	- the definition of alloys and several	- write the correct formulas and names for ionic			
Supporting Standard	the difference between a bydrate	and covalent compounds, strong actus and bases			
Scientific Process Skills	and anhydrate	the oxidation state of elements based upon their			
(C.2) Scientific processes.	-definitions of soluble, insoluble,	location on the periodic table			
The student uses scientific methods to solve investigative	solute, solvent, polarity, polar, non-	- draw the correct Lewis structures for the			
questions. The student is	polar, solubility	formation of covalent and ionic compounds			

(F) collect data and make measurements with accuracy and precision;		- explain the electron sea model of metals and how it accounts for malleability and conductivity of most metals		
(G) express and manipulate chemical quantities using		 explain the differences between covalent, ionic and metallic bonding 		
scientific conventions and mathematical procedures,		 predict solubility of ionic compounds using solubility rules 		
analysis, scientific notation, and significant figures;		 predict solubility of compounds using polarity and the idea that "like dissolves like" 		
(H) organize, analyze, evaluate, make inferences, and predict trends from data;		 collect data and make measurements with accuracy and precision 		
and (I) communicate valid conclusions supported by the		 express and manipulate chemical quantities using scientific conventions and mathematical procedures, 		
data through methods such as lab reports, labeled drawings, graphs, journals,		- organize, analyze, evaluate, make inferences, and predict trends from data		
technology-based reports, and technology-based reports. (C.3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to (D) evaluate the impact of research on scientific thought, society, and the environment;		- communicate valid conclusions supported by the data through methods such as lab reports, labeled drawings, graphs, journals, summaries, oral reports, and technology- based reports.		
Stage 2 – Evidence				

CODE	Evaluative	
(M or	Criteria	
Т)	(for rubric)	
М	-Lab Reports	Performance Task(s)
	- Formal Test	Students will demonstrate meaning-making and transfer by
М	Reviews/Tests	- Writing cogent lab conclusions
Т, М	-Final project with explanation paper, gallery walk	 Demonstrating ability to write lab reports that are organized, repeatable, understandable, and use the appropriate scientific conventions for data recording, units, etc.
		 Creating an art project using chemistry and explaining the chemistry behind the processes: Each student will create their own art piece which incorporates at least 7 chemical processes. At least 4 of them must be

	concepts learned in class. The theme of the project is: "My Personal Identity." Accompanying the physical project will be a "How-To" paper which explains at least 7 of the chemical processes used to create the art piece. Also, accompanying the project will be a paper explaining the theme – how the project relates to themselves.			
Stage 3 – Learning Plan				
CODE	Pre-Assessment			
(A, M,	How will you check students' prior knowledge, skill levels, and potential	misconceptions?		
Т)	At beginning of each lab/activity, there will be a brief review and/or students will complete a Warm-Up over the review topics. This will enable the teacher to check the student's prior knowledge, skill level and any misconceptions (i.e. location of metals, non-metals on periodic table)			
	Learning Activities: The order of all lessons can be adjusted according to the needs and schedules of teachers and students. This unit is meant to cover approximately 9 weeks (¼ of the school year.) More or less time can be spent in the teaching of different concepts, depending on what students have already covered.	Progress Monitoring (e.g., formative data)		
М, Т	 Lesson 1: What is Art? And what is its connection to Chemistry? (2 days). 1. What is Art? (powerpoint) Students will be introduced to the Essential Questions at this time, and have an opportunity to discuss their ideas with small groups. Included is a link to a ppt. showing various works of art. 2. Art Slide Show (powerpoint). 3. Artist as Chemist: Project Intro (handout) 4. Discussion of Previous Ideas and Labs the might relate to project. Discussion of what qualifies as a chemical process. Discussion of the difference between a chemical formula and a chemical equation. (The distinction between a formula and equation is included based upon the unfortunate confusion of some of my students.) 5. Overview of Artist as Chemist Unit (including lab activities). These are part of the first powerpoint. 6. Perspective of Science and Art (Show/Discuss/Read as time permits) A. Art Preservation Video. (2:46) B. ACS Video: What do Chemists do? (Conservation Science - Part 1) (3:21) ACS Video: What do Chemists do? (Conservation Science - 	-Pair Share Discussion -Triads/Quartets Discussion		

