Trinity University Digital Commons @ Trinity

Understanding by Design: Complete Collection

Understanding by Design

Summer 6-15-2017

Solving the Mystery of Matter: Physical Properties [5th Grade]

Aly Kirchhof alykirchhof@gmail.com

Follow this and additional works at: http://digitalcommons.trinity.edu/educ_understandings

Repository Citation

Kirchhof, Aly, "Solving the Mystery of Matter: Physical Properties [5th Grade]" (2017). *Understanding by Design: Complete Collection*. 368. http://digitalcommons.trinity.edu/educ_understandings/368

This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): alykirchhof@gmail.com. For information about the series, including permissions, please contact the administrator: jcostanz@trinity.edu.

Physical Properties UbD

	Stage 1 – Desired Results						
Esta	blished Goals (e.g.,	Transfer					
standards)		Students will independently use their learning to					
Content TEKS:		 use observations and measurements 	rements to classify				
5.5 N	latter and energy. The student	• collect, record, and analyze	information				
know	s that matter has measurable						
physi	cal properties and those	M	eaning				
prope	fied	Understandings	Essential Questions				
chang	red, and used.	Students will understand that	Essential Questions				
(A) (classify matter based on physical	Mo can draw conclusions	• what is the matter?				
	properties, including mass,	• We call draw collectusions	 How does knowing about the 				
1	magnetism, physical state (solid,	from information	physical properties help us?				
	liquid, and gas), relative density	Each substance has unique	 What can I find out about this 				
	(sinking and floating), solubility	physical properties	substance?				
	in water, and the ability to	 Physical properties can be 					
	energy or electric energy	measured and observed					
(B) i	identify the boiling and	We can find out about					
1	freezing/melting points of water	materials/substances					
	on the Celsius scale	through observation and					
(C) (demonstrate that some mixtures	measuring					
1	maintain physical properties of	incusuring					
1	their ingredients such as iron						
ו ו (ח)	filings and sand	Acq					
(D) i	in the physical properties of the	Knowledge	SKIIIS				
i	ingredients of solutions such as	Students will know	Students will be able to				
	dissolving salt in water or adding	 mass and weight are not 	classify matter based on				
	lemon juice to water	the same; mass is the	physical properties				
		amount of matter in a	 categorize information, 				
Proce	ess TEKS	substance, and weight is	organize information into a				
5.2		the force of gravity pulling	chart				
(A) a	formulate testable hypotheses, and	on an object	 determine what types of 				
9	select and use appropriate	 the 3 states of matter: 	materials make good				
	equipment and technology	solid, liquid, and gas	conductors and poor				
(B)		 magnets attract and repel 	conductors (insulators) of				
(C) (collect information by detailed	other magnets: magnets	heat sound and electricity				
1	measuring;	do not attract all	discover what materials will or				
(D) a	analyze and interpret information to	materials/motals	uiscover what materials will of will not form a solution in				
	construct reasonable explanations		will not form a solution in				
	from direct (observable) and indirect	relative density is the	water				
(E)	(interred) evidence,	ability of a material to sink	 record observations and 				
(F)		or float in water	conclusions in their science				
(G) (construct appropriate simple graphs,	 some substances dissolve 	notebooks				
1	tables, maps, and charts using	in water to create	 identify the boiling point of 				
	technology, including computers, to	solutions	water as 100° C and the				
i	information.	 some substances maintain 	freezing/melting point of				
5.4		nhysical properties when	water as 0° C				
(A) (collect, record, and analyze	combined in a mixture	moscuro mass using a tripla				
i	information using tools, including		Ineasure mass using a unple				
	conduters hand lenses metric	 some materials are better 	beam balance and measure				

