Document Type
Article
Publication Date
10-14-2021
Abstract
We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C-H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe-C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H2 activation across the Fe(ii) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe-carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H2/hydride-induced loss of the organometallic acyl unit (i.e. pyCH2-CO → pyCH3+CO). The known reduced hydride species [HFe(CO)4]– and [HFe3(CO)11]– have been observed as products by 1H/2H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO)4]. The former species (i.e. [HFe(CO)4]–) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([TolIm](BArF) = fluorinated imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase.
Identifier
PMID: 34703571
DOI
10.1039/d0sc03154b
Publisher
Royal Society of Chemistry
Repository Citation
Kerns, S. A., Seo, J., Lynch, V. M., Shearer, J., Goralski, S. T., Sullivan, E. R., & Rose, M. J. (2021). Scaffold-based [Fe]-hydrogenase model: H 2 activation initiates Fe(0)-hydride extrusion and non-biomimetic hydride transfer. Chemical Science, 12(38), 12838-12846. https://doi.org/10.1039/d0sc03154b
Publication Information
Chemical Science
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.