	<u>Part 2)</u> (1:44)	
	 ACS Video: What do Chemists do? (Conservation Science - 	
	<u>Part 3)</u> (1:24)	
	<u>The Art and Science of Conservation: Behind the Scenes at</u>	
	the Freer Gallery of Art (4:04)	
	C. MoMA Conservation <u>FAQs</u>	
	D. Art and Chemistry <u>article</u>	
	E. Ted Talk: Psychedelic Science (12:04)	
	Lesson 2: Acid Rain (4-5 days)	
	This lesson ties in chemistry and art by talking about acid rain, its	
WI, A	effects on buildings and artwork, how it is formed, and looking at	
	chemical equations involved in the formation of acid rain.	-Entry Tickets (or Exit
	1. Entry or Exit Ticket: Knowledge of Acids and Bases. Ask students	Ticket, depending upon
	to write on a paper what they know about acids, bases, pH scale, acid	whether this falls in a
	rain. Hand in for teacher to check or discuss in small groups and then	class period)
	with class	
	2. Pre-Lab Discussion. Have students read over procedures, data to	
	be collected, safety concerns, and questions to be answered. Answer	
	questions. Clarify.	
	3. Lab: Simulation of Acid Rain. The purpose of this lab is to simulate	
	acid rain and test for changes in pH. Link to Lab Students first will	
	use Universal indicator in two samples of water, and blow into one	
	then creates carbonic acid, which is shown by a color change in the	
	Universal Indicator.) Part 2: Students will introduce small amounts for	
	SO_2 from a pipette into a water sample that contains an indicator. The	
	introduction of SO ₂ creates sulfurous acid. CAUTION: SO ₂ is a toxic	
	gas and should be use with caution and small quantities. SO_2 can be	
	prepared ahead of time by carefully combining Na_2SO_3 and H_2SO_4 in	
	a plastic ziploc, and then extracting the SO_2 using a disposable plaste. Please use a type hood when preparing SO_2	
	4. Debrief Acid Rain Lab. Include how Acid Rain is formed and	
	equations. When gases such as NO, NO $_{2}$, SO $_{2}$, SO $_{2}$, CO $_{2}$ are emitted	
	from factories or automobiles and combine with H_2O in the	-Minuto Write:
	atmosphere, they create various acids such HNO ₂ , HNO ₂ , H ₂ SO ₂	Evolain how acid rain
	H_2SO_2 H_2CO_2 . These then fall to the ground in the form of acid rain	is formed including at
	5. Direct Lecture: Acids and Bases. If students need this go over:	lost one equation
	Strong Acids, Strong Bases, Neutralization reactions, common	least one equation.
	household acids and bases definition of Arrhenius and Bronsted-	
	Lowery acids and bases.	
	6. Direct Lecture: pH, pOH, [H ⁺], [OH ⁻]. Definitions and calculations	
	for these expressions.	- In-Class Practice
	7. Practice problems involving pH, pOH. [H ⁺]. [OH].	problems
	8. Homework: pH problems.	
	9. Review/Answer Questions from homework.	T 1 D 1
	10. Test Review (Handout)	- Test Review

	11 Acid-Base Test Review: Numbered Heads Together (Divide class	
	into groups of 4. Have them assign a number of $1-4$ to each person	
	Show a problem or definition to work. Each group works together	-Numbered Heads
	When each group is done ask one of the numbers to stand. Call on	Together
	one of them. If a problem is multiple parts, call on a different person	
	from each group to approve different parts, call of a different person	
	10. Acid Deep Test Beview VeRACK/Jerry (Defere clease) Create a	
	12. ACIO-Base Test Review: VOBACKUlary (Belore class: Create a	- Roview Game
	Divide class into 0 meyers. Oct up 0 clasing at front of class loculary	
	Divide class into 2 groups. Set up 3 chairs at front of class, leaving	
	space benind. Teacher sits in middle chair, and assigns one person	
	from each side to sit on either side of him/her facing the rest of the	
	class. One student is assigned to control the powerpoint	
	advancement. Rules: Students on each side are trying to get their	
	teammate to say the vocabulary word on the screen first. They may	
	not say any form of the word, give clues like "sounds like" or "rhymes	
	with" and should be instructed/encouraged to use chemistry-related	
	descriptions). Each student can try 3-4 words and then switch	
	players.	
	13. Acid-Base Test	
٨	Lesson 3: Physical Behavior of Metals (2-3 days)	
A	1. Entry/Exit Ticket. What do students know about Alloys, Solutions,	
	Heterogeneous and Homogeneous Mixtures?	
	2. Discussion/Direct Lecture/Note-taking: Alloys and examples,	-Entry Tickets (or Exit
	solutions, heterogeneous mixtures vs. homogeneous mixtures	Ticket, depending upon
	2. Pre-Lab Discussion. Students read through lab and then ask	whether this falls in a
	questions. Teacher clarifies. Explanation/diagram of how a post-	class period)
	1982 penny goes from a heterogeneous mixture to a homogeneous	
	mixture with gentle heating, creating the alloy: brass.	
	3. Lab: Physical Behavior of Metals	
	Part A: Penny Lab/Making Brass (in this lab, a post-1982	
	penny is gently heated in the cooler part of a burner flame until there	
	is a color change. This color change is due to the mixing of the	
	internal core of zinc with the outer layer of copper. The pre-heated	
	penny is a heterogeneous mixture, while the penny after heating is	
	more of a homogeneous mixture (solution, alloy).	
	Part B: Bobby Pin Lab/Steel: Students will heat the bend of a	
	bobby pin and then straighten it. Students will then heat the bobby	
	pin, let it cool on the lab table, and after it cools, test its malleability.	
	Cooling slowly allows trapped Carbon atoms to leave, making the	
	bobby bend more "bendy" - annealed steel. Then students will form a	
	"J-hook" on this bobby pin, heat it again to red-hot and quickly cool it	
	by immersing it in a beaker of cold water. This traps the carbon	
	atoms in the structure, making it more brittle (hardened steel). When	
	students try to bend it, it should break. Student will then take a new	
	bobby pin, and repeat the process, except before trying to bend the i-	
	hook, heat gently one more time and let cool on table slowly. Then	
	students will try to bend this 2nd bobby pin. It should be less	
	stadente minary to bond and End bobby pint. It briddid be loop	