rulers, Celsius prisms, mirror beam balance graduated cyl plate, meter s collecting nets timing devices stopwatches; support obser organisms suc aquariums	thermometers, rs, pan balances, trij es, spring scales, inders, beakers, ho sticks, magnets, s, and notebooks; s, including clocks an and materials to vations of habitats th as terrariums and	or worse at conducting or insulating thermal, t weight using a sca measure tempera thermometer and temperature prob states of matter	ile ture using a be			
ELPS c2D: Monitor unc clarification c2E: Use visual, c support to confir understanding c2I: Demonstrate comprehension c3D: Speak using area vocabulary i c3F: Ask and give high-frequency ar vocabulary c4G: Show compr text individually a c5B: Write using vocabulary	derstanding and so ontextual linguist m and enhance listening grade level conte n context information using nd content area rehension of Engli and in groups newly acquired	eek ic nt g ish				
		Stage 2 – Evidence				
CODE (M or T)	Evaluative Criteria (for rubric)					
		Students will demonstrate meaning-making and transfer by Students will use physical properties to identify 10 mystery material	s (attached)			
		Other Evidence (e.g., formative)				
	Conductors and Insulators labs Magnetic/nonmagnetic sort (attached) More or less dense sort (attached) Check-ins: what is? Mixtures and Solutions project Breakout (attached)					
		Physical Properties Multiple Choice (attached)				
CODE (A, M, T)	Pre-Assessment How will you check students' prior knowledge, skill levels, and potential misconceptions? On a sticky note describe everything you can about (An object)					
	Learning Activities Progress General notes: Monitorin • use anchor charts as a model for student notes in science notebook (e.g.,					

	If necessary, print a small copy of anchor chart for students to put in	formative						
	science notebook							
	 On science word wall include vocabulary with a picture (from your classroom) of students 							
	 Use applicable released STAAR guestions as turn-and-talk or exit ticket 							
	opportunities							
	. F.F							
Week 1:	Week 1: Introduction and States of Matter							
EQ: Why does	2S Day 1:							
knowing	 Engage: Turn and talk - why is the best for? 							
about	 Football, throwing 							
properties	 Ice, keeping drinks cold Day, deb, making shapes 							
help us?	 Play-uoli, making shapes Coffee mugs, keeping drinks warm 							
	 Their physical properties make them perfectly suited for their 							
	task							
А	Engage: Flubber physical properties clip							
	(https://www.classhook.com/resources/431)							
	• Introduce EQ: Why does knowing about physical properties help us?							
	 KWL: what do we already know? What do we still have questions 							
	about?							
	Day 2:							
	States of Matter: anchor chart							
	examples for each state of matter							
	\circ Extension questions: Is a football a solid or a gas? Are clouds							
	really a gas? Is shaving cream a solid, liquid, or gas? Is butter a							
	solid or a liquid? Jelly? (from Physical Properties of Matter UbD,							
	Perez, Eloisa							
	< <u>http://digitalcommons.trinity.edu/educ_understandings/272/</u> >)							
	States of Matter							
	SOLID							
	E a a a a a a the							
	GAS GAS							

States of Matter a definite Shape and Volume Alice whe a definite shape but the volume takes the Snape of its container the water takes the and volume of its container Steam Day 3: Sorta Sorted activity • Give students a collection of objects (at least 10) and have them sort into categories • How did you sort your objects? • Observe how other groups sorted their objects. • How else could you have sorted them? Day 4: Introduce the CER (Claim, Evidence, Response) Framework • Pose the question: Who had an awesome dinner? Focus on one students claim, record their claim on an anchor chart • Have them describe what make the dinner good, record this as their • evidence, and add to anchor chart Discuss with that class what makes a dinner good (i.e. tasty food, good • people to be around, a lot of food, etc.) and record this as the reasoning Collect into one final response Day 5: Continue discussion of SER framework Practice using a high interest topic, and sentence stems • Week 2: Week 2: Mass, Weight, and Magnetism EQ: What IS Day 1: the matter? Engage: Do you matter? Mass v. weight • Have each student measure their mass and weight, record in A, M science notebook • Demonstrate how gravity effect weight and mass: Trip to the Moon, Mercury, and Jupiter • Moon (weight divided by 6), Mercury (multiply Earth's weight by 2/5), Jupiter (multiply Earth's weight by 2.3)

