Document Type

Article

Publication Date

10-2018

Abstract

At macroevolutionary scales, stress physiology may have consequences for species diversification and subspecies richness. Populations that exploit new resources or undergo range expansion should cope with new environmental challenges, which could favor higher mean stress responses. Within-species variation in the stress response may also play a role in mediating the speciation process: in species with broad variation, there will always be some individuals that can tolerate an unpredictable environment, whereas in species with narrow variation there will be fewer individuals that are able to thrive in a new ecological niche. We tested for the evolutionary relationship between stress response, speciation rate, and subspecies richness in birds by relying on the HormoneBase repository, from which we calculated within- and among-species variation in baseline (BL) and stress-induced (SI) corticosterone levels. To estimate speciation rates, we applied Bayesian analysis of macroevolutionary mixtures that can account for variation in diversification rate among clades and through time. Contrary to our predictions, lineages with higher diversification rates were not characterized by higher BL or SI levels of corticosterone either at the tips or at the deeper nodes of the phylogeny. We also found no association between mean hormone levels and subspecies richness. Within-species variance in corticosterone levels showed close to zero repeatability, thus it is highly unlikely that this is a species-specific trait that influences diversification rates. These results imply that stress physiology may play a minor, if any, role in determining speciation rates in birds.

DOI

10.1093/icb/icy086

Publisher

Oxford University Press

Publication Information

Integrative and Comparative Biology

Included in

Biology Commons

Share

COinS