	 malleability than the first slowly-cooled bobby pin, but less brittle than the J-hook bobby pin that was quickly cooled. This is because this type of "tempered" steel has a medium amount of carbon present. 4. Lab Debrief 5. Lab Write-up Due 		
A	 Lesson 4: Chemical Behavior of Metals (3-4 days) 1. Pre-Knowledge Check: Metals, non-metals, polyatomic ions, symbols and names of common elements. 2. Introduce Reactivity of Metals/Single Replacement Reactions/Activity Series of Metals 3. Demonstration of Zn(s) + CuSO₄(aq) → ZnSO₄(aq) + Cu(s) and 	Lab V Conclus - Pre-A Entry T	Vrite-up and ion ssessment or ïcket
	 Zn(s) + CaCl₂(aq) → No Reaction (Note: these are examples of single replacement reactions and in the first one, the zinc should start to dissolve (losing electrons and going into solution), while copper gains electrons and precipitates out. In the 2nd reaction, nothing should happen because Zn is less reactive than calcium.) 4. Examples and Practice problems using Activity Series of Metals (incl. Hydrogen) and Halogens 5. Homework: Activity Series problems/Predicting the Correct Products 	- In-Cla Proble	iss Practice ms
	 6. Pre-Lab: Chemical Behavior of Metals 7. Lab: Chemical Behavior of Metals Part A: Comparing Activity of Metals using voltage (Metal strips of Cu, Al, Mg, Sn, Zn, Fe, Pb are attached to a 9-Volt battery, a voltmeter, and then placed in a salt water solution, 2 at a time. Reactivity is compared based upon negative or positive readings, and the reactivity of the metals is determined based upon experimental results, which is then compared to the established reactivity.) Part B: Comparing Activity of Metals with Hydrogen (using Hydrochloric Acid) (Small pieces of each metal are dropped into HCl(aq) to determine their reactivity compared to the established results.) Part C: Electroplating a Nickel using Copper Sulfate Solution (A nickel is attached to a 9-volt battery and an alligator clip and dipped into a copper (II) sulfate solution in order to coat the nickel with a copper veneer.) Electroplating is a process that can be used in creating works of art. 8. Debrief each portion of lab. 9. Exit Ticket 	- Home Proble	ework: Practice ms
	 9. Exit ficket 10. Pre-Knowledge Check: Definition and how to find: Valence Electrons 11. Lesson: Determining valence electrons and assigning 	-Exit tio knowle series	cket: edge of activity
	charges/oxidation states. 12. Rules for assigning oxidation states to elements in a compound or polyatomic ion	-Entry electro	ticket: valence ons