Record in a chart in science notebook 0 Explain: Science Notebook - what is mass? • • CER response: Does a cloud have mass? Day 2: Explore: Using a triple beam balance • o Demonstrate how to calculate mass, model to demonstrate, individual practice with objects throughout the room Graph mass on bar chart 0 pecturgle 34 Block Day 3: Explore: Measuring Volume using graduated cylinders • • Reading a graduated cylinder measurement • Using displacement to calculate volume Day 4: Evaluate (Formative Assessment): measuring matter (mass and volume) • • Collect pictures of triple beam balances and graduated cylinders, have students record measurements and units shown in the pictures Add mass, weight, volume, and states of matter to KWL • Magnetic/ non-Day 5: magnetic Magnetism (review 3rd and 4th grade concepts) • sort • Magnetic and non-magnetic sort (attached)

Week 3:							
EQ: What's	Day 1:						
the matter?	Engage: chocolate cake and clay ball/candle						
What can I	• Chocolate cake activity: Measure mass as a class, then smoosh						
find out?	cake into smaller container						
	 Ask: Is there the same amount of cake? (yes), What has 						
А							
	amount of space, the density)						
	 Clay/play-doh ball and candle activity: measure mass and make 						
	predictions about which one will float/sink						
	 Mass of the candle should be greater than the mass of 						
	the ball						
	Record predictions in science notebook						
	• Explain: density notes						
	Uensity 1						
	a paped						
	All resolution						
	THE THE						
	more dense						
	more derbe means more matter						
	Desity the amount of mater in an object's volume						
	Chine gave in collect to said						
	10 x 10 x						
	20/05 st Dinking						
	Xhan Lynn one of						
appendix and							
Day 2:							
	 Explain and Explore. Relative density - slik of hoat lab Collect about 10 items and a clear bucket of water 						
	 Have students make a prediction about if the item will sink or 	Relative					
	float	Density Lab					
	• Record prediction and outcome in science notebook (data chart)						
	Object Prediction Outcome						
	Day 3:						
	Explore: Liquid Density Lab						
	 Use play-don to secure a straw in an upright position, use a dropport to clowly add rubbing closhol (dred for accur) 	Liquid					
	identification), cooking oil, and water						
• Extension: add objects like a small scrap of paper, pony bead and							

	 Each group gets 3 ice cubes, measure amount of time 					
	the ice takes to melt					
	 On paper plate (control), in a cup, their own design 					
	 Draw and label diagram in science notebook 					
	Day 2:					
	Explore: Simple circuit with conductors and insulators					
	• For each table group set up a simple circuit to test if electricity					
	can flow through sample objects					
	• Materials: circuit, iron nail, penny, copper wire, cotton ball,					
	bouncy ball, water, salt-water					
	 Record results in a t-chart in science notebook 					
	Day 3:					
	Explore: Demo lab: Can You Hear Me Now?					
	• Place speaker on table (control), cover speaker with Styrofoam					
	cooler, and place speaker in a glass cup					
	• Record observations in and conclusions in science notebook					
	 Draw and label diagram in science notebook 					
	Day 4:					
	• Concept check-in: brain map of materials as conductors and insulators					
	(for sound, electricity, and heat)					
	Add conductors and insulators to KWL					
	Peer tutoring and teacher intervention					
Week 5:	Week 5: Mixtures and Solutions					
What can I	Day 1:					
find out?	• Engage: picture analysis (show a picture of a mixture and solution side					
	by side)					
А	 What do you see? 					
	 What science topic do you think this picture shows? 					
	 Explain: Difference between mixtures and solutions 					
	1 Set					
	at a or suchances cinarcelle					
	Example: -mins and swither					
	- Cacio Kales & Crownes M Ches mix - Chest mix - Chest Parts & Tax A - A					
	- materialized & an XI					
	- ioli \$, writec - Sand \$ iron - thing					
	Subtrace that					
	Seperated and					
	marke a new subtance . 1950					
	Veningles:					
	. Kial and					
	, Sweet ted v					

