Be ready and able to demonstrate the impact of your work!

Impact Factor Rankings
- Represents the average number of times that an article published in a particular journal has been cited within the previous 2 years

Alternative Metrics (altmetrics)
- New ways to measure research impact; tells us more about how a work has been used, shared, or communicated over time via social media and the web.
Getting Started-ORCID: Altmetrics

❖ Distinguish Yourself, Get your ORCID!

➢ Distinguishes you from every other researcher by providing a unique digital identifier

➢ Register at: ORCID
Compare the Tools: Altmetrics

- Altmetric tools have different sources and specialties

<table>
<thead>
<tr>
<th>Google Scholar</th>
<th>Altmetric</th>
<th>ImpactStory</th>
<th>PlumX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracks Citations</td>
<td>Tracks Mass Media References</td>
<td>Tracks any work on the web</td>
<td>Tracks any work on the web & book related data (ILL)</td>
</tr>
<tr>
<td>Pulls work from Google Scholar - grabs work from our Digital Commons</td>
<td>Locates work via unique identifier (DOI)</td>
<td>Pulls work from your ORCID, Google Scholar, Manually add URL's or work</td>
<td>Pulls work from your ORCID, upload manually, or embed widgets on your sites</td>
</tr>
<tr>
<td>Focus is on quick and simple tracking of citations</td>
<td>Focus is on the conversations around an article</td>
<td>Focus is on exploring your digital research</td>
<td>Focus is on dashboard type data as well as helping to create and managing your profiles in one place</td>
</tr>
</tbody>
</table>
Browsing the Tools: Altmetrics

★ Google Scholar - Tracks your citations
 ○ My Citations
 ○ Sample

★ AltMetric - What are people saying about your work
 ○ The AltMetric Explorer
 ○ The AltMetric Bookmarklet
 ■ Digital Commons

★ Impact Story - How many times has your article been saved, cited, and/or discussed
 ○ Profile

★ PlumX - Measures usage, captures, mentions, social media, and citations
 ○ Researcher Profile
Benefits:

• Centrally collect/manage scholarship

• Discoverability

• Usage tracking
Selected Works

Collect all works in one place

- Articles/book chapters
- Supplementary materials
- Presentations, data, etc.
- Audio/Video
SelectedWorks

Share your work and get it discovered

• Full-text indexed in google/scholar
• Search engine optimization
• Offers simple and permanent URL: http://works.bepress.com/benjamin_harris/
• Increased exposure to a global audience
Get download reports

- Monthly download reports
- Interesting information
- Look at trends over time

Citation counts, altmetrics, downloads = round out the picture FOR YOU, people are finding the work
How does it interact with Digital Commons?

- Harvests info from the Digital Commons
SelectedWorks

Want to try it?

Give me your CV!

jcostanz@trinity.edu

Ok, but then what happens...
Digital Commons

- Check publisher permissions
- Seek permissions

A detailed record of shallow hydrothermal fluid flow in the Sierra Nevada magmatic arc from low-δ^{18}O skarn garnets

Megan E. D'Errico, Trinity University
Jade Star Lackey, Pomona College
Benjamin E. Surplice, Trinity University
Staci L. Loemy, University of Texas at Austin
Joseph L. Wooden, Stanford University
Jaime D. Barnes, University of Texas at Austin
Ariel Strickland, University of Wisconsin - Madison
John H. Valley, University of Wisconsin - Madison

Document Type
Article

Publication Date
2012

Abstract
Garnet from skarns exposed at Empire Mountain, Sierra Nevada (California, United States) batholith, have variable δ^{18}O values indicating the lowest known δ^{18}O values of skarn garnet (~4.0) in North America. Such values indicate that surface-derived meteoric water was a significant component of the fluid budget of the skarn-forming hydrothermal system, which developed in response to shallow...
• What happens when an author changes universities?
• What are the patterns of access?

Discoverability (postprint as discovery for global access) - authenticity (link to published version) - shareability (request it button) - **connectivity** (altmetrics, impact story, etc.)
So You Want In?

Help us help you:

• Keep track of manuscript versions/
 Organize

• Keep post-prints

Courtesy of Doug McGr via Flickr.com
Pre-print:
• Author’s manuscript version submitted for consideration for publication
• Does NOT contain peer review revisions

Post-print:
• Author’s final manuscript
• Contains all revisions made during peer-review
• Typically a Doc or Text file

Modern strain localization in the central Walker Lane, western United States: Implications for the evolution of intraplate deformation in transtensional settings

Benjamin Surber

Department of Geosciences, Trinity University, One Trinity Place, San Antonio, TX 78209, United States

Keywords: Transtension, Walker Lane Lake Tahoe, Strain partitioning, North American-Pacific plate boundary

Tel: +1 210 999 7110; fax: +1 210 999 7090 E-mail address: bsurber@trinity.edu

ABSTRACT

Approximately 25% of the differential motion between the Pacific and North American plates occurs in the Walker Lane, a zone of dextral motion within the western margin of the Basin and Range province. At the latitude of Lake Tahoe, the central Walker Lane has been considered a zone of transtension, with strain accommodated by dip-slip, strike-slip, and oblique-slip faults. Geologic data indicate that extension and strike-slip motion are partitioned across the central Walker Lane, with dip-slip motion resulting in E-W to ESE-WNW extension along the present-day western margin of the central Walker Lane since approximately 12 Ma. The central strike-slip motion across a zone further east since as early as 24 Ma. GPS velocity data suggest that present-day strain continues to be strongly partitioned and localized across the same region established by geologic data. Velocity data across the eastern margin of the Walker Lane have very little extension across either the central or eastern portions of the Walker Lane. These data indicate very little dextral motion across the central and western portions of the domain, with dextral motion of 3-5 mm/yr presently focused along a discrete zone of the eastern part of the central Walker Lane coincident with extant normal strike-slip faults. Hysteretic seismic data reveal little
Examples

Publisher’s PDF: http://digitalcommons.trinity.edu/bio_faculty/3/
Post-Print: http://digitalcommons.trinity.edu/geo_faculty/11/
Post-Prints

Post-print:
- Author’s final manuscript
- Contains all revisions made during peer-review
- Typically a Doc or Text file
A Post-Print by Any Other Name...

Elsevier: Accepted author manuscript (AAMs)

Emerald: Your own final version of your article

NPG: Author’s version of accepted paper

Springer: An author created version of his/her article

Taylor & Francis: Author’s accepted manuscript
What if the publisher’s layout is important to me?

- Create Record
- Another avenue to access your paper
- Request Access Button
Organization
How are you currently keeping track of your manuscripts?

Consider:

• Consistent folder and file naming
• Central location
• Version numbering such as v01, v02, FINAL

At the very least keep track of your final author-accepted version following peer review (POSTPRINT) in an editable format such as Word.
If you want in...

1) Send Jane Costanza jcostanz@trinity.edu your CV

2) Contact Lanette Garza lgarza1@trinity.edu about help with online metric tools

3) Keep track of your post prints