	13. Practice assigning	
	 14. Introduction to Redox (reduction/oxidation) reactions. 15. Memorization techniques: 1) LEO the lion says GER (Losing Electrons Oxidation and Gaining Electrons Reduction 2) OIL RIG - Ovidation to Lease and Paduation to Cain 	-In class practice problems
	 16. Practice Problems for determining which elements are reduced and which are oxidized in a chemical reaction. 17. Homework: Redox 18. Homework check. 	-Homework: practice problems
	Lesson 5: Precipitation Reactions, Solubility Rules and Paints (3- 4 days)	
A, M, I	1. Demo: $KI(aq) + Pb(NO_3)_2(aq) \rightarrow KNO_3(aq) + PbI_2(ppt)$ This demo	
	 starts with two aqueous solutions which are added together producing a bright yellow solid or precipitate. 2. Online Animation/Illustration (Find an online animation or draw for students showing the four ions in solution before Pb²⁺ and l⁻ are attracted to each other and precipitate out of the solution.) 3. Solubility Rules Chart: Show students how to read and determine whether a given compound is soluble or insoluble. 4. Practice Problems: Predicting products in a precipitation (double displacement) reaction. 5. Pre-Lab 6. Lab: Part A: Precipitation Reactions (multiple aqueous ionic solutions are combined to see which ones produce solids.) 7. Lab: Part B: Making Paints. Students will use insoluble compounds and a binder (such as linseed oil, water, and guar gum) to make paints and then test them for their color when dry. 	-In-class practice problems -Lab write-up and conclusion
А, М, Т	 Lesson 6: Synthesis of Prussian Blue (2-3 Days) In this lesson, students will create the first known pigment, Prussian Blue, using a precipitation reaction. They can use their product in their project, if they wish. 1. Pre-Lab Discussion 2. Lab: Synthesis of Prussian Blue. 3. Lab Debrief 4. Revisit the Project: How can Prussian Blue be used? What other project ideas do you have? 	
A	Lesson 7: Bonding (4-5 days) 1. Review of Ionic, Covalent, and Metallic Bonding 2. Lewis Dot Structures: Note-taking 3. Formation of Ionic Compounds and Covalent Bonding (drawing dot structures to explain formulas and arrangement of atoms) 4. Test Review 5. Practice Problems	 Entry ticket (knowledge of ionic, covalent and metallic bonding, compounds) In class practice problems

	6. Test 2: Reaction Types, Bonding, Properties of Metals	-Test Review
М, Т	Lesson 8: Clay and Hydrates <i>(Optional)</i> (3 days) This lab could be optional or omitted as time permits. Teacher or student could still purchase/use air-drying clay and have students investigate the chemical make-up of hydrates and how clay works. 1. Pre-Lab Discussion. Plan for experiment. 2. Lab: Part A observe clay crystals with hand lens, investigate, discuss results 3. Lab: Part B Investigate the amount of water in a hydrate of unknown formula. 4. Post-Lab Discussion 5. Discussion about project	
А, М, Т	 Lesson 9: Solvents and Solubility (4 days) 1. Pre-Lab Discussion. Check for pre-knowledge: what affects solubility (2 factors to consider: how much will dissolve and how quickly it will dissolve) 2. Lecture and Notes: Polarity: Polar vs. Non-polar molecules 3. Lab: Part A: Solvents and Solubility. Students will be testing the solubility of different solids (NaCl, KI, NaI, I₂) in various liquids (water, ethanol, vegetable oil, glycerol) 4. Lab: Part B: Marbleized Paper (This lab uses food coloring, shaving cream, and paper to create colored designs on paper. Shaving cream is added to a paper plate or even a table top. Drops of food coloring are added the shaving cream and then slightly stirred to create patterns. A piece of paper (or canvas) is pressed against the shaving cream (both polar and non-polar) is carefully and gently scraped off using a ruler or straight edge. The food coloring (polar) is left on the paper (polar). 5. Post-Lab Discussion 	- Entry ticket: factors affecting solubility Lab write-up and conclusion
Μ, Τ	 Lesson 10: Dyes (3 days) Students will determine a procedure for extracting dyes from natural materials and use them to dye cloth (wool, cotton, linen, silk). Students will then examine factors that affect the colorfastness of dyes. 1. Pre-Lab Discussion 2. Lab: Part A: Making Natural Dyes 3. Lab: Part B: Testing Colorfastness (students will test colorfastness of natural dyes by treating cloth or yarn with a mordant, or metal salt, and then dying the material with one of the natural dyes) 4. Post-Lab Discussion Lesson 11: Glazes and Glass (2 days) In this lab, students will discover what gives glazes and glass their 	

М, Т	color and examine the effect of heat on the colors of glass and glazes.	
	1. Pre-Lab Discussion	
	2. Lab: Creating and coloring glass beads using borax and metal	
	oxides. Students will start with nichrome wire or glass stirring rods.	
	Students will create glass beads using borax (sodium borate	
	$Na_2B_4O_7$), which is heated over a burner flame at the end of the a	
	glass stirring rod or loop of nichrome wire. Once a glass bead is	
	created, students will dip the bead (still attached to the wire or glass	
	rod) in on of several metal oxides and heat again, creating glass bead	
	of varying colors.	
	3. Post-Lab Discussion	
	Lesson 12: Presentations!	
	If possible students might have time in class to work on projects,	
	utilizing art materials and available lab materials from labs included in	
	this unit.	
мт	When the projects are due, students should set them up around the	
101, 1	room with the placards. Students can do a gallery walk to see the	
	projects.	
	Each student will also present his project to his or her chemistry class,	
	explaining the theme, explaining how it was made, and explaining at	
	least one chemical process. Teacher assesses applicable parts of the	
	rubric during presentations.	