Day	/ 2:	
•	Separating mixtures and solutions lab	
	 Set of 3 mixtures and 1 solution 	
	 Rice Crispies and gravel 	
	 Cheerios and paperclips 	
	 Coco Puffs and Kitty Litter 	
	 Water and Kool-aid 	
	 Tools: strainer, magnet, tub of water, and a sunny window 	
	 Give students a chance to explore with each of the 	
	mixtures, letting them know that one tool separates	
	each mixture (i.e. they will match up like pairs)	
	 Have students use the CER framework to respond to the 	
	question: How would you separate the and mixture?	
Day	/ 3:	
•	Elaborate: Lemonade (citric Acid solution)	
	 Materials (for each group, group size 3-5): 	
	 Pitchers with water 	
	 Spoons 	
	 5-10 Halved lemons 	
	 Sugar 	
	 Tasting cups 	
	\circ Have each group choose a name and plan how they will make	
	their lemonade	
	 Give each group about 10 minutes to craft their perfect 	
	lemonade	
	 Give each group the opportunity to sample other groups 	
	lemonade and vote for the winner	
Day	/ 4 and 5:	Mixtures
•	Evaluate: Mixture and solutions project	dilu Colutione
	• Students draw from a set of materials cards (I include materials	Drojoct
	like sand, pony beads, salt, marbles, water, gravel, etc.)	Project
	• Have students draw 3 sets (make sure one card is water)	
	 Students can combine the materials in any set of combinations 	
	they want	
	 Students need to identify if their combination is a mixture or 	
	solution and how they would separate it	
	 A small poster divided into 3 sections would be a great medium 	
	because it allows students to include a diagram and space for	
	their claims and evidence	
•	Add mixtures and solutions to KWL	
1	Dear tutoring and teacher intervention	

Week 6:							
What can I	Week 6: Physical Properties Wrap up/Bringing it all together						
find out	Day 1:						
about this	Physical Properties interactive word wall (I could not find my example,						
substance/	but there are several examples available on Pinterest)						
material?	• Whole group activity, gather around a large sheet of butcher						
	paper, or whiteboard (if you have the space) p						
М	 Divide butcher paper into sections: sates of matter, 	poster and					
	relative density, solubility, mass, weight, magnetism,	concept					
	and conductor and insulator	shirts					
	 As a class, discuss what materials should go in which 						
	section, encourage students to use claims and evidence						
	when justifying which physical property an object should						
	go in						
	• Materials:						
	 Butcher paper 						
	■ Tape						
	 Cube (any solid substance) 						
	Bag of water						
	Bag filled with air						
	 Bag with water and marble Bag with water and twig 						
	 Bag with water and twig Bag of cand 						
	 Bag of salt or Kool aid 						
	 Bdg OF Salt OF NOOF-dru Dicture of scale 						
	 Picture of triple heam balance 						
	 Different types of magnets 						
	 A collection of magnetic and non-magnetic materials 						
	 A collection of conductors and insulators 						
	Day 2: Intervention small groups and peer tutoring						
	Day 3: Finalize KWL and concept shirts						
	Revisit and reflect on KWL						
	 How can knowing the physical properties of an object help us? 						
	• Concept shirts: use blank t-shirts to design "billboards" that include						
	definitions, diagrams, and important vocabulary						
	 Split into 6 groups (state of matter, mass/weight, 						
	density, magnetism, conductor/insulator, and solubility)						
	Day 4:						
	 Physical properties poster mini-project: select an object and answer the 						
Week /:	EQ: What can I find out about this substance/material?						
M, I	 A mind web is the most effective organization 	Ducalizat					
	Day 5:	Breakout,					
	Review with a partner or finish mini-project	choice					
		choice					

Week 7:
Day 1:
Breakout (attached)
Day 3
Physical Properties Multiple choice (attached)
Day 4 and 5:
Performance Task (attached)

Name:

Performance Task

You are a scientist in a lab. Poor lab safety led to a terrible explosion! After the firemen put out the fire you are allowed back in the lab, but you find that all labels have came off or your materials and substances. Keep your lab safe by identifying each of these 10 substances. Use observation and measurement to make conclusions about how to label each substance. Record your findings in the chart below.

	Substance name	Color, texture, shape	State of Matter	Mass	Weight	Relative density	Magnetism	Conductor or insulator	Solubility	Other
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Which substance do you think is sugar? Use the Claim, Evidence, Response framework.

Which substance do you think is made of Iron? Use the Claim, Evidence, Response framework.

Mystery substances: (number all substances and place substances in small, sealable baggies if necessary, depending on class it might be beneficial to have multiple sets of mystery substances)

- Flour
- Playground sand
- Sugar
- Salt
- Gravel/pebbles
- Aluminum block
- Bronze block
- Iron block
- Dish Soap
- Gatorade

Materials made available to students:

- Triple beam balances
- Graduated cylinders
- Magnets
- Tub of water
- Circuit
- Meter stick or metric ruler
- Scale
- Beaker of water

Note for teachers: You can modify this performance task for ELLs and SpEd by eliminating mystery substances, and by providing a template to answer last question.

	Does not meet expectations	Approaches Expectations	Meets or exceeds expectations
Students demonstrates understanding that each substance has unique physical properties	Only limited physical properties are tested	Some substances are tested for physical properties	Each substance is tested for all physical properties
Student measures mass using a triple beam balance	Student has great difficulty measuring and recording mass	Student has some difficulty measuring mass	Student demonstrates understanding of tool and uses grams when recording mass
Student uses evidence to determine if materials will or will not form a solution in water	Student does not check for solubility using water	Student adds material to water, but does not look for even distribution in water	Student adds material to water to test for solubility, and determines it is soluble by observing even distribution of substance in water
Students will use evidence to determine if materials make good conductors and poor conductors (insulators) of heat, sound, and electricity	Student does not test for conductivity using appropriate tools	Student tests for some areas of conductivity using appropriate tools	Student tests material for electrical, sound, heat conductivity using appropriate tools
Student collects information to classify matter based on physical properties	Student does not record measurements or information on chart, or is illegible Student's measurements and information is not accurate	Student records information in chart, but it is inconsistent or unorganized Student's measurements and information are mostly accurate	Student clearly records measurements on data chart Student's measurements and information are accurate

Magnetic and non-magnetic sort

Magnetic	Non-magnetic	
Paper	Aluminum cookie sheet	
Aluminum Can	Cotton Ball	
Penny	Plastic Shopping Bag	
Iron Nail	Pencil Lead	
Gold Ring	Bolt	
Paperclip	Safety Pin	
Plant	Flip Flop	

More/Less Dense Sort

More dense than water	Less dense than water
Staple	Large wooden block
Bouncy ball	Pen
Plastic Easter Egg	Marble
Small wooden cube	Ice
Dead Leaf	Rock
Styrofoam cup	Silver Ring
Play-doh	Rubber Duck

Physical Properties Multiple Choice

- 1. What tool measures in grams?
 - a. Beaker
 - b. Graduated cylinder
 - c. Triple beam balance
 - d. Scale
- 2. Which of these items would be attracted to a magnet?
 - a. Balloon
 - b. Iron nail
 - c. Plastic cup
 - d. Science book
- 3. Which of these items contains a gas?
 - a. Balloon
 - b. Iron nail
 - c. Plastic cup
 - d. Science book
- 4. Which of these items do you think would have the greatest mass?
 - a. Balloon
 - b. Iron nail
 - c. Plastic cup
 - d. Science book

- 5. An empty 250 mL beaker has a mass of 60 grams. When 100 mL of oil is added to the beaker, the total mass is 140 grams. What is the mass of the oil?
 - a. 350 grams
 - b. 80 grams
 - c. 160 grams
 - d. 40 grams
- 6. Which characteristic of an object will always change as the object travels from the Earth to the Moon?
 - a. Volume
 - b. Density
 - c. Weight
 - d. Mass
- 7. Based on what you have learned about conductors and insulators, which of these will be the best conductor of heat?
 - a. Metal
 - b. Wood
 - c. Oven Mitt
 - d. Styrofoam
- 8. Which force causes a marble to sink to the bottom of a glass of water?
 - a. Gravity
 - b. Friction
 - c. Magnetism
 - d. Electricity

9. Which would best complete the chart above?

Conducts Heat	Does Not Conduct Heat
Metal Spoon	Plastic Straw
Glass Baking Dish	Foam Cup
?	Newspaper

- a. A Cotton T-shirt
- b. Aluminum can
- c. Rubber eraser
- d. Wooden toothpick
- 10. If you want to change the state of matter, what must you do?
 - a. Use a conductor of heat
 - b. Cause evaporation to happen
 - c. Add or remove heat
 - d. Place the matter in a freezer

Physical Properties Breakout

Ideal Group Size:

2 groups, 10-18 students total

Suggested Time:

30 minutes

Story:

Something very important is locked away and we need to get it

Steps	Setup
1	Set locks 4-digit lock: 3-digit lock: Word lock: sugar Directional lock: ↓↓↑↑
2	Print: QR code, and 5 clues
3	Put prize in small box and lock with 4-digit
4	Put small box in larger box with alpha code, and use hasp to lock with 3-digit lock and directional lock
5	Put duckie in medium box, and lock with word lock
6	Post clues around room
7	Hide clue about solubility somewhere relatively easy to find
8	Place golf ball, ping pong ball, tennis ball, and marble in room
9	In a separate part of the room place triple beam balance, graduated cylinder, tub of water, scale, magnet, and beaker of water
10	Get ready!

Reflection Questions

What do you think you did well when solving this challenge? / How did you push through challenges/show growth mindset?

What could you have done better? / What could you improve for next time?

How did your knowledge of physical properties help you?

Materials List:

- 3 lockable boxes: small, medium, and large
- 4-digit lock
- 3-digit lock
- Word lock
- Directional lock
- Hasp
- 5 clues (included)
- Rubber duckie (it does not have to be a duckie, just something you can lock in the medium box, that has a mass greater than 100g. The mass will be your 3 digit code, do not include decimals)
- triple beam balance
- graduated cylinder
- tub of water
- scale
- magnet
- beaker of water
- golf ball
- ping pong ball
- tennis ball
- marble

Digital Files: Google Drive Link to any printouts or papers that are required.

QR code

LOCK TYPE	LOCK COMBINATION	HOW WILL THEY KNOW THE COMBO?	WHERE WILL IT LEAD?
4-Digit Lock		Alpha-numeric code for: mass	Victory!

		 Scan QR code for code key Clue for mass 	
3-Digit Lock		Mass of the duckie	Opens hasp to reveal Clue #1 and small box
Word Lock	sugar	Clue for solubility: Substance that dissolves in water	Opens medium box to get 3-digit lock on the large box
Directional Lock	↓↓↑↑	Ordering the materials in the correct order and determining their relative density • Clue for order • Clue for density	Opens hasp to reveal Clue #1 and small box
ITEM TYPE	PURPOSE/INFORMATION	WHAT WILL TH DO WITH IT	IEY ?
Large Lock Box	Hasp with:	Unlock to receive small bo code	ox and alpha
Small Lock Box (inside Large Lock Box)	Locked with 4-Digit Lock	Win!	
Medium Lock Box	Locked with Word Lock Duckie inside	Duckie necessary to unloc on medium box	k 3-digit lock

Alphacode (inside large box)	Alphanumeric cypher a=1, j=1	Code necessary to unlock 4-digit code on small box
Clue for mass and 4- digit code (posted in room)	Physical property – – – –	Necessary to unlock 4-digit lock on small box to win!
Clue for solubility (hidden in room)	Sweet! You found it!	Clue necessary to find word to unlock word lock on the medium box
Clue for order of substances for directional lock (posted in room)	Alphabetical order	Necessary to unlock directional lock on large box
Clue to check 4 substances for density (posted in room)	Some things go up and down in water	Necessary to unlock directional lock on large box